方差分析 订阅
方差分析(Analysis of Variance,简称ANOVA),又称“变异数分析”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。 由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。 展开全文
方差分析(Analysis of Variance,简称ANOVA),又称“变异数分析”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。 由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。
信息
别    称
变异数分析
提出者
罗纳德·费雪爵士
简    称
ANOVA
中文名
方差分析
应    用
数学
外文名
Analysis of Variance
方差分析原理
方差分析(ANOVA)又称“变异数分析”或“F检验”,是由罗纳德·费雪爵士发明的,用于两个及两个以上样本均数差别的显著性检验 [1]  。方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:(1) 实验条件,即不同的处理造成的差异,称为组间差异。用变量在各组的均值与总均值之偏差平方和的总和表示,记作SSb,组间自由度dfb。(2) 随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示, 记作SSw,组内自由度dfw。总偏差平方和 SSt = SSb + SSw。组内SSw、组间SSb除以各自的自由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MSw和MSb,一种情况是处理没有作用,即各组样本均来自同一总体,MSb/MSw≈1。另一种情况是处理确实有作用,组间均方是由于误差与不同处理共同导致的结果,即各样本来自不同总体。那么,MSb>>MSw(远远大于)。MSb/MSw比值构成F分布。用F值与其临界值比较,推断各样本是否来自相同的总体 [1]  。
收起全文
精华内容
下载资源
问答
  • 方差分析

    2021-01-20 12:31:02
    知识点:方差分析 本周是统计学学习小组-第二期的第十四周,我们这周的学习内容是【方差分析】,涉及到的二级知识点有两个,分别是: 1、基本概念:因子、水平 2、方差分析分类:单因素方差分析、双因素方差分析、...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 7,943
精华内容 3,177
关键字:

方差分析