因子分析 订阅
因子分析是指研究从变量群中提取共性因子的统计技术。最早由英国心理学家C.E.斯皮尔曼提出。他发现学生的各科成绩之间存在着一定的相关性,一科成绩好的学生,往往其他各科成绩也比较好,从而推想是否存在某些潜在的共性因子,或称某些一般智力条件影响着学生的学习成绩。因子分析可在许多变量中找出隐藏的具有代表性的因子。将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。 展开全文
因子分析是指研究从变量群中提取共性因子的统计技术。最早由英国心理学家C.E.斯皮尔曼提出。他发现学生的各科成绩之间存在着一定的相关性,一科成绩好的学生,往往其他各科成绩也比较好,从而推想是否存在某些潜在的共性因子,或称某些一般智力条件影响着学生的学习成绩。因子分析可在许多变量中找出隐藏的具有代表性的因子。将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。
信息
学    科
统计学
外文名
factor analysis
研    究
变量群中提取共性因子
方    法
重心法、影像分析法等
提出人
C.E.斯皮尔曼
中文名
因子分析
主成分分析
基础的反覆法
因子分析简介
因子分析是简化、分析高维数据的一种统计方法。假定p维随机向量 满足 是q维随机变量, ,满足 ,它的分量 称为公共因子,对X的每个分量都起作用。 是p维不可观测的随机向量,满足 且 ,e的分量 称为特殊因子,它仅对X的分量 起作用。μ和A为参数矩阵。若X满足上式,则称随机向量X具有因子结构。这时,容易算得 矩阵A称为因子载荷,其元素 是第i个分量 在第j个因子 上的载荷。记 ,则有 由此可见, 反映了公共因子对 的影响,称为公共因子对 的“贡献”。当 时,表明公共因子对 的影响大于特殊因子 的影响,也可以看出 反映了分量 对公共因子 的依赖程度。另一方面,对一个指定的公共因子 ,记 ,称为公共因子 对X的贡献。 的值越大,反映了公共因子 对X的影响也越大,所以 是衡量公共因子重要性的一个尺度。 [1] 
收起全文
精华内容
下载资源
问答
  • 影响千米深孔地面预注浆止浆施工的因素复杂多样,诸多影响因素决定了止浆施工的成功率,运用因子分析方法对影响止浆施工的因素进行深入分析,归纳为3个公共因子:地质因素(F1)、注浆参数影响因素(F2)、止浆目标因素(F3),...
  • 基于探索性因子分析的中国房地产企业BIM应用障碍因素分析,左心月,张金月,建筑信息模型(BIM)已经在国外得到了全流程和全利益相关方的应用,但是在国内却并未普及,特别是应做到上游技术牵头的大部分房地
  • 农产品物流是关于民生的重要问题,本文就青海省农产品物流发展的现状,应用因子分析法,通过SPSS软件对相关因素进行了统计分析,并有针对性的提出了相关建议措施,以期对实践有启发作用。
  • 主成分分析因子分析及SPSS实现

    万次阅读 多人点赞 2018-05-25 11:27:12
    主成分分析因子分析及SPSS实现一、主成分分析(1)问题提出在问题研究中,为了不遗漏和准确起见,往往会面面俱到,取得大量的指标来进行分析。比如为了研究某种疾病的影响因素,我们可能会收集患者的人口学资料、...

    主成分分析与因子分析及SPSS实现

    一、主成分分析

    (1)问题提出
    在问题研究中,为了不遗漏和准确起见,往往会面面俱到,取得大量的指标来进行分析。比如为了研究某种疾病的影响因素,我们可能会收集患者的人口学资料、病史、体征、化验检查等等数十项指标。如果将这些指标直接纳入多元统计分析,不仅会使模型变得复杂不稳定,而且还有可能因为变量之间的多重共线性引起较大的误差。有没有一种办法能对信息进行浓缩,减少变量的个数,同时消除多重共线性?
    这时,主成分分析隆重登场。
    (2)主成分分析的原理
    主成分分析的本质是坐标的旋转变换,将原始的n个变量进行重新的线性组合,生成n个新的变量,他们之间互不相关,称为n个“成分”。同时按照方差最大化的原则,保证第一个成分的方差最大,然后依次递减。这n个成分是按照方差从大到小排列的,其中前m个成分可能就包含了原始变量的大部分方差(及变异信息)。那么这m个成分就成为原始变量的“主成分”,他们包含了原始变量的大部分信息。
    注意得到的主成分不是原始变量筛选后的剩余变量,而是原始变量经过重新组合后的“综合变量”。
    我们以最简单的二维数据来直观的解释主成分分析的原理。假设现在有两个变量X1、X2,在坐标上画出散点图如下:

     

    可见,他们之间存在相关关系,如果我们将坐标轴整体逆时针旋转45°,变成新的坐标系Y1、Y2,如下图:
    根据坐标变化的原理,我们可以算出:
    Y1 = sqrt(2)/2 * X1 + sqrt(2)/2 * X2
    Y2 = sqrt(2)/2 * X1 – sqrt(2)/2 * X2
    其中sqrt(x)为x的平方根。
    通过对X1、X2的重新进行线性组合,得到了两个新的变量Y1、Y2。
    此时,Y1、Y2变得不再相关,而且Y1方向变异(方差)较大,Y2方向的变异(方差)较小,这时我们可以提取Y1作为X1、X2的主成分,参与后续的统计分析,因为它携带了原始变量的大部分信息。
    至此我们解决了两个问题:降维和消除共线性。
    对于二维以上的数据,就不能用上面的几何图形直观的表示了,只能通过矩阵变换求解,但是本质思想是一样的。
     
    二、因子分析
    (一)原理和方法:
    因子分析是主成分分析的扩展。
    在主成分分析过程中,新变量是原始变量的线性组合,即将多个原始变量经过线性(坐标)变换得到新的变量。
    因子分析中,是对原始变量间的内在相关结构进行分组,相关性强的分在一组,组间相关性较弱,这样各组变量代表一个基本要素(公共因子)。通过原始变量之间的复杂关系对原始变量进行分解,得到公共因子和特殊因子。将原始变量表示成公共因子的线性组合。其中公共因子是所有原始变量中所共同具有的特征,而特殊因子则是原始变量所特有的部分。因子分析强调对新变量(因子)的实际意义的解释。
    举个例子:
    比如在市场调查中我们收集了食品的五项指标(x1-x5):味道、价格、风味、是否快餐、能量,经过因子分析,我们发现了:
    x1 = 0.02 * z1 + 0.99 * z2 + e1
    x2 = 0.94 * z1 – 0.01 * z2 + e2
    x3 = 0.13* z1 + 0.98 * z2 + e3
    x4 = 0.84 * z1 + 0.42 * z2 + e4
    x5 = 0.97 * z1 – 0.02 * z2 + e1
    (以上的数字代表实际为变量间的相关系数,值越大,相关性越大)
    第一个公因子z1主要与价格、是否快餐、能量有关,代表“价格与营养”
    第二个公因子z2主要与味道、风味有关,代表“口味”
    e1-5是特殊因子,是公因子中无法解释的,在分析中一般略去。
    同时,我们也可以将公因子z1、z2表示成原始变量的线性组合,用于后续分析。
    (二)使用条件:
    (1)样本量足够大。通常要求样本量是变量数目的5倍以上,且大于100例。
    (2)原始变量之间具有相关性。如果变量之间彼此独立,无法使用因子分析。在SPSS中可用KMO检验和Bartlett球形检验来判断。
    (3)生成的公因子要有实际的意义,必要时可通过因子旋转(坐标变化)来达到。
     
    三、主成分分析和因子分析的联系与区别
    联系:两者都是降维和信息浓缩的方法。生成的新变量均代表了原始变量的大部分信息且互相独立,都可以用于后续的回归分析、判别分析、聚类分析等等。
    区别:
    (1)主成分分析是按照方差最大化的方法生成的新变量,强调新变量贡献了多大比例的方差,不关心新变量是否有明确的实际意义。
    (2)因子分析着重要求新变量具有实际的意义,能解释原始变量间的内在结构。
     
    SPSS没有提供单独的主成分分析方法,而是混在因子分析当中,下面通过一个例子来讨论主成分分析与因子分析的实现方法及相关问题。
     
    一、问题提出
     
    男子十项全能比赛包含100米跑、跳远、跳高、撑杆跳、铅球、铁饼、标枪、400米跑、1500米跑、110米跨栏十个项目,总分为各个项目得分之和。为了分析十项全能主要考察哪些方面的能力,以便有针对性的进行训练,研究者收集了134个顶级运动员的十项全能成绩单,将通过因子分析来达到分析目的。
     
    二、分析过程
     
    变量视图:
     
    数据视图(部分):
    菜单选择(分析->降维->因子分析):

    打开因子分析的主界面,将十项成绩选入”变量“框中(不要包含总分),如下:
    点击”描述“按钮,打开对话框,选中”系数“和”KMO和Bartlett球形度检验“:

    上图相关解释:
    ”系数“:为变量之间的相关系数阵列,可以直观的分析相关性。
    ”KMO和Bartlett球形度检验“:用于定量的检验变量之间是否具有相关性。
    点击”继续“,回到主界面,点击”抽取“,打开对话框。
    ”方法“ =>”主成分“,”输出“=>”未旋转的因子解“和”碎石图“,”抽取“=>”基于特征值“,其余选择默认。

    解释:
    ①因子抽取的方法:选取默认的主成分法即可,其余方法的计算结果可能有所差异。
    ②输出:”未旋转的因子解”极为主成分分析结果。碎石图有助于我们判断因子的重要性(详细介绍见后面)。
    ③抽取:为抽取主成分(因子)的方法,一般是基于特征值大于1,默认即可。
    点击”继续“,回到主界面,点击”确定“,进入分析。
    输出的主要表格如下:
    (1)相关性检验
    因子分析要求变量之间有相关性,所以首先要进行相关性检验。首先输出的是变量之间的相关系数矩阵:

    可以直观的看到,变量之间有相关性。但需要检验,接着输出的是相关性检验:
    上图有两个指标:第一个是KMO值,一般大于0.7就说明不了之间有相关性了。第二个是Bartlett球形度检验,P值<0.001。综合两个指标,说明变量之间存在相关性,可以进行因子分析。否则,不能进行因子分析。
    (2)提取主成分和公因子
    接下来输出主成分结果:

    这就是主成分分析的结果,表中第一列为10个成分;第二列为对应的”特征值“,表示所解释的方差的大小;第三列为对应的成分所包含的方差占总方差的百分比;第四列为累计的百分比。一般来说,选择”特征值“大于1的成分作为主成分,这也是SPSS默认的选择。
    在本例中,成分1和2的特征值大于1,他们合计能解释71.034%的方差,还算不错。所以我们可以提取1和2作为主成分,抓住了主要矛盾,其余成分包含的信息较少,故弃去。
    下面,输出碎石图,如下:
    碎石图来源于地质学的概念。在岩层斜坡下方往往有很多小的碎石,其地质学意义不大。碎石图以特征值为纵轴,成分为横轴。前面陡峭的部分特征值大,包含的信息多,后面平坦的部分特征值小,包含的信息也小。
    由图直观的看出,成分1和2包含了大部分信息,从3开始就进入平台了。
    接下来,输出提取的成分矩阵:

    上表中的数值为公因子与原始变量之间的相关系数,绝对值越大,说明关系越密切。公因子1和9个运动项目都正相关(注意跑步运动运动的计分方式,时间越短,分数越高),看来只能称为“综合运动”因子了。公因子2与铁饼、铅球正相关,与1500米跑、400米跑负相关,这究竟代表什么意思呢?看来只能成为“不知所云”因子了。
    (三)因子旋转
    前面提取的两个公因子一个是大而全的“综合因子”,一个不知所云,得到这样的结果,无疑是分析的失败。不过,不要灰心,我们可以通过因子的旋转来获得更好的解释。在主界面中点击“旋转”按钮,打开对话框,“方法”=>“最大方差法”,“输出”=>“旋转解”。

    点击“继续”,回到主界面点击“确认”进行分析。输出结果如下:
    这是选择后的成分矩阵。经过旋转,可以看出:
    公因子1得分越高,所有的跑步和跨栏成绩越差,而跳远、撑杆跳等需要助跑类项目的成绩也越差,所以公因子1代表的是奔跑能力的反向指标,可称为“奔跑能力”。
    公因子2与铁饼和铅球的正相关性很高,与标枪、撑杆跳等需要上肢力量的项目也正相关,所以该因子可以成为“上肢力量”。
    经过旋转,可以看出公因子有了更合理的解释。
    (四)结果的保存
    在最后,我们还要将公因子储存下来供后续使用。点击“得分”按钮,打开对话框,选中“保存为变量”,方法采用默认的“回归”方法,同时选中“显示因子得分系数矩阵”。

    SPSS会自动生成2个新变量,分别为公因子的取值,放在数据的最后。同时会输出一个因子系数表格:

    由上图,我们可以写出公因子的表达式(用F1、F2代表两个公因子,Z1~Z10分别代表原始变量):

    F1 = -0.16*Z1+0.161*Z2+0.145*Z3+0.199*Z4-0.131*Z5-0.167*Z6+0.137*Z7+0.174*Z8+0.131*Z9-0.037*Z10
    F2同理,略去。
    注意,这里的变量Z1~Z10,F1、F2不再是原始变量,而是标准正态变换后的变量。
    展开全文
  • 因子分析

    千次阅读 2018-10-21 16:56:22
    一、与主成分的联系与区别 区别 主成分是通过线性组合将... 因子分析是主成分分析的推广 二、因子分析思想 特点 因子变量数远少于原变量数 因子变量是一种新的综合 因子变量之间没有相...

    一、与主成分的联系与区别

    区别

    主成分是通过线性组合将原变量综合成几个主成分

    因子分析通过构建若干意义比较明确的公因子

    主成分分析是变异数导向的方法

    因子分析是共变异数导向的方法

    联系因子分析是主成分分析的推广

    二、因子分析思想

    特点

    因子变量数远少于原变量数

    因子变量是一种新的综合

    因子变量之间没有相关关系

    因子变量具有明确的解释性

    用途

    减少分析变量个数

    通过对变量间关系探测,将原变量进行分类

    基本思想

    将相关性较高的分在同一类中,每一类代表了一个基本结构,即公因子

    用少数不可测的公共因子的线性函数来描述原观测的每一分量

    Q型和R型因子分析

    Q型因子分析:样品间的因子分析

    R型因子分析:变量间的因子分析

    三、R型因子分析模型

    1、R型因子模型

                    

    2、因子载荷A的估计:因子估计方法:极大似然估计(R默认)、主因子估计

    (1)极大似然估计

               

    (2)主因子估计法

                

                

    3、因子载荷的意义

    4、因子旋转

    (1)旋转目的

    • 寻找每个主因子的实际意义
    • 如果各主因子的典型代表变量不突出,就需要进行旋转
    • 使因子载荷矩阵中载荷的绝对值向0和1两个方向分化

    (2)旋转方法

              

              

    5、因子得分

          

    6、因子分析基本步骤

        

    7、R语言因子分析过程

       

    展开全文
  • SPSS因子分析案例

    万次阅读 多人点赞 2018-01-14 20:43:40
    一、SPSS中的因子分析。 具体操作步骤: (1)定义变量:x1-财政用于农业的支出的比重,x2-第二、三产业从业人数占全社会从业人数的比重,x3-非农村人口比重,x4-乡村从业人员占农村人口的比重,x5-农业总产值占农林牧...

    PS:请见文末的打赏选项

    一、SPSS中的因子分析。

    具体操作步骤:

    (1)定义变量:x1-财政用于农业的支出的比重,x2-第二、三产业从业人数占全社会从业人数的比重,x3-非农村人口比重,x4-乡村从业人员占农村人口的比重,x5-农业总产值占农林牧总产值的比重,x6-农作物播种面积,x7—农村用电量。

     

    (2)导入数据:file-open-data

     

     

     

    (3)变量标准化Analyze-Descriptive Statistics-Descriptives

     

    展开全文
  • 因子分析在SPSS中的操作过程及结果解读

    万次阅读 多人点赞 2019-01-14 16:28:27
    因子分析在SPSS中的操作过程及结果解读 笔者在做该项研究时在网络上查阅了大量资料,都写得不够十分完整,所以该篇文章将因子分析从前到后做一个通俗易懂的解释,全文并不涉及非常晦涩的公式原理。 一.因子分析是...

    因子分析在SPSS中的操作过程及结果解读

    笔者在做该项研究时在网络上查阅了大量资料,都写得比较专业,所以该篇文章将因子分析从前到后做一个通俗易懂的解释,全文并不涉及非常晦涩的公式原理。

    一.因子分析是什么:

    1.因子分析:

    因子分析模型中,假定每个原始变量由两部分组成:共同因子唯一因子共同因子是各个原始变量所共有的因子,解释变量之间的相关关系唯一因子顾名思义是每个原始变量所特有的因子,表示该变量不能被共同因子解释的部分。
    (帮助解读:举个例子,现在一个excel表有10个变量,因子分析可以将这10个变量通过某种算法变为3个,4个,5个等等因子,而每个因子都能表达一种涵义,从而达到了降维的效果,方便接下来的数据分析)

    2.因子分析与主成分分析的区别:

    主成分分析是试图寻找原有变量的一个线性组合。这个线性组合方差越大,那么该组合所携带的信息就越多。也就是说,主成分分析就是将原始数据的主要成分放大
    因子分析,它是假设原有变量的背后存在着一个个隐藏的因子,这个因子可以可以包括原有变量中的一个或者几个,因子分析并不是原有变量的线性组合。
    (帮助解读:主成分分析降维凸显变量中起主导作用的变量,因子分析寻找变量背后可以概括变量特征的因子)

    ---------------------------算法及原理就不介绍了,比较秃头-----------------------------

    二.因子分析怎么做(在spss中):

    1.数据准备:

    下图数据是一份某城市的空气质量数据,一共6个变量,分别是:二氧化硫、二氧化氮、可吸入颗粒物、一氧化碳、臭氧、细颗粒物。在SPSS中打开数据如下:
    图1

    2.操作步骤:

    1)打开因子分析工具:

    在这里插入图片描述

    2)选择要进行因子分析的变量:

    在这里插入图片描述

    3)设置因子分析模型:(可以按照以下截图设置模型,一般来说足够)

    a.描述:这里要说一下KMO和Bartlett的球形度检验,
    KMO检验统计量是用于比较变量间简单相关系数和偏相关系数的指标。主要应用于多元统计的因子分析。KMO统计量是取值在0和1之间。Kaiser给出了常用的kmo度量标准: 0.9以上表示非常适合;0.8表示适合;0.7表示一般;0.6表示不太适合;0.5以下表示极不适合。KMO统计量是取值在0和1之间。当所有变量间的简单相关系数平方和远远大于偏相关系数平方和时,KMO值接近1.KMO值越接近于1,意味着变量间的相关性越强,原有变量越适合作因子分析;当所有变量间的简单相关系数平方和接近0时,KMO值接近0.KMO值越接近于0,意味着变量间的相关性越弱,原有变量越不适合作因子分析。
    Bartlett’s球形检验用于检验相关阵中各变量间的相关性,是否为单位阵,即检验各个变量是否各自独立。如果变量间彼此独立,则无法从中提取公因子,也就无法应用因子分析法。Bartlett球形检验判断如果相关阵是单位阵,则各变量独立,因子分析法无效。由SPSS检验结果显示Sig.<0.05(即p值<0.05)时,说明各变量间具有相关性,因子分析有效

    在这里插入图片描述
    b.抽取:一般来说方法我们都选择主成分方法,但是在python中进行因子分析时用的不是这个方法。
    在这里插入图片描述
    c.旋转:旋转的作用是为了方便最后看什么变量属于哪个因子。
    在这里插入图片描述d.得分
    在这里插入图片描述
    e.选项
    在这里插入图片描述
    到此模型设置完毕,点击确定即可在SPSS窗口中看到分析结果。

    三.因子分析结果解读:

    主要看以下几部分的结果。

    1.KMO和Bartlett的检验结果:

    首先是KMO的值为0.733,大于阈值0.5,所以说明了变量之间是存在相关性的,符合要求;然后是Bartlett球形检验的结果,在这里只需要看Sig.这一项,其值为0.000,所以小于0.05。那么也就是说,这份数据是可以进行因子分析的。
    在这里插入图片描述

    2.公因子方差:

    公因子方差表的意思就是,每一个变量都可以用公因子表示,而公因子究竟能表达多少呢,其表达的大小就是公因子方差表中的“提取”,“提取”的值越大说明变量可以被公因子表达的越好,一般大于0.5即可以说是可以被表达,但是更好的是要求大于0.7才足以说明变量能被公因子表的很合理。在本例中可以看到,“提取”的值都是大于0.7的,所以变量可以被表达的很不错。
    在这里插入图片描述

    3.解释的总方差和碎石图:

    简单地说,解释地总方差就是看因子对于变量解释的贡献率(可以理解为究竟需要多少因子才能把变量表达为100%)。这张表只需要看图中红框的一列,表示的就是贡献率,蓝框则代表四个因子就可以将变量表达到了91.151%,说明表达的还是不错的,我觉得一般都要表达到90%以上才可以,否则就要调整因子数据。再看碎石图,也确实就是四个因子之后折线就变得平缓了。
    在这里插入图片描述
    在这里插入图片描述

    4.旋转成分矩阵:

    这一张表是用来看哪些变量可以包含在哪些因子里,一列一列地看:第一列,最大的值为0.917和0.772,分别对应的是细颗粒物和可吸入颗粒物,因此我们可以把因子归结为颗粒物。第二列,最大值为0.95对应着二氧化硫,因此我们可以把因子归结为硫化物。第三列,最大值为0.962,对应着臭氧,因此可以把因子归结为臭氧。第四列,最大值为0.754和0.571,分别对应着二氧化氮和一氧化碳,因子归结为什么这个我也不清楚,可能要请教一下环工环科的同学们,此处我选择滑稽…
    在这里插入图片描述

    四.总结:

    因子分析还是非常好用的一种降维方式的,在SPSS中进行操作十分简单方便,结果一目了然。喜好机器学习的同学们自然也知道,这么好的方法怎么能少得了python呢,没错python也可以做因子分析,代码量也并不是很大,但是,python做因子分析时会有一些功能需要自己根据算法写(头皮发麻),比如说KMO检验。喜欢本文的话请点赞或留言哦,接下来还会有一些数据分析和机器学习方面的知识与大家分享~

    展开全文
  • 在此基础上,运用SPSS 17.0对问卷调查的结果进行因子分析,提炼出影响西山矿区煤巷掘进速度的7个公共因子:班组管理因子、工程地质条件预报水平因子、设备管理因子、支护参数优化设计因子、人员素质因子、工程岩层条件...
  • 因子分析进行数据预处理,进行因子分析介绍
  • 因子分析(FA)是一种探索性数据分析方法, 用于从一组观察到的变量中搜索有...市场研究人员使用因素分析来识别价格敏感的客户, 识别影响消费者选择的品牌特征, 并帮助理解分销渠道的渠道选择标准。在本教程中, 你将涵...
  • 统计分析-因子分析

    2017-12-28 16:45:56
    因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即将相关比较密切的几个变量归在同一类中,每一类变量就成为一个因子,以较少的几个因子反映原资料的大部分信息。运用这种研究技术,我们可以...
  • 因子分析简介

    2018-11-13 11:13:28
    因子分析简介,从算法到实例。因子分析简介,从算法到实例。
  • 因子分析 主成分分析

    2011-10-26 10:11:51
    因子分析 主成分分析,详细讲述了因子分析的原理,并有多个实例进行描述!
  • 多元统计分析课程中因子分析讲解,多元统计分析在众多课程门类中都有较大的应用,可用于机器学习,统计学习基础。因子分析是指研究从变量群中提取共性因子的统计技术。
  • 基于因子分析的小微企业应用跨境电商影响因素研究.pdf
  • 大学生厌学影响因素因子分析与评估,罗滨霖,王传美,基于近年来大学生厌学现象呈现上升趋势的情况,针对学生的人际关系、家庭因素、社会活动、学校学习氛围与教师教学方法等方面,利
  • 通过主成分分析间接计算因子分析算法,完美实现因子分析, 有因子旋转,因子得分,因子评价,已经过检验可以使用,可放心下载运行。
  • 通过主成分分析间接计算因子分析算法,完美实现因子分析, 有因子旋转,因子得分,因子评价,已经过检验可以使用,可放心下载运行。
  • 基于因子分析的新能源汽车消费影响因素研究.pdf
  • 基于因子分析的泰州市新能源产业发展影响因素研究
  • 影响医务人员主动上报医疗不良事件因素因子分析.pdf
  • 我国公立医院规制策略失效现况及影响因素因子分析,吴群红,丁玎,目的:探讨医院规制的主要失效关键节点及导致规制效果不佳的主要因素。方法:文献研究及专题小组讨论法,构建医院规制框架;通过
  • 因子分析,主成分分析,主因子分析因子分析函数,极大似然法——数据分析与R语言 Lecture 12因子分析因子分析的主要用途与主成分分析的区别因子分析使用了复杂的数学手段统计意义因子载荷矩阵和特殊方差矩阵的估计...
  • MATLAB因子分析

    2014-06-23 19:08:09
    MATLAB因子分析代码。 从相关系数矩阵出发进行因子分析
  • 在这里,整理发布了SPSS主成分分析因子分析,只为方便大家用于学习、参考,喜欢SPSS主成分分...该文档为SPSS主成分分析因子分析,是一份很不错的参考资料,具有较高参考价值,感兴趣的可以下载看看

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 557,830
精华内容 223,132
关键字:

因子分析