精华内容
下载资源
问答
  • 数据标准化/归一化normalization

    万次阅读 多人点赞 2016-08-19 09:42:40
    连续型特征还有一种处理方式是,先分桶/分箱(如等频/等距的分)[待写]进行离散后再使用离散数据的处理方法。 离散数据处理参考[数据预处理:独热编码(One-Hot Encoding)]。 基础知识参考: [均值、方差与...

    http://blog.csdn.net/pipisorry/article/details/52247379

    这里主要讲连续型特征归一化的常用方法。

    连续型特征还有一种处理方式是,先分桶/分箱(如等频/等距的分)[待写]进行离散化后再使用离散数据的处理方法。

    离散数据处理参考[数据预处理:独热编码(One-Hot Encoding)]。

    基础知识参考:

    [均值、方差与协方差矩阵]

    [矩阵论:向量范数和矩阵范数]

    数据的标准化(normalization)和归一化

        数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间。在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。

        目前数据标准化方法有多种,归结起来可以分为直线型方法(如极值法、标准差法)、折线型方法(如三折线法)、曲线型方法(如半正态性分布)。不同的标准化方法,对系统的评价结果会产生不同的影响,然而不幸的是,在数据标准化方法的选择上,还没有通用的法则可以遵循。

    其中最典型的就是数据的归一化处理,即将数据统一映射到[0,1]区间上。

    归一化的目标

    1 把数变为(0,1)之间的小数
            主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速,应该归到数字信号处理范畴之内。
    2 把有量纲表达式变为无量纲表达式
            归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量。 比如,复数阻抗可以归一化书写:Z = R + jωL = R(1 + jωL/R) ,复数部分变成了纯数量了,没有量纲。
    另外,微波之中也就是电路分析、信号系统、电磁波传输等,有很多运算都可以如此处理,既保证了运算的便捷,又能凸现出物理量的本质含义。

    归一化后有两个好处

    1. 提升模型的收敛速度

    如下图,x1的取值为0-2000,而x2的取值为1-5,假如只有这两个特征,对其进行优化时,会得到一个窄长的椭圆形,导致在梯度下降时,梯度的方向为垂直等高线的方向而走之字形路线,这样会使迭代很慢,相比之下,右图的迭代就会很快(理解:也就是步长走多走少方向总是对的,不会走偏)


    2.提升模型的精度

    归一化的另一好处是提高精度,这在涉及到一些距离计算的算法时效果显著,比如算法要计算欧氏距离,上图中x2的取值范围比较小,涉及到距离计算时其对结果的影响远比x1带来的小,所以这就会造成精度的损失。所以归一化很有必要,他可以让各个特征对结果做出的贡献相同。

        在多指标评价体系中,由于各评价指标的性质不同,通常具有不同的量纲和数量级。当各指标间的水平相差很大时,如果直接用原始指标值进行分析,就会突出数值较高的指标在综合分析中的作用,相对削弱数值水平较低指标的作用。因此,为了保证结果的可靠性,需要对原始指标数据进行标准化处理。

        在数据分析之前,我们通常需要先将数据标准化(normalization),利用标准化后的数据进行数据分析。数据标准化也就是统计数据的指数化。数据标准化处理主要包括数据同趋化处理和无量纲化处理两个方面。数据同趋化处理主要解决不同性质数据问题,对不同性质指标直接加总不能正确反映不同作用力的综合结果,须先考虑改变逆指标数据性质,使所有指标对测评方案的作用力同趋化,再加总才能得出正确结果。数据无量纲化处理主要解决数据的可比性。经过上述标准化处理,原始数据均转换为无量纲化指标测评值,即各指标值都处于同一个数量级别上,可以进行综合测评分析。

    从经验上说,归一化是让不同维度之间的特征在数值上有一定比较性,可以大大提高分类器的准确性。

    3. 深度学习中数据归一化可以防止模型梯度爆炸。

    数据需要归一化的机器学习算法

    需要归一化的模型:

            有些模型在各个维度进行不均匀伸缩后,最优解与原来不等价,例如SVM(距离分界面远的也拉近了,支持向量变多?)。对于这样的模型,除非本来各维数据的分布范围就比较接近,否则必须进行标准化,以免模型参数被分布范围较大或较小的数据dominate。
            有些模型在各个维度进行不均匀伸缩后,最优解与原来等价,例如logistic regression(因为θ的大小本来就自学习出不同的feature的重要性吧?)。对于这样的模型,是否标准化理论上不会改变最优解。但是,由于实际求解往往使用迭代算法,如果目标函数的形状太“扁”,迭代算法可能收敛得很慢甚至不收敛(模型结果不精确)。所以对于具有伸缩不变性的模型,最好也进行数据标准化。

            有些模型/优化方法的效果会强烈地依赖于特征是否归一化,如LogisticReg,SVM,NeuralNetwork,SGD,PCA降维[PCA将原来高维的数据投影到某个低维的空间上并使得其方差尽量大。如果数据其中某一特征数值特别大,那么它在整个误差计算的比重上就很大,那么可以想象在投影到低维空间之后,为了使低秩分解逼近原数据,整个投影会去努力逼近最大的那一个特征,而忽略数值比较小的特征,这很可能导致了大量的信息缺失。此外,从计算的角度讲,因为PCA通常是数值近似分解,而非求特征值、奇异值得到解析解,所以当我们使用梯度下降等算法进行PCA的时候,归一化有利于梯度下降收敛]等。

    不需要归一化的模型:

        (0/1取值的特征通常不需要归一化,归一化会破坏它的稀疏性。)

        有些模型则不受归一化影响,如DecisionTree。

        ICA好像不需要归一化(因为独立成分如果归一化了就不独立了?)。

        基于平方损失的最小二乘法OLS不需要归一化。

    [线性回归与特征归一化(feature scaling)]

    皮皮blog

     

     

    常见的数据归一化方法

    最常用的是 min-max标准化 和 z-score 标准化。

    min-max标准化(Min-max normalization)/0-1标准化(0-1 normalization)/线性函数归一化/离差标准化

    是对原始数据的线性变换,使结果落到[0,1]区间,转换函数如下:

    其中max为样本数据的最大值,min为样本数据的最小值。

    def Normalization(x):
        return [(float(i)-min(x))/float(max(x)-min(x)) for i in x]

    如果想要将数据映射到[-1,1],则将公式换成:

    x* = x* * 2 -1

    或者进行一个近似

    x* = (x - x_mean)/(x_max - x_min), x_mean表示数据的均值。

    def Normalization2(x):
        return [(float(i)-np.mean(x))/(max(x)-min(x)) for i in x]

    这种方法有一个缺陷就是当有新数据加入时,可能导致max和min的变化,需要重新定义。

    ps: 将数据归一化到[a,b]区间范围的方法:

    (1)首先找到原本样本数据X的最小值Min及最大值Max
    (2)计算系数:k=(b-a)/(Max-Min)
    (3)得到归一化到[a,b]区间的数据:Y=a+k(X-Min)  或者 Y=b+k(X-Max)

    即一个线性变换,在坐标上就是求直线方程,先求出系数,代入一个点对应的值(x的最大/最小就对应y的最大/最小)就ok了。

    z-score 标准化(zero-mean normalization)

    最常见的标准化方法就是Z标准化,也是SPSS中最为常用的标准化方法,spss默认的标准化方法就是z-score标准化。

    也叫标准差标准化,这种方法给予原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。

    经过处理的数据符合标准正态分布,即均值为0,标准差为1,注意,一般来说z-score不是归一化,而是标准化,归一化只是标准化的一种[lz]。

    其转化函数为:

    x* = (x - μ ) / σ

    其中μ为所有样本数据的均值,σ为所有样本数据的标准差。

    z-score标准化方法适用于属性A的最大值和最小值未知的情况,或有超出取值范围的离群数据的情况。该种标准化方式要求原始数据的分布可以近似为高斯分布,否则效果会变得很糟糕。

    标准化的公式很简单,步骤如下

      1.求出各变量(指标)的算术平均值(数学期望)xi和标准差si ;
      2.进行标准化处理:
      zij=(xij-xi)/si
      其中:zij为标准化后的变量值;xij为实际变量值。
      3.将逆指标前的正负号对调。
      标准化后的变量值围绕0上下波动,大于0说明高于平均水平,小于0说明低于平均水平。

    def z_score(x, axis):
        x = np.array(x).astype(float)
        xr = np.rollaxis(x, axis=axis)
        xr -= np.mean(x, axis=axis)
        xr /= np.std(x, axis=axis)
        # print(x)
        return x

    为什么z-score 标准化后的数据标准差为1?

    x-μ只改变均值,标准差不变,所以均值变为0

    (x-μ)/σ只会使标准差除以σ倍,所以标准差变为1

    这两种最常用方法使用场景:

    1、在分类、聚类算法中,需要使用距离来度量相似性的时候、或者使用PCA技术进行降维的时候,第二种方法(Z-score standardization)表现更好。

    2、在不涉及距离度量、协方差计算、数据不符合正太分布的时候,可以使用第一种方法或其他归一化方法。比如图像处理中,将RGB图像转换为灰度图像后将其值限定在[0 255]的范围。
    原因是使用第一种方法(线性变换后),其协方差产生了倍数值的缩放,因此这种方式无法消除量纲对方差、协方差的影响,对PCA分析影响巨大;同时,由于量纲的存在,使用不同的量纲、距离的计算结果会不同。而在第二种归一化方式中,新的数据由于对方差进行了归一化,这时候每个维度的量纲其实已经等价了,每个维度都服从均值为0、方差1的正态分布,在计算距离的时候,每个维度都是去量纲化的,避免了不同量纲的选取对距离计算产生的巨大影响。
    [再谈机器学习中的归一化方法(Normalization Method) ]

    皮皮blog

    log函数转换

    通过以10为底的log函数转换的方法同样可以实现归一下,具体方法如下:

    看了下网上很多介绍都是x*=log10(x),其实是有问题的,这个结果并非一定落到[0,1]区间上,应该还要除以log10(max),max为样本数据最大值,并且所有的数据都要大于等于1。

    atan函数转换

    用反正切函数也可以实现数据的归一化。

    使用这个方法需要注意的是如果想映射的区间为[0,1],则数据都应该大于等于0,小于0的数据将被映射到[-1,0]区间上,而并非所有数据标准化的结果都映射到[0,1]区间上。

    Decimal scaling小数定标标准化

    这种方法通过移动数据的小数点位置来进行标准化。小数点移动多少位取决于属性A的取值中的最大绝对值。

    将属性A的原始值x使用decimal scaling标准化到x'的计算方法是:
    x'=x/(10^j)
    其中,j是满足条件的最小整数。
    例如 假定A的值由-986到917,A的最大绝对值为986,为使用小数定标标准化,我们用每个值除以1000(即,j=3),这样,-986被规范化为-0.986。
    注意,标准化会对原始数据做出改变,因此需要保存所使用的标准化方法的参数,以便对后续的数据进行统一的标准化。

    Logistic/Softmax变换

    [Sigmod/Softmax变换 ]

    模糊量化模式

    新数据=1/2+1/2sin[派3.1415/(极大值-极小值)*(X-(极大值-极小值)/2) ] X为原数据

    皮皮blog

     

    数据标准化/归一化的编程实现

    1 python库实现和调用

    [Scikit-learn:数据预处理Preprocessing data ]

    2 pandas dataframe实现标准化

    [pandas小记:pandas数据规整化-正则化、分组合并及重塑]

    两者的区别在于:df_norm = (df - df.mean()) / (df.std())会保留nan值,而preprocessing.scale(X)会直接报错:ValueError: Input contains NaN, infinity or a value too large for dtype('float64')。

    对于dense数据,建议先填充再标准化,否则需要标准化后再通过最小值来填充。

    from: http://blog.csdn.net/pipisorry/article/details/52247379

    ref:

     

    展开全文
  • 数据标准化

    2019-04-03 19:57:57
    数据标准化/归一化normalization 2018年03月08日 19:20:53 goodshot 阅读数:12303 ...

    数据标准化/归一化normalization

    参考:https://blog.csdn.net/GoodShot/article/details/79925164

    这里主要讲连续型特征归一化的常用方法。离散参考[数据预处理:独热编码(One-Hot Encoding)]。

    基础知识参考:

    [均值、方差与协方差矩阵 ]

    [矩阵论:向量范数和矩阵范数 ]

    数据的标准化(normalization)和归一化

        数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间。在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。其中最典型的就是数据的归一化处理,即将数据统一映射到[0,1]区间上

        目前数据标准化方法有多种,归结起来可以分为直线型方法(如极值法、标准差法)、折线型方法(如三折线法)、曲线型方法(如半正态性分布)。不同的标准化方法,对系统的评价结果会产生不同的影响,然而不幸的是,在数据标准化方法的选择上,还没有通用的法则可以遵循。

    归一化的目标

    1 把数变为(0,1)之间的小数
            主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速,应该归到数字信号处理范畴之内。
    2 把有量纲表达式变为无量纲表达式
            归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量。 比如,复数阻抗可以归一化书写:Z = R + jωL = R(1 + jωL/R) ,复数部分变成了纯数量了,没有量纲。 
    另外,微波之中也就是电路分析、信号系统、电磁波传输等,有很多运算都可以如此处理,既保证了运算的便捷,又能凸现出物理量的本质含义。

    归一化后有两个好处

    1. 提升模型的收敛速度

    如下图,x1的取值为0-2000,而x2的取值为1-5,假如只有这两个特征,对其进行优化时,会得到一个窄长的椭圆形,导致在梯度下降时,梯度的方向为垂直等高线的方向而走之字形路线,这样会使迭代很慢,相比之下,右图的迭代就会很快(理解:也就是步长走多走少方向总是对的,不会走偏)


    2.提升模型的精度

    归一化的另一好处是提高精度,这在涉及到一些距离计算的算法时效果显著,比如算法要计算欧氏距离,上图中x2的取值范围比较小,涉及到距离计算时其对结果的影响远比x1带来的小,所以这就会造成精度的损失。所以归一化很有必要,他可以让各个特征对结果做出的贡献相同。

        在多指标评价体系中,由于各评价指标的性质不同,通常具有不同的量纲和数量级。当各指标间的水平相差很大时,如果直接用原始指标值进行分析,就会突出数值较高的指标在综合分析中的作用,相对削弱数值水平较低指标的作用。因此,为了保证结果的可靠性,需要对原始指标数据进行标准化处理。

        在数据分析之前,我们通常需要先将数据标准化(normalization),利用标准化后的数据进行数据分析。数据标准化也就是统计数据的指数化。数据标准化处理主要包括数据同趋化处理和无量纲化处理两个方面。数据同趋化处理主要解决不同性质数据问题,对不同性质指标直接加总不能正确反映不同作用力的综合结果,须先考虑改变逆指标数据性质,使所有指标对测评方案的作用力同趋化,再加总才能得出正确结果。数据无量纲化处理主要解决数据的可比性。经过上述标准化处理,原始数据均转换为无量纲化指标测评值,即各指标值都处于同一个数量级别上,可以进行综合测评分析。

    从经验上说,归一化是让不同维度之间的特征在数值上有一定比较性,可以大大提高分类器的准确性。

    3. 深度学习中数据归一化可以防止模型梯度爆炸。

    数据需要归一化的机器学习算法

    需要归一化的模型:

            有些模型在各个维度进行不均匀伸缩后,最优解与原来不等价,例如SVM(距离分界面远的也拉近了,支持向量变多?)。对于这样的模型,除非本来各维数据的分布范围就比较接近,否则必须进行标准化,以免模型参数被分布范围较大或较小的数据dominate。
            有些模型在各个维度进行不均匀伸缩后,最优解与原来等价,例如logistic regression(因为θ的大小本来就自学习出不同的feature的重要性吧?)。对于这样的模型,是否标准化理论上不会改变最优解。但是,由于实际求解往往使用迭代算法,如果目标函数的形状太“扁”,迭代算法可能收敛得很慢甚至不收敛。所以对于具有伸缩不变性的模型,最好也进行数据标准化。

    不需要归一化的模型:

            ICA好像不需要归一化(因为独立成分如果归一化了就不独立了?)。

           基于平方损失的最小二乘法OLS不需要归一化。

    [线性回归与特征归一化(feature scaling)]

    皮皮blog



    常见的数据归一化方法

    最常用的是 min-max标准化 和 z-score 标准化。

    min-max标准化(Min-max normalization)/0-1标准化(0-1 normalization)/线性函数归一化/离差标准化

    是对原始数据的线性变换,使结果落到[0,1]区间,转换函数如下:

    其中max为样本数据的最大值,min为样本数据的最小值。

    def Normalization(x):
        return [(float(i)-min(x))/float(max(x)-min(x)) for i in x]

    如果想要将数据映射到[-1,1],则将公式换成:

    x* = x* * 2 -1

    或者进行一个近似

    x* = (x - x_mean)/(x_max - x_min), x_mean表示数据的均值。

    def Normalization2(x):
        return [(float(i)-np.mean(x))/(max(x)-min(x)) for i in x]

    这种方法有一个缺陷就是当有新数据加入时,可能导致max和min的变化,需要重新定义。

    z-score 标准化(zero-mean normalization)

    最常见的标准化方法就是Z标准化,也是SPSS中最为常用的标准化方法,spss默认的标准化方法就是z-score标准化。

    也叫标准差标准化,这种方法给予原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。

    经过处理的数据符合标准正态分布,即均值为0,标准差为1,其转化函数为:

    x* = (x - μ ) / σ

    其中μ为所有样本数据的均值,σ为所有样本数据的标准差。

    z-score标准化方法适用于属性A的最大值和最小值未知的情况,或有超出取值范围的离群数据的情况。该种归一化方式要求原始数据的分布可以近似为高斯分布,否则归一化的效果会变得很糟糕。

    标准化的公式很简单,步骤如下

      1.求出各变量(指标)的算术平均值(数学期望)xi和标准差si ;
      2.进行标准化处理:
      zij=(xij-xi)/si
      其中:zij为标准化后的变量值;xij为实际变量值。
      3.将逆指标前的正负号对调。
      标准化后的变量值围绕0上下波动,大于0说明高于平均水平,小于0说明低于平均水平。

    def z_score(x, axis):
        x = np.array(x).astype(float)
        xr = np.rollaxis(x, axis=axis)
        xr -= np.mean(x, axis=axis)
        xr /= np.std(x, axis=axis)
        # print(x)
        return x

    为什么z-score 标准化后的数据标准差为1?

    x-μ只改变均值,标准差不变,所以均值变为0

    (x-μ)/σ只会使标准差除以σ倍,所以标准差变为1


    这两种最常用方法使用场景:

    1、在分类、聚类算法中,需要使用距离来度量相似性的时候、或者使用PCA技术进行降维的时候,第二种方法(Z-score standardization)表现更好。

    2、在不涉及距离度量、协方差计算、数据不符合正太分布的时候,可以使用第一种方法或其他归一化方法。比如图像处理中,将RGB图像转换为灰度图像后将其值限定在[0 255]的范围。
    原因是使用第一种方法(线性变换后),其协方差产生了倍数值的缩放,因此这种方式无法消除量纲对方差、协方差的影响,对PCA分析影响巨大;同时,由于量纲的存在,使用不同的量纲、距离的计算结果会不同。
    而在第二种归一化方式中,新的数据由于对方差进行了归一化,这时候每个维度的量纲其实已经等价了,每个维度都服从均值为0、方差1的正态分布,在计算距离的时候,每个维度都是去量纲化的,避免了不同量纲的选取对距离计算产生的巨大影响。
    [再谈机器学习中的归一化方法(Normalization Method) ]

    皮皮blog

    log函数转换

    通过以10为底的log函数转换的方法同样可以实现归一下,具体方法如下:

    看了下网上很多介绍都是x*=log10(x),其实是有问题的,这个结果并非一定落到[0,1]区间上,应该还要除以log10(max),max为样本数据最大值,并且所有的数据都要大于等于1。

    atan函数转换

    用反正切函数也可以实现数据的归一化。

    使用这个方法需要注意的是如果想映射的区间为[0,1],则数据都应该大于等于0,小于0的数据将被映射到[-1,0]区间上,而并非所有数据标准化的结果都映射到[0,1]区间上。

    Decimal scaling小数定标标准化

    这种方法通过移动数据的小数点位置来进行标准化。小数点移动多少位取决于属性A的取值中的最大绝对值。

    将属性A的原始值x使用decimal scaling标准化到x'的计算方法是:
    x'=x/(10^j)
    其中,j是满足条件的最小整数。
    例如 假定A的值由-986到917,A的最大绝对值为986,为使用小数定标标准化,我们用每个值除以1000(即,j=3),这样,-986被规范化为-0.986。
    注意,标准化会对原始数据做出改变,因此需要保存所使用的标准化方法的参数,以便对后续的数据进行统一的标准化。

    Logistic/Softmax变换

    [Sigmod/Softmax变换 ]

    模糊量化模式

    新数据=1/2+1/2sin[派3.1415/(极大值-极小值)*(X-(极大值-极小值)/2) ] X为原数据

    皮皮blog


    数据标准化/归一化的编程实现

    python库实现和调用

    [Scikit-learn:数据预处理Preprocessing data ]

    from: http://blog.csdn.net/pipisorry/article/details/52247379

    ref: 

    展开全文
  • 数据标准化

    问题1:

    • 为什么要进行数据标准化?

    在现实生活中,一个目标变量(y)可以认为是由多个特征变量(x)影响和控制的,那么这些特征变量的量纲和数值的量级就会不一样,比如x1 = 10000,x2 = 1,x3 = 0.5 可以很明显的看出特征x1和x2、x3存在量纲的差距;x1对目标变量的影响程度将会比x2、x3对目标变量的影响程度要大(可以这样认为目标变量由x1掌控,x2,x3影响较小,一旦x1的值出现问题,将直接的影响到目标变量的预测,把目标变量的预测值由x1独揽大权,会存在高风险的预测)而通过标准化处理,可以使得不同的特征变量具有相同的尺度(也就是说将特征的值控制在某个范围内),这样目标变量就可以由多个相同尺寸的特征变量进行控制,这样,在使用梯度下降法学习参数的时候,不同特征对参数的影响程度就一样了。比如在训练神经网络的过程中,通过将数据标准化,能够加速权重参数的收敛。
    简而言之:对数据标准化的目的是消除特征之间的差异性,便于特征一心一意学习权重。

    问题2:

    • 什么时候需要进行数据标准化,什么时候不需要进行数据标准化?

    由(1)我们可以知道当原始数据不同维度上的特征的尺度(单位)不一致时,需要标准化步骤对数据进行预处理,反之则不需要进行数据标准化。
    例如下面这几类问题一般都需要进行数据标准化:

    a 回归问题
    b 机器学习算法
    c 训练神经网络
    d 聚类问题
    e 分类问题
    f 主成分分析(PCA)问题

    关于数据标准化的方法以及知识点可以查看本博主的另外一篇博文(***python(经典)数据标准化方法、聚类方法、分类方法总结:***https://blog.csdn.net/data_bug/article/details/81586412)

    展开全文
  • 一、数据标准化(归一化) 首先,数据标准化处理主要包括数据同趋化处理(中心化处理)和无量纲化处理。同趋化处理主要解决不同性质数据问题,对不同性质指标直接加总不能正确反映不同作用力的综合结果,须先考虑...

    一、数据标准化(归一化)

    首先,数据标准化处理主要包括数据同趋化处理(中心化处理)和无量纲化处理。
    同趋化处理主要解决不同性质数据问题,对不同性质指标直接加总不能正确反映不同作用力的综合结果,须先考虑改变逆指标数据性质,使所有指标对测评方案的作用力同趋化,再加总才能得出正确结果。
    无量纲化处理主要为了消除不同指标量纲的影响,解决数据的可比性,防止原始特征中量纲差异影响距离运算(比如欧氏距离的运算)。它是缩放单个样本以具有单位范数的过程,这与标准化有着明显的不同。简单来说,标准化是针对特征矩阵的列数据进行无量纲化处理,而归一化是针对数据集的行记录进行处理,使得一行样本所有的特征数据具有统一的标准,是一种单位化的过程。
    即标准化会改变数据的分布情况,归一化不会,标准化的主要作用是提高迭代速度,降低不同维度之间影响权重不一致的问题。

    数据标准化(归一化)的方法有很多种,常用的有"最小-最大标准化"、"Z-score标准化"和"按小数定标标准化"等等。经过标准化处理后,原始数据均转换为无量纲化指标测评值,即各指标值都处于同一个数量级别上,可以进行综合测评分析。

    本篇只介绍常用的三种常见的转换方法:

    1. 极值法(区间缩放法)

        线性比例变换法:正向指标:y = (x)/(max),即新数据=(原数据)/(最大值)。
                                     负向指标:y = (min)/(x),即新数据=(最小值)/(原数据)。

        极差变换法:正向指标:y = (x- min)/(max - min),即新数据=(原数据-最小值)/(最大值-最小值)。
                              负向指标:y = (max - x)/(max - min),即新数据=(最大值-原数据)/(最大值-最小值)。
        使用这种方法的目的包括:
           1、即0-1标准化,又称最大值-最小值标准化,核心要义是将原始指标缩放到0~1之间的区间内,但不改变原始数据的分布
           1、对于方差非常小的属性可以增强其稳定性;
           2、维持稀疏矩阵中为0的条目。

    2. 比重法

        L2正则化:y = x/sqrt(Σx^2),即新数据=(原数据)/sqrt(平方和),被称为L2正则转换。
        正则化则是通过范数规则来约束特征属性,通过正则化我们可以降低数据训练处来的模 型的过拟合可能,和机器学习中所讲述的L1、L2正则的效果一样。在进行正则化 操作的过程中,不会改变数据的分布情况,但是会改变数据特征之间的相关特性。

    3. 标准化
        Z-score:y = (x - mean)/σ,基于原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化,经过处理的数据符合标准正态分布,即均值为0,标准差为1。

    4. 二值化

    对于定量数据(特征取值连续),根据给定的阈值将其进行转换,如果大于阈值赋值为1,否则赋值为0;对于定性数据(特征取值离散,也有可能是文本数据),根据给定规则将其进行转换,符合规则的赋值为1,否则赋值为0。

    二、特征转换

    特征转换主要指将原始数据中的字段数据进行转换操作,从而得到适合进行算法 模型构建的输入数据(数值型数据),在这个过程中主要包括但不限于以下几种数据的处理: 文本数据转换为数值型数据、缺省值填充、定性特征属性哑编码、定量特征属性二值化、特征标准化与归一化

    • 文本特征属性转换:机器学习的模型算法均要求输入的数据必须是数值型的,所以对于文本类型的特 征属性,需要进行文本数据转换,也就是需要将文本数据转换为数值型数据。常 用方式如下: 词袋法(BOW/TF)、TF-IDF(Term frequency-inverse document frequency)、HashTF、Word2Vec(主要用于单词的相似性考量)。
    • 缺省值填充:缺省值是数据中最常见的一个问题,处理缺省值有很多方式,主要包括以下四个 步骤进行缺省值处理: 确定缺省值范围->去除不需要的字段->填充缺省值内容->重新获取数据。
    • 哑编码(OneHotEncoder):也称哑变量处理,对于定性的数据(也就是分类的数据),可以采用N位的状态寄存器来对N个状态进行编码,每个状态都有一个独立的寄存器位,并且在任意状态下只有一位有效;是一种常用的将特征数字化的方式。比如有一个特征属性:['male','female'],那么male使用向量[1,0]表示,female使用[0,1]表
    • 二值化:第一节已经说明。
    • 标准化(归一化):第一节已经说明。
    # Python相关代码:
    # 注意:代码只是展示方法,并不是连贯的,实际数据处理的时候需要调整
    from sklearn import preprocessing
    from sklearn.model_selection import train_test_split
    from sklearn.datasets import load_iris
    import pandas as pd
    import numpy as np
    
    # 数据标准化(归一化)
    iris = load_iris()
    iris_data = pd.DataFrame(data=iris['data'], columns=iris['feature_names'])
    iris_data['Species'] = iris['target']
    # 将字符串转化为数字,用pd.Categorical
    # pd.Categorical(data)
    # iris_data['Species'] = iris_data["Species"].map({0:"setosa",1:"versicolor",2:"virginica"})
    X, y = iris_data.iloc[:, :-1], iris_data.iloc[:, -1]
    train_data, test_data, train_target, test_target = train_test_split(X, y, test_size=0.25, stratify=y)
    
    # 数据清洗
    # 重复值处理
    print('存在' if any(train_data.duplicated()) else '不存在', '重复观测值')
    train_data.drop_duplicates()
    # 缺失值处理
    print('存在' if any(train_data.isnull()) else '不存在', '缺失值')
    train_data.dropna()  # 直接删除记录
    train_data.fillna(method='ffill')  # 前向填充
    train_data.fillna(method='bfill')  # 后向填充
    train_data.fillna(value=2)  # 值填充
    train_data.fillna(value={'sepal length (cm)':train_data['sepal length (cm)'].mean()})  # 统计值填充
    # 异常值处理
    data1 = train_data['sepal length (cm)']
    # 标准差监测
    xmean = data1.mean()
    xstd = data1.std()
    print('存在' if any(data1>xmean+2*xstd) else '不存在', '上限异常值')
    print('存在' if any(data1<xmean-2*xstd) else '不存在', '下限异常值')
    # 箱线图监测
    q1 = data1.quantile(0.25)
    q3 = data1.quantile(0.75)
    up = q3+1.5*(q3-q1)
    dw = q1-1.5*(q3-q1)
    print('存在' if any(data1> up) else '不存在', '上限异常值')
    print('存在' if any(data1< dw) else '不存在', '下限异常值')
    data1[data1>up] = data1[data1<up].max()
    data1[data1<dw] = data1[data1>dw].min()
    # 0-1标准化
    X_train_minmax = preprocessing.minmax_scale(train_data, feature_range=(0, 1), axis=0, copy=True)  # 直接用标准化函数
    min_max_scaler = preprocessing.MinMaxScaler()  # 也可以用标准化类,然后调用方法
    X_train_minmax2 = min_max_scaler.fit_transform(train_data)
    
    # z-score标准化
    X_train_zs = preprocessing.scale(train_data, axis=0, with_mean=True, with_std=True, copy=True)  # 直接用标准化函数
    zs_scaler = preprocessing.StandardScaler()  # 也可以用标准化类,然后调用方法
    X_train_zs2 = zs_scaler.fit_transform(train_data)
    
    # 归一化处理
    X_train_norm = preprocessing.normalize(train_data, norm='l2', axis=1)  # 直接用标准化函数
    normalizer = preprocessing.Normalizer()  # 也可以用标准化类,然后调用方法
    X_train_norm2 = normalizer.fit_transform(train_data)
    
    # 数据的缩放比例为绝对值最大值,并保留正负号,即在区间[-1, 1]内。唯一可用于稀疏数据scipy.sparse的标准化
    X_train_ma = preprocessing.maxabs_scale(X, axis=0, copy=True)
    
    # 通过 Interquartile Range(IQR) 标准化数据,即四分之一和四分之三分位点之间
    X_train_rb = preprocessing.robust_scale(train_data, axis=0, with_centering=True, with_scaling=True, copy=True)
    
    # 二值化
    X_train_binary = preprocessing.binarize(train_data, threshold=0, copy=True)  # 按照阈值threshold将数据转换成成0-1,小于等于threshold为 0
    
    # 亚编码操作
    encoder = preprocessing.OneHotEncoder()
    X_OH = encoder.fit_transform(train_data)  #
    df = pd.DataFrame(X_OH.toarray())
    print(df.head(5))
    
    # 缺失值插补
    x = [[np.nan, '1', '3'], [np.nan, '3', '5']]
    imputer = preprocessing.Imputer(missing_values='NaN', strategy='mean', axis=1)
    y = imputer.fit_transform(x)
    
    # 根据分位点将特征转换成均匀分布或正态分布
    # preprocessing.quantile_transform()
    # 和 OneHotEncoder 类似,将类别特征转换为多维二元特征,并将每个特征扩展成用一维表示
    # preprocessing.label_binarize()
    # 多项式转换
    # preprocessing.PolynomialFeatures
    # 增加一列伪特征
    # preprocessing.add_dummy_feature()
    # 核函数
    # a=preprocessing.KernelCenterer

    最后简要介绍下增维/降维方法,以及特征选择相关建议,后续如果用上会在详细补充:
    1. 增唯方法
    多项式扩展:多项式数据变换主要是指基于输入的特征数据按照既定的多项式规则构建更多的 输出特征属性,比如输入特征属性为[a,b],当设置degree为2的时候,那么输出 的多项式特征为[1, a, b, a^2, ab, b^2]
    核函数:高维空间到低维空间的映射
    GBDT+LR:认为每个样本在决策树落在决策树的每个叶子上就表示属于一个类别, 那么我们可以进行基于GBDT或者随机森林的维度扩展,经常我们会将其应用在GBDT将数据进行维度扩充, 然后使用LR进行数据预测。

    2. 降维方法

    PCA、LDA

    3. 特征选择

    在选择模型的过程中,通常从两方面来选择特征:
        1. 特征是否发散:如果一个特征不发散,比如方差接近于0,也就是说这样的特征对于样本的区分没有什么作用。
        2. 特征与目标的相关性:如果与目标相关性比较高,应当优先选择。
        特征选择的方法主要有以下三种:

    • Filter:过滤法,按照发散性或者相关性对各个特征进行评分,设定阈值或者待选择阈值的个数,从而选择特征;常用方法包括方差选择法、相关系数法、卡方检验、 互信息法等。
    • Wrapper:包装法,根据目标函数(通常是预测效果评分),每次选择若干特征或者排除若干特征;常用方法主要是递归特征消除法。
    • Embedded:嵌入法,先使用某些机器学习的算法和模型进行训练,得到各个特征的权重系数,根据系数从大到小选择特征;常用方法主要是基于惩罚项的特征选择法。

    部分内容参考网址:https://cloud.tencent.com/developer/article/1111767

    展开全文
  • 3.4.2数据标准化(一) - Z-Score标准化

    万次阅读 多人点赞 2018-05-14 18:05:25
    数据标准化中,常见的方法有如下三种:Z-Score 标准化最大最小标准化小数定标法本篇主要介绍第一种数据标准化的方法,Z-Score标准化。此方法在整个数据分析与挖掘体系中的位置如下图所示。Z-Score处理方法处于整个...
  • 数据标准化【0~1标准化和Z标准化】

    千次阅读 2020-05-29 15:37:58
    数据标准化 一、Z标准化 经过处理后,数据的均值为0,标准差为1。 二、0~1标准化 1.自定义函数: """ 1.0~1标准化:也称离差标准化,它是对原始数据进行线性变换, 使结果落到 [0,1] 区间. X=(x - min)/(max -...
  • python数据预处理 :数据标准化

    万次阅读 2018-11-25 17:14:41
    在数据分析之前,我们通常需要先将数据标准化(normalization),利用标准化后的数据进行数据分析。数据标准化也就是统计数据的指数化。数据标准化处理主要包括数据同趋化处理和无量纲化处理两个方面。数据同趋化...
  • 一、数据标准化(归一化)首先,数据标准化处理主要包括数据同趋化处理(中心化处理)和无量纲化处理。同趋化处理主要解决不同性质数据问题,对不同性质指标直接加总不能正确反映不同作用力的综合结果,须先考虑改变逆...
  • 数据标准化处理

    千次阅读 2019-03-28 21:11:36
    数据标准化是一个常用的数据预处理操作,目的是处理不同规模和量纲的数据,使其缩放到相同的数据区间和范围,以减少规模、特征、分布差异等对模型的影响。除了用作模型计算,标准化后的数据还具有了直接计算并生成...
  • 一、数据归一化的好处:数据标准化和归一化的区别和联系: 在进行处理数据的时候,标准化的方法是比较多的,其中数据归一化是一种常见的数据的标准化,只不过标准化只是将数据进行规范到一个范围之内,对于数据的...
  • 数据预处理之数据标准化

    千次阅读 2017-08-11 19:45:07
    数据标准化的意义在对数据集建模前,常常要对数据的某一特征或几个特征进行规范化处理,其目的在于将特征值归一到同一个维度,消除比重不平衡的问题。常用的标准化方法有 最大-最小标准化、零-均值标准化 和 小数...
  • sklearn数据标准化

    千次阅读 2018-12-03 09:53:36
    数据标准化常见方法: 离差标准化:结果映射到[0,1]区间 Z-score标准化(正规化方法):新序列均值为0,方差为1 归一化方法 X_train 结果 array([[ 1., -1., 2.], [ 2., 0., 0.], [ 0., 1., -1.]]) ...
  • 2、深度学习训练—详解图像数据标准化与归一化 https://mp.weixin.qq.com/s/BH9TrDjuql0fcvuTQmTFWQ 3、机器学习之数据归一化 https://mp.weixin.qq.com/s/7jef0OCtTjySsHP5s0h5yw ...
  • 7 数据预处理-数据标准化

    千次阅读 2017-07-01 11:10:07
    数据预处理-数据标准化数据预处理-数据标准化 正规化 Normalization 例子1 - 数据标准化 例子2 - 数据标准化对机器学习成效的影响 正规化 Normalization这个文章知识讲解了入门的数据预处理,更多的归一化方法请看:...
  • Python3实现常用数据标准化方法

    万次阅读 多人点赞 2018-06-16 12:32:50
    常用数据标准化方法python实现 数据标准化是机器学习、数据挖掘中常用的一种方法。包括我自己在做深度学习方面的研究时,数据标准化是最基本的一个步骤。数据标准化主要是应对特征向量中数据很分散的情况,防止小...
  • 数据标准化处理方法

    千次阅读 2017-10-31 11:56:53
    数据标准化处理方法 在数据分析之前,我们通常需要先将数据标准化(normalization),利用标准化后的数据进行数据分析。数据标准化也就是统计数据的指数化。数据标准化处理主要包括数据同趋化处理和无量纲化处理两个...
  • 数据标准化 数据标准化是指让所有数据等比例缩放,使之落入特定区间便于计算与分析,常用的有0-1标准化,公式为: 代码实现如下: # -*- coding: utf-8 -*- import pandas as pd df = pd.read_csv(r&amp;...
  • 数据标准化(Normalization):将数据按照一定比例进行缩放,使其落入到一个特定的小区间。 数据标准化的类别: Min-Max标准化 Z-Score标准化(Standard Score,标准分数) 小数定标(Decimal scaling)标准化 ...
  • 数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的...
  • 数据预处理Part2——数据标准化

    千次阅读 2020-05-24 18:35:44
    数据标准化是一个常用的数据预处理操作,目的是将不同规格的数据转换到统一规格或不同分布的数据转换到某个特定范围,以减少规模、特征、分布差异等对模型的影响。

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 39,959
精华内容 15,983
关键字:

数据标准化