精华内容
下载资源
问答
  • 二阶带通滤波器

    2014-11-20 22:42:25
    二阶带通滤波器,中心频率14Khz,用于汽车爆震滤波
  • 具有低通滤波器部分的二阶带通滤波器
  • 为提高故障字典法的实用性,提出了一种基于模糊诊断算法的二阶带通滤波器故障特征提取方法。使输入信号频率处于滤波器截止频率之外的衰减边沿,从而使滤波器测试点电压 能够灵敏地反映故障元件的变化。使用模糊...
  • 随着电流模式的推广,以电流模方法为基础的系统及应用覆盖了许多重要领域,其中一个重要的电流模模拟标准部件是电流传输器,大量应用电流传输器的新型通用滤波电路不断被提出,本文提出一种新型的二阶带通滤波器,该...
  • 针对加速度计二阶动态模型难以准确描述较高频域范围内加速度计动态特性的问题,文中提出了一种基于二阶带通滤波器的加速度计结构化动态建模方法。该方法以加速度计二阶动态模型为基础,将二阶带通滤波器作为基本单元...
  • 该论文是关于二阶带通滤波器的论文,是本人初学电子设计制作的处女作品,比较简单易做的滤波器,对第一次做滤波器的同学可以练练手!
  • 带通滤波器只允许在某一个通频带范围内的信号通过,而比通频带下限频率低和比上限频率高的信号均加以衰减或抑制。
  • 设计了一种单端输入单端输出的电流模式带通滤波器,核心部件为用三极管设计的第二代电流传输器(CCII)。电路由两个CCII和一些无源器件构成,通过偏置电流控制其中心频率,实现对信号的带通滤波功能。该滤波器提供了...
  • 二阶带通滤波器电路设计

    千次阅读 2020-05-27 21:42:40
    参考查表法或辅助软件法,利用集成运放设计二阶音频滤波器,实现音频信号的消噪。假设输入信号幅度在0.1Vpp以内,要求通带增益为0dB,3dB截止频率分别为20Hz~20kHz,通道增益要求平坦,电路负载为1kΩ。根据上述要求...

    一、实验目的

    1. 掌握有源滤波器电路设计基本方法。
    2. 掌握电路仿真软件的基本使用方法。

    二、实验内容及结果

    1. 实验内容
      参考查表法或辅助软件法,利用集成运放设计二阶音频滤波器,实现音频信号的消噪。假设输入信号幅度在0.1Vpp以内,要求通带增益为0dB,3dB截止频率分别为20Hz~20kHz,通道增益要求平坦,电路负载为1kΩ。根据上述要求设计出该电路,并对该电路的幅频特性进行仿真。
      实验具体要求如下:
      (1)设计电路,说明设计原理,电阻、电容选择为系列值,要求截至频率误差在10%以内。
      (2)确定电路中运放的型号,简单说明运放选型的原则。
      (3)利用Multisim电路仿真软件绘制原理图。
      (4)对所设计电路进行幅频特性仿真。给出通道增益、截至频率、过渡带衰减的仿真值。

    2. 实验结果
      (1)在下方列出所设计电路的原理图(Multisim完成,确定电路中所有器件的型号和参数)
      multisim仿真文件链接
      在这里插入图片描述

      图1 所设计电路的原理图

    (2)结合所设计的电路图说明该电路的设计思路和过程,通过计算得到该电路的理论截至频率值,计算误差。
    设计思路:
    需要满足题目要求的通带增益0dB,3dB截至频率20Hz~20kHz,则需要构造二阶带通滤波器。二阶带通滤波器由一个VCVS式二阶低通滤波器和一个VCVS式二阶高通滤波器构成,二阶低通滤波器确定上限3dB截止频率为20kHz,二阶高通滤波器决定下限3dB截止频率为20Hz。
    设计过程:
    由查表法可以分别确定出低通滤波器和高通滤波器的各元器件值如下图:
    二阶低通滤波器查表:在这里插入图片描述
    二阶高通滤波器查表:在这里插入图片描述
    由表中得到R1=1.422KΩ,R2=5.399KΩ,C=6500pF,C1=1588pF;C2=5uF,C3=5uF,R3=2.251KΩ,R4=1.125KΩ,负载R5=1KΩ
    计算过程:
    理论低通与高通滤波器通带增益均为:Ap=1+0=1
    理论低通滤波器上限截止频率:fc=1/(2πR2C1) ≈ 18572.8Hz=18.5728kHz
    理论高通滤波器下限截止频率:fc=1/(2πR4C3) ≈ 20.2Hz
    但真实仿真结果如下
    低频:19.716Hz
    在这里插入图片描述

    高频:20.288Hz
    在这里插入图片描述

    计算得出下限截止频率误差≈2.39%,上限截止频率误差≈8.45%,误差都在10%以内,满足要求

    (3)对所设计电路进行输入输出仿真,给出输入幅度为0.1Vpp,频率分别为20Hz、20kHz时的输出波形图,并记录输出幅度。

    20Hz时:
    在这里插入图片描述

    20KHz时:
    在这里插入图片描述

    图2 输出波形图仿真图

    (4)对所设计电路进行幅频特性仿真,给出幅频特性仿真图,记录3dB截至频率和两过渡带的衰减。
    在这里插入图片描述
    在这里插入图片描述

    图3 幅频特性仿真图

    三、实验思考题
    1、为什么设计出滤波器的截至频率会产生误差?
    答:
    1、电器元件间的误差导致。
    2、由于仪器、实验条件、环境等因素的限制,测量不可能无限精确,测量值与客观存在的真实值之间总会存在着一定的差异。
    3、电路设计仍有可以改进的地方只不过没找到。

    2、总结设计宽带带通滤波器的方法。
    答:
    带通滤波器可以由一个低通滤波器和一个高通滤波器构成,而带宽的确定可以使用查表法决定电路中各个元器件的值,再连接完电路后进行仿真,根据仿真结果对电路中元器件值再进行一些适当的调整,可最终设计出一个性能比较好的带通滤波器。

    展开全文
  • 二阶带通滤波器.ms14

    2020-06-10 10:51:37
    multisim仿真电路,输入信号幅度在0.1Vpp以内,通带增益0dB,3dB截止频率分别为20Hz~20kHz,通道增益平坦,电路负载为1kΩ。 对应博文链接https://blog.csdn.net/Insincerity/article/details/106390924
  • 输入信号为7V 60HZ的交流信号,经过CCII+二阶低通滤波器,这个二阶低通滤波器,NPN双极二极管,电压Vbe: 0.55V, h_fe: 100 . Vbe: 0.5ma, BR:1 输出导纳 h_oe: 5e-5(1/Ohm),高线性度,宽动态范围并提供更高增益...

    输入信号为7V 60HZ的交流信号,经过CCII+二阶低通滤波器,这个二阶低通滤波器,NPN双极二极管,电压Vbe: 0.55V, h_fe: 100 . Vbe: 0.5ma, BR:1  输出导纳 h_oe: 5e-5(1/Ohm),高线性度,宽动态范围并提供更高增益带宽乘积的单位增益模拟构建块。

    想了解详情请下载附件http://www.apollocode.net/a/727.html

    展开全文
  • 【基本要求】:1) 具有放大信号源的作用,能输出相应的波形 2)能够通过一定频率范围内的信号源
  • 新型结构紧凑的二阶带通MFSS滤波器
  • 二阶有源带通滤波器参数计算,设计
  • 二阶有源带通滤波器

    2012-08-07 15:17:33
    二阶有源带通滤波器multism仿真,二阶有源带通滤波器multism仿真。
  • 5000Hz二阶有源带通滤波器的设计doc,利用二极管的基本特性、三极管的基本特性、运算放大器等知识,设计相应的模拟电路,实现一款直流稳压电源、二阶有源滤波器电路的仿真与设计。
  • 二阶巴特沃斯带通滤波器仿真电路图,二阶巴特沃斯带通滤波器仿真电路图
  • 模拟电子电路中的众多仿真电路资源,MULTISM10.0版本的,都是运行过得电路非常好用。二阶有源带通滤波器的仿真分析。
  • 二阶有源带通滤波器设计及参数计算,有详细的计算过程,应用在全国大学生电子设计竞赛的综合测评里,提取基波,三次谐波,五次谐波
  • 二阶低频带通滤波器设计与实现:中心频率2KHz,带宽100Hz,通带增益10;测试记录频率特性曲线,观察Vo与Vi 相位差随频率的变化。核心器件选用741。
  • 二阶有源带通滤波器设计1、背景对于微弱的信号的处理方式一般是:放大和滤波,这个过程中就涉及到放大电路的选取、滤波器的选择以及偏置电路的设计。本例以实例的方式讲解并附带参数计算、仿真、实物测试三个环节。 ...

    二阶有源带通滤波器设计

    1、背景

    对于微弱的信号的处理方式一般是:放大和滤波,这个过程中就涉及到放大电路的选取、滤波器的选择以及偏置电路的设计。本例以实例的方式讲解并附带参数计算、仿真、实物测试三个环节。

    假设需要处理一个20mV的正弦信号,该信号的频率范围是15~35Hz,经过处理后幅值不超过3.3V,且需要经过带通滤波器滤除杂波。

    2、滤波器定义

    滤波电路又称为滤波器,是一种选频电路,能够使特定频率范围的信号通过,而且其他频率的信号大大衰减即阻止其通过。按滤波器工作频率范围的不同,可分为:

    • 低通滤波器(Low-pass Filter,LPF)
    • 高通滤波器(High-pass Filter,HPF)
    • 带通滤波器(Band-pass Filter,BPF)
    • 带阻滤波器(Band-rejection Filter,BRF)
    • 全通滤波器(All-pass Filter,APF)

    仅由电阻、电容、电感这些无源器件组成的滤波电路称为无源滤波器。如果滤波电路中含有有源元件,如集成运放等,则称为有源滤波器。与无源滤波器相比,有源滤波器具有效率高、带负载能力强、频率特性好,而且在滤波的同时还可以将有用信号放大等一系列有点而得到广泛应用。

    2.1、滤波器种类

    2.1.1、低通滤波器

    f0~f2频率之间,幅频特性平直,它可以使信号中低于f2的频率成分几乎不受衰减地通过,而高于f2的频率成分受到极大地衰减。

    9fbce1aff53584ffaffbda73d8a60b27.png

    图 1低通滤波器

    2.1.2、高通滤波器

      与低通滤波相反,从频率f1~∞,其幅频特性平直。它使信号中高于f1的频率成分几乎不受衰减地通过,而低于f1的频率成分将受到极大地衰减。

    65b1ea26dc27427aa64fcf3cd9b4dd4a.png

    图 2高通滤波器

    2.1.3、带通滤波器

      它的通频带在f1~f2之间。它使信号中高于f1而低于f2的频率成分可以不受衰减地通过,而其它成分受到衰减。

    6f500695a856ebf7f21bf3bdf0fcab4b.png

    图 3带通滤波器

    实际上将低通滤波器和高通滤波器串联,即可构成带通滤波器,此处需要注意高通滤波器的截止频率一定要小于低通滤波器的截止频率即fH<fL,否则新构成的滤波器就会变成全频滤波器。

    3e66c8f7703f47d89f23fd21324be24f.png

    图 4低通滤波器与高通滤波器的串联

    2.1.4、带阻滤波器

      与带通滤波相反,阻带在频率f1~f2之间。它使信号中高于f1而低于f2的频率成分受到衰减,其余频率成分的信号几乎不受衰减地通过。

    c68cbc44d2c29267bdd75ab9c8b59596.png

    图 5带阻滤波器

    实际上将低通滤波器和高通滤波器并联,即可构成带通滤波器带阻滤波器。此处需要注意高通滤波器的截止频率一定要大于低通滤波器的截止频率即fH>fL, 否则新构成的滤波器就会变成全通滤波器。

    67a37ea11c9fdb8ab8b9ae67f81fed80.png

    图 6低通滤波器与高通滤波器的并联

    2.2、滤波器的基本参数

    理想滤波器是不存在的,在实际滤波器的幅频特性图中,通带和阻带之间应没有严格的界限。在通带和阻带之间存在一个过渡带。在过渡带内的频率成分不会被完全抑制,只会受到不同程度的衰减。当然,希望过渡带越窄越好,也就是希望对通带外的频率成分衰减得越快、越多越好。因此,在设计实际滤波器时,总是通过各种方法使其尽量逼近理想滤波器。

    如图所示为理想带通(虚线)和实际带通(实线)滤波器的幅频特性。由图中可见,理想滤波器的特性只需用截止频率描述,而实际滤波器的特性曲线无明显的转折点,两截止频率之间的幅频特性也非常数,故需用更多参数来描述。

    de99bb593cfb298a5e4e72230cf48a60.png

    图 7实际滤波器

    2.2.1、纹波幅度d

    在一定频率范围内,实际滤波器的幅频特性可能呈波纹变化,其波动幅度d与幅频特性的平均值A0相比,越小越好,一般应远小于-3dB。

    2.2.2、截止频率fc

    截止频率(Cutoff Frequency):指低通滤波器的通带右边频点或高通滤波器的通带左边频点。通常以1dB或3dB相对损耗点的标准定义。相对损耗的参考基准为:低通以DC处插入损耗为基准,高通则以未出现寄生阻带足够高的通带频率处插入损为基准。

    2.2.3、中心频率(Center Frequency):

    滤波器通带的中心频率f0,一般取f0=(f1+f2)/2,f1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点。窄带滤波器常以插入损耗最小点为中心频率计算通带带宽。

    2.2.4、带宽B和品质因数Q值

    上下两截止频率之间的频率范围称为滤波器带宽,或-3dB带宽,单位为Hz。带宽决定着滤波器分离信号中相邻频率成分的能力——频率分辨力。在电工学中,通常用Q代表谐振回路的品质因数。在二阶振荡环节中,Q值相当于谐振点的幅值增益系数, Q=1/2ξ(ξ——阻尼率)。对于带通滤波器,通常把中心频率f0和带宽 B之比称为滤波器的品质因数Q。例如一个中心频率为500Hz的滤波器,若其中-3dB带宽为10Hz,则称其Q值为50。Q值越大,表明滤波器频率分辨力越高。

    2.2.5、倍频程选择性W

    在两截止频率外侧,实际滤波器有一个过渡带,这个过渡带幅频曲线的倾斜程度表明了幅频特性衰减的快慢,它决定着滤波器对带宽外频率成分衰阻的能力。通常用倍频程选择性来表征。所谓倍频程选择性,是指在上截止频率fc2与 2fc2之间,或者在下截止频率fc1与fc1/2之间幅频特性的衰减值,即频率变化一个倍频程时的衰减量或倍频程衰减量以dB/oct表示(octave,倍频程)。显然,衰减越快(即W值越大),滤波器的选择性越好。对于远离截止频率的衰减率也可用10倍频程衰减数表示之。即[dB/10oct]。

    2.2.6、滤波器因数(或矩形系数)

    滤波器因数是滤波器选择性的另一种表示方式 ,它是利用滤波器幅频特性的 -60dB带宽与-3dB带宽的比值来衡量滤波器选择性.即理想滤波器 =1,常用滤波器 =1~5,显然, 越接近于1,滤波器选择性越好。

    2.2.7、插入损耗(Insertion Loss):

    滤波器插入电路之前传播送到负载阻抗的功率与滤波器插入之后传送到负载阻抗的比值的对数,称为滤波器插入损耗。常以中心或截止频率处损耗表征。

    3、计算过程

    3.1、1.65V偏置电路计算

    抬升电路本质上是一个加法器,其原理是在输入信号的基础加一个偏置量。此处需要将被测信号抬升至0~3.3V范围内,假设信号为正弦信号,且在0V上下波动,因此需要将信号抬升1.65V。整个计算过程使用虚短、虚断的假设,列出如下两个方程,将②式化简并带入①式,可以求得③式。从化简后的③式可以看出:u0=ku2+gu1,其中k、g仅与电阻的大小有关,k为加法电路偏置,g为输入信号增益,此处仅实现1.65V偏置,因此k=2,g=1。如需在偏置的基础上增加对输入信号的放大,可以适当调节电阻阻值,此处不再赘述。为简化电阻选值,假设R1=R3,则、R2=2R1=2R3。该结论适用于同类的抬升电路。

    77146bb3846d9a31f30bdce222d24be9.png

    图 8偏置电路图

    e3b7750118fa2dc54b05f0897c381827.png

    图 9偏置电路

    根据虚短、虚断列出下面两个方程:

    f4260e79959cf2cefdc44b9f7434e1fe.png

    推导出下式:

    2971a02713246fd726ce08fa8e338d7d.png

    则是偏置电压的偏置常数,是闭环增益,此处希望,,带入可得:。即偏置电路中的二等分偏置电阻是反馈电阻的两倍,反馈端对地电阻和反馈电阻相等。对于有电容的电路,上式电阻(R)可以用阻抗(z)的形式表示。

    此处选择输入电阻为100KΩ,则偏置电路电阻为200KΩ。

    3.2、滤波器计算

    3.2.1、一阶有源滤波器

    c39cd61ad3ab728421070e86bcf870e4.png

    图 10一阶LPF

    3.2.2、二阶低通滤波器

      为改善滤波效果,使时,信号衰减的更快,一般在上图所示的一阶低通滤波器的基础上再增加一级RC电路就构成二阶有源低通滤波器,如下图所示。

    24b974f4c689d32edd99e92a4a9b15b0.png

    图 11二阶LPF

    3.2.3、二阶压控型低通滤波器

    二阶压控型低通有源滤波器中的一个电容器C1原来是接地的,现在改接到输出端。显然C1的改接不影响通带增益。

    e632244788644686d23b109ea4c9cae9.png

    图 12二阶压控型LPF

    二阶LPF传递函数:

    37d0dbc5540521983e350486eec3a271.png

    通带增益:

    027c6d41dce8706289550b3bdb180d11.png

    上式表明,该滤波器的通带增益应小于3,才能保障电路稳定工作。

    3.2.4、二阶高通滤波器

    高通滤波器电路与低通滤波器在电路上具备对偶性,通过把低通滤波器电路中的R、C互换位置即可得到高通滤波器,并且相应的截止频率也具备这种特性。

    00cf9edfcfa3d4de596ca291c0d9287e.png

    图 13二阶HPF

    二阶HPF传递函数:

    5527b5e17df2de3c060445fdfe157114.png

    通带增益:

    027c6d41dce8706289550b3bdb180d11.png

    3.2、二阶滤波器计算

    276154f8881283c2edbec49ac66e4793.png

    时,幅频特性曲线最平坦称为Butterworth滤波器;当Q=1时,称为Chebyshev滤波器;当Q>0.707时后,特性曲线将出现峰值,Q值越大,峰值越高

    LPF:假设待计算滤波器Q=0.7(读者可以根据实际情况取值,此处仅以0.7为例设计)、f0=35Hz。

    根据RC滤波器求解RC值:

    电容值一般取1uF以下,此处以1uF为例计算。

    7d773147370563028a82bfbea9a1f80c.png

    求得R=4.549kΩ,实际取值R=4.3 kΩ。

    根据值求解R1R2 ,当f=f0时,

    2caa59063449db9d7fb4a7fcf355f924.png

    则:

    7469c9420f162f80a2061f542a5196db.png

    解得:R1=25.06kΩ,R2=14.29kΩ

    实际取值:R1=24kΩ,R2=15kΩ(实际电阻值是离散数据,选取相近阻值即可)。

    HPF:由于同类型LPF和HPF具有对偶性,实际计算按照LPF计算,电路中替换RC位置即可。

    假设待计算滤波器Q=0.7(读者可以根据实际情况取值,此处仅以0.7为例设计)、。

    根据RC滤波器求解RC值:

    电容值一般取1uF以下,此处以1uF为例计算。

    952bf11c9efe07467db1d8839445f246.png

    求得R=10.615kΩ,实际取值R=10 kΩ。

    根据值求解R1R2 ,当f=f0时,

    4b88fef8a630006dd9b47455af6c159d.png

    则:

    be3e50916bfb2ba12c03d5490054cb74.png

    解得:R1=58.479kΩ,R2=33.333kΩ

    实际取值:R1=56kΩ,R2=33kΩ(实际电阻值是离散数据,选取相近阻值即可)。

    同理可以计算出Q=1

    LPF:R1=R2=18.19kΩ,实际取值R1=R2=18kΩ

    HPF:R1=R2=42.46 kΩ,R1=R2=43kΩ

    同理可以计算出Q=2.5

    LPF:R1=14.784kΩ,R2= 23.6548‬ kΩ,实际取值R1=15 kΩ、R2=24kΩ

    HPF:R1= 34.499 kΩ,R2= 55.198 kΩ,实际取值R1=33 kΩ、R2=56kΩ

    3.3、Matlab频谱相应仿真

    取Q=0.1~3,步长取0.2,绘制滤波器的波特图,其结果如下图所示,matlab绘图程序详见附录。

    2a92ef3ab266fa953065611bfeeb66a6.png

    图 14带通滤波器不同Q值下的波特图

    4、Multisim仿真

    4.1、搭建仿真电路图

    7c50d3edfee08483398cc23b7df6e4b1.png

    图 15仿真电路图

    4.2、仿真结果

    4.2.1、Q=0.7时

    波特图:

    176c70c477fec0a31706b0bccaa27840.png

    图 16 Q=0.7时幅频特性图

    2b2f80e42e1f1adfa47701fd240eb607.png

    图 17 Q=0.7时相频特性图

    各点波形输出:(注:紫色:LPF滤波后波形,蓝色:HPF滤波后波形,黄色:1.65V抬升后波形)

    f92012c9ff9280250218fa7236611083.png

    图 18仿真波形图

    4.2.2、Q=1时

    仿真图:

    5466548daf889856cdc0080af0f59488.png

    图 19仿真电路图

    波特图:

    01d9fc9f99a9b19397d141546ab3191d.png

    图 20 Q=1时幅频特性图

    e650a3f0aba20f33f11db6a2021fb3b9.png

    图 21 Q=1时相频特性图

    各点波形输出:(注:紫色:LPF滤波后波形,蓝色:HPF滤波后波形,黄色:1.65V抬升后波形)

    9690c9c8509ee3e45e5920758ac7e628.png

    图 22仿真波形图

    4.2.3、Q=2.5时

    仿真图:

    c5c637e59b738d10af499a1982f87bd6.png

    图 23仿真图

    波特图:(注意:此处F=50dB

    27f52b5038e5a18a0f0230e948d777ba.png

    图 24 Q=2.5幅频特性图

    ae3ac18c00a1b184d21bcbb55c767e70.png

    图 25 Q=2.5时相频特性图

    各点波形输出:((注:紫色:LPF滤波后波形,蓝色:HPF滤波后波形,黄色:1.65V抬升后波形)

    fcc5a1d4071d535ce3b4f6797bc2e1a0.png

    图 26仿真波形图

    从上面Q值的对比可以发现:Q 因子的值越低,滤波器的带宽越宽,因此 Q 因子越高,滤波器越窄,“选择性”越强。由于有源带通滤波器(二阶系统)的品质因数与滤波器响应在其中心谐振频率( fr ) 附近的“锐度”有关,因此它也可以被认为是“阻尼系数”。因为滤波器的阻尼越大,其响应越平坦,同样,滤波器的阻尼越小,其响应越敏锐。

    5、硬件设计

    此处使用Atium Designer软件设计原理图和PCB,该部分硬件源文件均开源,可以直接下载附件。

    5.1、原理图设计:

    由于LM358D不是轨到轨运放,用于1.65偏置电路时无法提供0~3.3V的动态范围,抬升电路部分先择LMV358。此处应当注意两款芯片的电压范围不同。从理论计算可知,修改输入端RC可以改变滤波器的截止频率,修改反馈端电阻会影响滤波器品质因数Q。该部分电路结构相同,仅需修改电路中电阻、电容参数,便可以实现不同的带通效果,另外修改高通和低通的截止频率还可以实现带阻。读者可以直接根据生产文件,打样、测试,在实际的测试中探索其中的奥妙。

    b66b338492cbc64ec26336ba177dc54e.png

    图 27硬件原理图

    5.2、PCB设计:

    PCB部分根据实际生产的需求制作了两种拼版文件:V-cut和邮票孔,此部分可以直接使用,读者也可以实际动手操作一遍,此处使用到高级粘贴功能,具体操作此处不再赘述没有兴趣的读者可以自行了解,另外在做V-cut拼版时需要注意各家板厂V-cut使用钻头的直径,实际拼板中需要根据V-cut钻头的直径预留两个相邻板间的间距,此处按照默认0.4mm设计。

    5.2.1、3D效果

    420ab27c6e97e7c849620c330353e2a3.png

    图 28PCBA渲染图

    5.2.2、

    abea6e962a7c45ded3dbeb2236396b59.png

    邮票孔拼版效果图:

    图 29邮票孔拼版图

    5.2.3、V-cut拼版效果图

    8bad7f71169ba7f2050250fb7522a5b9.png

    图 30V-Cut拼版图

    5.3、实际测试

    前一级AD620放大和滤波运放LM358耐压范围较高,测试时可以使用5V正负电源供电,后一级LMV358默认不与正5V电源相连,读者可以将P2与正5V相连,如果使用大于正负5V的电源供电,此处可以使用另一路5V电源单独供电。

    591d27167d5b7d6c854e5084731f6980.png

    图 31实物图

    5.3.1、测试结果

    示波器中蓝色为原始输入信号,第一级放大倍数G=20,黄色为滤波并偏置1.65V的信号。注意观察两个通道的刻度不同。

    f=12Hz时:

    c552ce0b07f7e3d0db76711372c7488e.png

    图 32 f=12Hz时的波形对比

    f=20Hz时

    adb57716a15c01fb21f17e5cb2a540fc.png

    图 33 f=20Hz时的波形对比

    f=60Hz时:

    097033941ab733d1e9bcb48e3180eb59.png

    图 34 f=60Hz时波形对比图

    注:此部分测试结果可以参见附件视频。

    至此整个论计算、设计、测试过程结束。

    附录

    Matlab 绘制bode图代码

    %有源二阶模拟带通滤波器

    %LPF 传递函数计算 f0=35Hz C = 1uF,R = R=4.549kΩ g1=k3/(s2+k1*s1+k2)

    c1 = 1e-6;

    r1 = 4549;

    %HPF 传递函数计算 f0=15Hz C = 1uF,R = R=4.549kΩ g2=k6*s2/(s2+k4*s1+k5)

    c2 = 1e-6;

    r2 = 10615;

    for q=0.1:0.2:3

    %LPF

    Avp1 = 3-(1/q);

    %R1 = 2*r1*Avp1/(Avp1-1);

    %R2 = 2*r1*Avp1;

    k1 = (3-Avp1)/(c1*r1);

    k2 = 1/(c1*c1*r1*r1);

    k3 = Avp1/(c1*c1*r1*r1);

    num1=[k3]; %传递函数分子

    den1=[1 k1 k2]; %传递函数分母式为:s2+k1s+k2

    G1=tf(num1,den1);

    %HPF

    Avp2 = 3-(1/q);

    %R1 = 2*r2*Avp2/(Avp2-1);

    %R2 = 2*r2*Avp2;

    k4 = (3-Avp2)/(c2*r2);

    k5 = 1/(c2*c2*r2*r2);

    k6 = Avp2;

    num2=[k6 0 0]; %传递函数分子,此处为s2需要特别注意

    den2=[1 k4 k5]; %传递函数分母格,式为:s2+k4s+k5

    G2=tf(num2,den2);

    p=bodeoptions;

    p.FreqUnits='Hz';

    p.Grid= 'on';

    [num,den] = series(num1,den1,num2,den2); %计算串联传递函数,串联传递函数需要相乘

    printsys(num,den) %显示串联后的总传递函数

    hold on;

    bode(num,den,p); %绘制波特图

    % hold on;

    % bode(G1,p);

    % hold on;

    % bode(G2,p);

    End

    legend('0.1','0.3','0.5','0.7','0.9','1.1','1.3','1.5','1.7','1.9','2.1','2.3','2.5','2.7','2.9');

    title('有源二阶模拟带通滤波器相频特性'); %标题

    测试视频:

    9ccba07049738bea3bd9ddabed33f1a5.png
    https://www.zhihu.com/video/1188012220288667648
    1211acbcc5b1474d9f2a8452cf6317d0.png
    https://www.zhihu.com/video/1188012458559549440

    454ca46bd7971cd78845defc1df4d5ae.png

    相关附件请到论坛下载:

    二阶有源带通滤波器设计 - dmBot开源硬件分享 - dmBot Techical Forum - Powered by dmBot!www.dmbot.cn
    展开全文
  • 设计了一个f0=40K的带通滤波器 同相输入压控电压源二阶有源二阶带通滤波器 调信号发生器频率 示波器双踪比较看 中心频率怎么都不对 在35K左右 于是改用matlab仿真 结果为40K 改用频响分析 数据输出: "FREQ","Vout" ...
  • 介绍了使用查表归一快速设计有源滤波器的方法设计二阶有源带通滤波器的详细步骤,并对设计过程中所要处理的数据及图像进行详细地列举、分析。
  • 摘要: 提出了一种谐振腔间通过电容耦合和基于LTCC技术的集总带通滤波器带通滤波器是指能通过某一频率范围内的频率分量、但将其他范围的频率分量衰减到极低水平的滤波器,与带阻滤波器的概念相对)结构。...
  • 二阶有源带通滤波器设计1、背景对于微弱的信号的处理方式一般是:放大和滤波,这个过程中就涉及到放大电路的选取、滤波器的选择以及偏置电路的设计。本例以实例的方式讲解并附带参数计算、仿真、实物测试三个环节。 ...

    二阶有源带通滤波器设计

    1、背景

    对于微弱的信号的处理方式一般是:放大和滤波,这个过程中就涉及到放大电路的选取、滤波器的选择以及偏置电路的设计。本例以实例的方式讲解并附带参数计算、仿真、实物测试三个环节。

    假设需要处理一个20mV的正弦信号,该信号的频率范围是15~35Hz,经过处理后幅值不超过3.3V,且需要经过带通滤波器滤除杂波。

    2、滤波器定义

    滤波电路又称为滤波器,是一种选频电路,能够使特定频率范围的信号通过,而且其他频率的信号大大衰减即阻止其通过。按滤波器工作频率范围的不同,可分为:

    • 低通滤波器(Low-pass Filter,LPF)
    • 高通滤波器(High-pass Filter,HPF)
    • 带通滤波器(Band-pass Filter,BPF)
    • 带阻滤波器(Band-rejection Filter,BRF)
    • 全通滤波器(All-pass Filter,APF)

    仅由电阻、电容、电感这些无源器件组成的滤波电路称为无源滤波器。如果滤波电路中含有有源元件,如集成运放等,则称为有源滤波器。与无源滤波器相比,有源滤波器具有效率高、带负载能力强、频率特性好,而且在滤波的同时还可以将有用信号放大等一系列有点而得到广泛应用。

    2.1、滤波器种类

    2.1.1、低通滤波器

    f0~f2频率之间,幅频特性平直,它可以使信号中低于f2的频率成分几乎不受衰减地通过,而高于f2的频率成分受到极大地衰减。

    aacb7b63b705da8c749ed32a6f4d5517.png

    图 1低通滤波器

    2.1.2、高通滤波器

      与低通滤波相反,从频率f1~∞,其幅频特性平直。它使信号中高于f1的频率成分几乎不受衰减地通过,而低于f1的频率成分将受到极大地衰减。

    3b09bbe0519b16ba026e18158f116f8f.png

    图 2高通滤波器

    2.1.3、带通滤波器

      它的通频带在f1~f2之间。它使信号中高于f1而低于f2的频率成分可以不受衰减地通过,而其它成分受到衰减。

    112cce6d428667b255911256b515cfa2.png

    图 3带通滤波器

    实际上将低通滤波器和高通滤波器串联,即可构成带通滤波器,此处需要注意高通滤波器的截止频率一定要小于低通滤波器的截止频率即fH<fL,否则新构成的滤波器就会变成全频滤波器。

    db6f3914710ed9aae219c478adf42838.png

    图 4低通滤波器与高通滤波器的串联

    2.1.4、带阻滤波器

      与带通滤波相反,阻带在频率f1~f2之间。它使信号中高于f1而低于f2的频率成分受到衰减,其余频率成分的信号几乎不受衰减地通过。

    8366249cb137f8af45638602cc06fb6d.png

    图 5带阻滤波器

    实际上将低通滤波器和高通滤波器并联,即可构成带通滤波器带阻滤波器。此处需要注意高通滤波器的截止频率一定要大于低通滤波器的截止频率即fH>fL, 否则新构成的滤波器就会变成全通滤波器。

    718cf2614206898f116399cd83ab8cae.png

    图 6低通滤波器与高通滤波器的并联

    2.2、滤波器的基本参数

    理想滤波器是不存在的,在实际滤波器的幅频特性图中,通带和阻带之间应没有严格的界限。在通带和阻带之间存在一个过渡带。在过渡带内的频率成分不会被完全抑制,只会受到不同程度的衰减。当然,希望过渡带越窄越好,也就是希望对通带外的频率成分衰减得越快、越多越好。因此,在设计实际滤波器时,总是通过各种方法使其尽量逼近理想滤波器。

    如图所示为理想带通(虚线)和实际带通(实线)滤波器的幅频特性。由图中可见,理想滤波器的特性只需用截止频率描述,而实际滤波器的特性曲线无明显的转折点,两截止频率之间的幅频特性也非常数,故需用更多参数来描述。

    adf07dcbe279cceb5a43355b002da2a4.png

    图 7实际滤波器

    2.2.1、纹波幅度d

    在一定频率范围内,实际滤波器的幅频特性可能呈波纹变化,其波动幅度d与幅频特性的平均值A0相比,越小越好,一般应远小于-3dB。

    2.2.2、截止频率fc

    截止频率(Cutoff Frequency):指低通滤波器的通带右边频点或高通滤波器的通带左边频点。通常以1dB或3dB相对损耗点的标准定义。相对损耗的参考基准为:低通以DC处插入损耗为基准,高通则以未出现寄生阻带足够高的通带频率处插入损为基准。

    2.2.3、中心频率(Center Frequency):

    滤波器通带的中心频率f0,一般取f0=(f1+f2)/2,f1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点。窄带滤波器常以插入损耗最小点为中心频率计算通带带宽。

    2.2.4、带宽B和品质因数Q值

    上下两截止频率之间的频率范围称为滤波器带宽,或-3dB带宽,单位为Hz。带宽决定着滤波器分离信号中相邻频率成分的能力——频率分辨力。在电工学中,通常用Q代表谐振回路的品质因数。在二阶振荡环节中,Q值相当于谐振点的幅值增益系数, Q=1/2ξ(ξ——阻尼率)。对于带通滤波器,通常把中心频率f0和带宽 B之比称为滤波器的品质因数Q。例如一个中心频率为500Hz的滤波器,若其中-3dB带宽为10Hz,则称其Q值为50。Q值越大,表明滤波器频率分辨力越高。

    2.2.5、倍频程选择性W

    在两截止频率外侧,实际滤波器有一个过渡带,这个过渡带幅频曲线的倾斜程度表明了幅频特性衰减的快慢,它决定着滤波器对带宽外频率成分衰阻的能力。通常用倍频程选择性来表征。所谓倍频程选择性,是指在上截止频率fc2与 2fc2之间,或者在下截止频率fc1与fc1/2之间幅频特性的衰减值,即频率变化一个倍频程时的衰减量或倍频程衰减量以dB/oct表示(octave,倍频程)。显然,衰减越快(即W值越大),滤波器的选择性越好。对于远离截止频率的衰减率也可用10倍频程衰减数表示之。即[dB/10oct]。

    2.2.6、滤波器因数(或矩形系数)

    滤波器因数是滤波器选择性的另一种表示方式 ,它是利用滤波器幅频特性的 -60dB带宽与-3dB带宽的比值来衡量滤波器选择性.即理想滤波器 =1,常用滤波器 =1~5,显然, 越接近于1,滤波器选择性越好。

    2.2.7、插入损耗(Insertion Loss):

    滤波器插入电路之前传播送到负载阻抗的功率与滤波器插入之后传送到负载阻抗的比值的对数,称为滤波器插入损耗。常以中心或截止频率处损耗表征。

    3、计算过程

    3.1、1.65V偏置电路计算

    抬升电路本质上是一个加法器,其原理是在输入信号的基础加一个偏置量。此处需要将被测信号抬升至0~3.3V范围内,假设信号为正弦信号,且在0V上下波动,因此需要将信号抬升1.65V。整个计算过程使用虚短、虚断的假设,列出如下两个方程,将②式化简并带入①式,可以求得③式。从化简后的③式可以看出:u0=ku2+gu1,其中k、g仅与电阻的大小有关,k为加法电路偏置,g为输入信号增益,此处仅实现1.65V偏置,因此k=2,g=1。如需在偏置的基础上增加对输入信号的放大,可以适当调节电阻阻值,此处不再赘述。为简化电阻选值,假设R1=R3,则、R2=2R1=2R3。该结论适用于同类的抬升电路。

    8597c52b566b67a159042e9c6457217f.png

    图 8偏置电路图

    9e6ba399ee83b8c611ade28ba33ab0d3.png

    图 9偏置电路

    根据虚短、虚断列出下面两个方程:

    a4182a34c8be359e405c34835f0ed561.png

    推导出下式:

    cf962b8c5b7f6b6ffdd4e254364ab250.png

    则是偏置电压的偏置常数,是闭环增益,此处希望,,带入可得:。即偏置电路中的二等分偏置电阻是反馈电阻的两倍,反馈端对地电阻和反馈电阻相等。对于有电容的电路,上式电阻(R)可以用阻抗(z)的形式表示。

    此处选择输入电阻为100KΩ,则偏置电路电阻为200KΩ。

    3.2、滤波器计算

    3.2.1、一阶有源滤波器

    02fba6145a877cfd1ac78c945575d99f.png

    图 10一阶LPF

    3.2.2、二阶低通滤波器

      为改善滤波效果,使时,信号衰减的更快,一般在上图所示的一阶低通滤波器的基础上再增加一级RC电路就构成二阶有源低通滤波器,如下图所示。

    4a069bfec1e36d0edfa5cad607dcc989.png

    图 11二阶LPF

    3.2.3、二阶压控型低通滤波器

    二阶压控型低通有源滤波器中的一个电容器C1原来是接地的,现在改接到输出端。显然C1的改接不影响通带增益。

    7496a08f6b8c51e8f10b2f183f0b887f.png

    图 12二阶压控型LPF

    二阶LPF传递函数:

    881d5ffa190df10ab3ea51a300c408eb.png

    通带增益:

    afcfa10dce68a20ea6a7e57c2ba88a2a.png

    上式表明,该滤波器的通带增益应小于3,才能保障电路稳定工作。

    3.2.4、二阶高通滤波器

    高通滤波器电路与低通滤波器在电路上具备对偶性,通过把低通滤波器电路中的R、C互换位置即可得到高通滤波器,并且相应的截止频率也具备这种特性。

    eaf66f3b81508bb9e8420c5185aaeaba.png

    图 13二阶HPF

    二阶HPF传递函数:

    f54dc00c2c03be745b65c8439d3a70a2.png

    通带增益:

    afcfa10dce68a20ea6a7e57c2ba88a2a.png

    3.2、二阶滤波器计算

    3a16c298fe4e6a5a885f22a6f2fc1416.png

    时,幅频特性曲线最平坦称为Butterworth滤波器;当Q=1时,称为Chebyshev滤波器;当Q>0.707时后,特性曲线将出现峰值,Q值越大,峰值越高

    LPF:假设待计算滤波器Q=0.7(读者可以根据实际情况取值,此处仅以0.7为例设计)、f0=35Hz。

    根据RC滤波器求解RC值:

    电容值一般取1uF以下,此处以1uF为例计算。

    7b302044b65bf8a31d26deabeac4a8e4.png

    求得R=4.549kΩ,实际取值R=4.3 kΩ。

    根据值求解R1R2 ,当f=f0时,

    3b44ff0a303964f58652fc27cad78f4d.png

    则:

    7d66224b4583275dcdb023bf6ccbea53.png

    解得:R1=25.06kΩ,R2=14.29kΩ

    实际取值:R1=24kΩ,R2=15kΩ(实际电阻值是离散数据,选取相近阻值即可)。

    HPF:由于同类型LPF和HPF具有对偶性,实际计算按照LPF计算,电路中替换RC位置即可。

    假设待计算滤波器Q=0.7(读者可以根据实际情况取值,此处仅以0.7为例设计)、。

    根据RC滤波器求解RC值:

    电容值一般取1uF以下,此处以1uF为例计算。

    300677b0a1eae22873471c606712c63f.png

    求得R=10.615kΩ,实际取值R=10 kΩ。

    根据值求解R1R2 ,当f=f0时,

    3b2b2ef73a4a1202cca12f59904a22c0.png

    则:

    912336d2b397785c677857f57eb3d145.png

    解得:R1=58.479kΩ,R2=33.333kΩ

    实际取值:R1=56kΩ,R2=33kΩ(实际电阻值是离散数据,选取相近阻值即可)。

    同理可以计算出Q=1

    LPF:R1=R2=18.19kΩ,实际取值R1=R2=18kΩ

    HPF:R1=R2=42.46 kΩ,R1=R2=43kΩ

    同理可以计算出Q=2.5

    LPF:R1=14.784kΩ,R2= 23.6548‬ kΩ,实际取值R1=15 kΩ、R2=24kΩ

    HPF:R1= 34.499 kΩ,R2= 55.198 kΩ,实际取值R1=33 kΩ、R2=56kΩ

    3.3、Matlab频谱相应仿真

    取Q=0.1~3,步长取0.2,绘制滤波器的波特图,其结果如下图所示,matlab绘图程序详见附录。

    456db2f8c4c00e91dfc36b51a9641652.png

    图 14带通滤波器不同Q值下的波特图

    4、Multisim仿真

    4.1、搭建仿真电路图

    25e1f142087bcbc0e96c139315610671.png

    图 15仿真电路图

    4.2、仿真结果

    4.2.1、Q=0.7时

    波特图:

    80f43fd6a10778817c3996f7cfd761ce.png

    图 16 Q=0.7时幅频特性图

    014ca47c72c6417c3a113c866e8f78d5.png

    图 17 Q=0.7时相频特性图

    各点波形输出:(注:紫色:LPF滤波后波形,蓝色:HPF滤波后波形,黄色:1.65V抬升后波形)

    aeefc9289957bc916aaf949ec8010f06.png

    图 18仿真波形图

    4.2.2、Q=1时

    仿真图:

    c82b961116ba77c3b10844de15f88060.png

    图 19仿真电路图

    波特图:

    06f45ca29fce6a95097fea8d8d73c878.png

    图 20 Q=1时幅频特性图

    bf41a865998cf1a5c8b92a773748c10a.png

    图 21 Q=1时相频特性图

    各点波形输出:(注:紫色:LPF滤波后波形,蓝色:HPF滤波后波形,黄色:1.65V抬升后波形)

    347b84f3f8feeabf4ac1db34b305f49f.png

    图 22仿真波形图

    4.2.3、Q=2.5时

    仿真图:

    12975723c302e17079fb6e989d656d2a.png

    图 23仿真图

    波特图:(注意:此处F=50dB

    bdd8f58ab508c90cb2524b79ebd35d05.png

    图 24 Q=2.5幅频特性图

    bb56690ee5dce0cd0530013e1c92ec72.png

    图 25 Q=2.5时相频特性图

    各点波形输出:((注:紫色:LPF滤波后波形,蓝色:HPF滤波后波形,黄色:1.65V抬升后波形)

    5e41816c9bbf7e99ac07a944c6c8ee12.png

    图 26仿真波形图

    从上面Q值的对比可以发现:Q 因子的值越低,滤波器的带宽越宽,因此 Q 因子越高,滤波器越窄,“选择性”越强。由于有源带通滤波器(二阶系统)的品质因数与滤波器响应在其中心谐振频率( fr ) 附近的“锐度”有关,因此它也可以被认为是“阻尼系数”。因为滤波器的阻尼越大,其响应越平坦,同样,滤波器的阻尼越小,其响应越敏锐。

    5、硬件设计

    此处使用Atium Designer软件设计原理图和PCB,该部分硬件源文件均开源,可以直接下载附件。

    5.1、原理图设计:

    由于LM358D不是轨到轨运放,用于1.65偏置电路时无法提供0~3.3V的动态范围,抬升电路部分先择LMV358。此处应当注意两款芯片的电压范围不同。从理论计算可知,修改输入端RC可以改变滤波器的截止频率,修改反馈端电阻会影响滤波器品质因数Q。该部分电路结构相同,仅需修改电路中电阻、电容参数,便可以实现不同的带通效果,另外修改高通和低通的截止频率还可以实现带阻。读者可以直接根据生产文件,打样、测试,在实际的测试中探索其中的奥妙。

    3cad0625118af7fa86ee0c72255a153d.png

    图 27硬件原理图

    5.2、PCB设计:

    PCB部分根据实际生产的需求制作了两种拼版文件:V-cut和邮票孔,此部分可以直接使用,读者也可以实际动手操作一遍,此处使用到高级粘贴功能,具体操作此处不再赘述没有兴趣的读者可以自行了解,另外在做V-cut拼版时需要注意各家板厂V-cut使用钻头的直径,实际拼板中需要根据V-cut钻头的直径预留两个相邻板间的间距,此处按照默认0.4mm设计。

    5.2.1、3D效果

    f635e74163d34e6821269a3dbe6f2727.png

    图 28PCBA渲染图

    5.2.2、

    5d4a286af20d2d03a8993af1433b659d.png

    邮票孔拼版效果图:

    图 29邮票孔拼版图

    5.2.3、V-cut拼版效果图

    ccda19adc7daff769cbbebc173607e78.png

    图 30V-Cut拼版图

    5.3、实际测试

    前一级AD620放大和滤波运放LM358耐压范围较高,测试时可以使用5V正负电源供电,后一级LMV358默认不与正5V电源相连,读者可以将P2与正5V相连,如果使用大于正负5V的电源供电,此处可以使用另一路5V电源单独供电。

    477a2604753e67c26c53a969a5db3687.png

    图 31实物图

    5.3.1、测试结果

    示波器中蓝色为原始输入信号,第一级放大倍数G=20,黄色为滤波并偏置1.65V的信号。注意观察两个通道的刻度不同。

    f=12Hz时:

    8680a7cf92b492b5784913c112a779d6.png

    图 32 f=12Hz时的波形对比

    f=20Hz时

    31611fb23cb09e846841907b27ea78d8.png

    图 33 f=20Hz时的波形对比

    f=60Hz时:

    8ab0d111cf42e49fec5be78f5fe1d60e.png

    图 34 f=60Hz时波形对比图

    注:此部分测试结果可以参见附件视频。

    至此整个论计算、设计、测试过程结束。

    附录

    Matlab 绘制bode图代码

    %有源二阶模拟带通滤波器

    %LPF 传递函数计算 f0=35Hz C = 1uF,R = R=4.549kΩ g1=k3/(s2+k1*s1+k2)

    c1 = 1e-6;

    r1 = 4549;

    %HPF 传递函数计算 f0=15Hz C = 1uF,R = R=4.549kΩ g2=k6*s2/(s2+k4*s1+k5)

    c2 = 1e-6;

    r2 = 10615;

    for q=0.1:0.2:3

    %LPF

    Avp1 = 3-(1/q);

    %R1 = 2*r1*Avp1/(Avp1-1);

    %R2 = 2*r1*Avp1;

    k1 = (3-Avp1)/(c1*r1);

    k2 = 1/(c1*c1*r1*r1);

    k3 = Avp1/(c1*c1*r1*r1);

    num1=[k3]; %传递函数分子

    den1=[1 k1 k2]; %传递函数分母式为:s2+k1s+k2

    G1=tf(num1,den1);

    %HPF

    Avp2 = 3-(1/q);

    %R1 = 2*r2*Avp2/(Avp2-1);

    %R2 = 2*r2*Avp2;

    k4 = (3-Avp2)/(c2*r2);

    k5 = 1/(c2*c2*r2*r2);

    k6 = Avp2;

    num2=[k6 0 0]; %传递函数分子,此处为s2需要特别注意

    den2=[1 k4 k5]; %传递函数分母格,式为:s2+k4s+k5

    G2=tf(num2,den2);

    p=bodeoptions;

    p.FreqUnits='Hz';

    p.Grid= 'on';

    [num,den] = series(num1,den1,num2,den2); %计算串联传递函数,串联传递函数需要相乘

    printsys(num,den) %显示串联后的总传递函数

    hold on;

    bode(num,den,p); %绘制波特图

    % hold on;

    % bode(G1,p);

    % hold on;

    % bode(G2,p);

    End

    legend('0.1','0.3','0.5','0.7','0.9','1.1','1.3','1.5','1.7','1.9','2.1','2.3','2.5','2.7','2.9');

    title('有源二阶模拟带通滤波器相频特性'); %标题

    测试视频:

    07942e9188f53b785dbae44a9f14e347.png
    https://www.zhihu.com/video/1188012220288667648
    6d95e0f472ddbc5319ce97e84bafc7b4.png
    https://www.zhihu.com/video/1188012458559549440

    1933ba7ca524eac0d9b31ed5ef2bc0bd.png

    相关附件请到论坛下载:

    二阶有源带通滤波器设计 - dmBot开源硬件分享 - dmBot Techical Forum - Powered by dmBot!www.dmbot.cn
    展开全文
  • 摘要: 提出了一种谐振腔间通过电容耦合和基于LTCC技术的集总带通滤波器带通滤波器是指能通过某一频率范围内的频率分量、但将其他范围的频率分量衰减到极低水平的滤波器,与带阻滤波器的概念相对)结构。...
  • 滤波器在电子线路中用得特别多,通信电路更是多如牛毛。这是一个关于二阶有源带通滤波器设计及参数计算的资料。希望对大家有用。
  • 假设需要处理一个20mV的正弦信号,该信号的频率范围是15~35Hz,经过处理后幅值不超过3.3V,且需要经过带通滤波器滤除杂波。2、滤波器定义滤波电路又称为滤波器,是一种选频电路,能够使特定频率范围的信号通过,...
  • 二阶有源带通滤波器滤波原理

    万次阅读 多人点赞 2017-01-18 17:20:35
    请注意有源滤波器因为运放的有效识别电压和响应频率的影响,适用于低频信号的滤波,对于高频信号最好使用无缘滤波。 名词解释 一阶低通滤波器,包含一组RC构成的滤波器,将谐波过滤一次;两阶低通滤波器,包含两组...

空空如也

空空如也

1 2 3 4 5 ... 9
收藏数 171
精华内容 68
关键字:

二阶带通滤波器