拓扑排序 订阅
对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若边∈E(G),则u在线性序列中出现在v之前。通常,这样的线性序列称为满足拓扑次序(Topological Order)的序列,简称拓扑序列。简单的说,由某个集合上的一个偏序得到该集合上的一个全序,这个操作称之为拓扑排序。 [1] 展开全文
对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若边∈E(G),则u在线性序列中出现在v之前。通常,这样的线性序列称为满足拓扑次序(Topological Order)的序列,简称拓扑序列。简单的说,由某个集合上的一个偏序得到该集合上的一个全序,这个操作称之为拓扑排序。 [1]
信息
别    称
toposort topsort
应用学科
计算机科学 图论
中文名
拓扑排序
外文名
topological-sort
拓扑排序预备知识
一个较大的工程往往被划分成许多子工程,我们把这些子工程称作活动(activity)。在整个工程中,有些子工程(活动)必须在其它有关子工程完成之后才能开始,也就是说,一个子工程的开始是以它的所有前序子工程的结束为先决条件的,但有些子工程没有先决条件,可以安排在任何时间开始。为了形象地反映出整个工程中各个子工程(活动)之间的先后关系,可用一个有向图来表示,图中的顶点代表活动(子工程),图中的有向边代表活动的先后关系,即有向边的起点的活动是终点活动的前序活动,只有当起点活动完成之后,其终点活动才能进行。通常,我们把这种顶点表示活动、边表示活动间先后关系的有向图称做顶点活动网(Activity On Vertex network),简称AOV网。 例如,假定一个计算机专业的学生必须完成图3-4所列出的全部课程。在这里,课程代表活动,学习一门课程就表示进行一项活动,学习每门课程的先决条件是学完它的全部先修课程。如学习《数据结构》课程就必须安排在学完它的两门先修课程《离散数学》和《算法语言》之后。学习《高等数学》课程则可以随时安排,因为它是基础课程,没有先修课。若用AOV网来表示这种课程安排的先后关系,则如图3-5所示。图中的每个顶点代表一门课程,每条有向边代表起点对应的课程是终点对应课程的先修课。从图中可以清楚地看出各课程之间的先修和后续的关系。如课程C5的先修课为C2,后续课程为C4和C6。 [2]  一个AOV网应该是一个有向无环图,即不应该带有回路,因为若带有回路,则回路上的所有活动都无法进行。如图3-6是一个具有三个顶点的回路,由边可得B活动必须在A活动之后,由边可得C活动必须在B活动之后,所以推出C活动必然在A活动之后,但由边可得C活动必须在A活动之前,从而出现矛盾,使每一项活动都无法进行。这种情况若在程序中出现,则称为死锁或死循环,是必须避免的。在AOV网中,若不存在回路,则所有活动可排列成一个线性序列,使得每个活动的所有前驱活动都排在该活动的前面,我们把此序列叫做拓扑序列(Topological order),由AOV网构造拓扑序列的过程叫做拓扑排序(Topological sort)。AOV网的拓扑序列不是唯一的,满足上述定义的任一线性序列都称作它的拓扑序列。由AOV网构造出拓扑序列的实际意义是:如果按照拓扑序列中的顶点次序,在开始每一项活动时,能够保证它的所有前驱活动都已完成,从而使整个工程顺序进行,不会出现冲突的情况。 [2] 
收起全文
精华内容
下载资源
问答
  • 拓扑排序

    2020-12-22 12:22:13
    若图为有向无环图,则可进行拓扑排序拓扑排序的结果为DFS后序遍历的倒序。选课是拓扑排序的经典应用场景之一,即:选修一门课程之前须先修完该课程的前置课程。 class Graph(object): def __init__(self, points_...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 19,362
精华内容 7,744
关键字:

拓扑排序