精华内容
下载资源
问答
  • 《基本函数求导公式》由会员分享,可在线阅读,更多相关《基本函数求导公式(6页珍藏版)》请在人人文库网上搜索。1、基本初等函数求导公式 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12),(13)(14)(15)(16)函数的和、差、...

    《基本函数求导公式》由会员分享,可在线阅读,更多相关《基本函数求导公式(6页珍藏版)》请在人人文库网上搜索。

    1、基本初等函数求导公式 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12),(13)(14)(15)(16)函数的和、差、积、商的求导法则设,都可导,则(1) (2) (是常数)(3) (4) 反函数求导法则若函数在某区间内可导、单调且,则它的反函数在对应区间内也可导,且或复合函数求导法则 设,而且及都可导,则复合函数的导数为或. 双曲函数与反双曲函数的导数. 双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出 可以推出下表列出的公式: 一、一个方程的情形在第二章第六节中我们已经提出了隐函数的概念,并且指出了不经过显化直接由方程=0 (1。

    2、) 求它所确定的隐函数的方法。现在介绍隐函数存在定理,并根据多元复合函数的求导法来导出隐函数的导数公式.隐函数存在定理1 设函数在点的某一邻域内具有连续的偏导数,且,, ,则方程=0在点的某一邻域内恒能唯一确定一个单值连续且具有连续导数的函数,它满足条件,并有(2) 公式(2)就是隐函数的求导公式这个定理我们不证。现仅就公式(2)作如下推导。将方程(1)所确定的函数代入,得恒等式,其左端可以看作是的一个复合函数,求这个函数的全导数,由于恒等式两端求导后仍然恒等,即得由于连续,且,所以存在(x0,y0)的一个邻域,在这个邻域内,于是得如果的二阶偏导数也都连续,我们可以把等式(2)的两端看作的复合。

    3、函数而再一次求导,即得例1 验证方程在点(0,1)的某一邻域内能唯一确定一个单值且有连续导数、当=0时,的隐函数,并求这函数的一阶和二阶导数在=0的值。解 设,则,.因此由定理1可知,方程在点(0,1)的某邻域内能唯一确定一个单值且有连续导数、当=0时,的隐函数。下面求这函数的一阶和二阶导数=, ; =。隐函数存在定理还可以推广到多元函数.既然一个二元方程(1)可以确定一个一元隐函数,那末一个三元方程()=0 (3)就有可能确定一个二元隐函数。与定理1一样,我们同样可以由三元函数()的性质来断定由方程()=0所确定的二元函数=的存在,以及这个函数的性质。这就是下面的定理。隐函数存在定理2 设函。

    4、数()在点的某一邻域内具有连续的偏导数,且,则方程()=0在点的某一邻域内恒能唯一确定一个单值连续且具有连续偏导数的函数,它满足条件,并有=,=. (4)这个定理我们不证.与定理1类似,仅就公式(4)作如下推导.由于 (, )0,将上式两端分别对和求导,应用复合函数求导法则得+=0, +=0。因为连续,且,所以存在点的一个邻域,在这个邻域内0,于是得=,=。 例2 设,求解 设() =,则=2, =.应用公式(4),得=。再一次对求偏导数,得二、方程组的情形下面我们将隐函数存在定理作另一方面的推广。我们不仅增加方程中变量的个数。而且增加方程的个数,例如,考虑方程组(5)这时,在四个变量中,一般。

    5、只能有两个变量独立变化,因此方程组(5)就有可能确定两个二元函数。在这种情形下,我们可以由函数、的性质来断定由方程组(5)所确定的两个二元函数的存在,以及它们的性质。我们有下面的定理。隐函数存在定理3 设函数、在点的某一邻域内具有对各个变量的连续偏导数,又,,且偏导数所组成的函数行列式(或称雅可比(Jacobi)式):=在点不等于零,则方程组,在点的某一邻域内恒能唯一确定一组单值连续且具有连续偏导数的函数,它满足条件,并有(6)这个定理我们不证. 例3 设,求,和.解 此题可直接利用公式(6),但也可依照推导公式(6)的方法来求解。下面我们利用后一种方法来做。将所给方程的两边对求导并移项,得在的条件下,将所给方程的两边对求导,用同样方法在的条件下可得。

    展开全文
  • 函数求导公式_反函数求导公式

    千次阅读 2020-12-20 14:37:48
    函数求导公式2020-09-12 08:55:01文/张敏反函数的导数是原函数导数的倒数。求y=arcsinx的导函数,反函数的导数就是原函数导数的倒数。首先,函数y=arcsinx的反函数为x=siny,所以:y‘=1/sin’y=1/cosy,因为x=...

    反函数求导公式2020-09-12 08:55:01文/张敏

    反函数的导数是原函数导数的倒数。求y=arcsinx的导函数,反函数的导数就是原函数导数的倒数。首先,函数y=arcsinx的反函数为x=siny,所以:y‘=1/sin’y=1/cosy,因为x=siny,所以cosy=√1-x2,所以y‘=1/√1-x2。

    反函数性质

    (1)函数存在反函数的充要条件是,函数的定义域与值域是一一映射;

    (2)一个函数与它的反函数在相应区间上单调性一致;

    (3)大部分偶函数不存在反函数(当函数y=f(x), 定义域是{0} 且 f(x)=C (其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} )。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。

    (4)一段连续的函数的单调性在对应区间内具有一致性;

    (5)严增(减)的函数一定有严格增(减)的反函数;

    (6)反函数是相互的且具有唯一性;

    (7)定义域、值域相反对应法则互逆(三反)

    原函数

    已知函数f(x)是一个定义在某区间的函数,如果存在可导函数F(x),使得在该区间内的任一点都有dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。

    展开全文
  • 大学符合函数求导公式有哪些?下文有途网小编给大家整理了复合函数的求导公式及法则,供参考!复合函数求导公式复合函数求导法则证法一:先证明个引理f(x)在点x0可导的充要条件是在x0的某邻域U(x0)内,存在一个在点...

    复合函数如何求导?大学符合函数求导公式有哪些?下文有途网小编给大家整理了复合函数的求导公式及法则,供参考!

    复合函数求导公式

    复合函数求导法则

    证法一:先证明个引理

    f(x)在点x0可导的充要条件是在x0的某邻域U(x0)内,存在一个在点x0连续的函数H(x),使f(x)-f(x0)=H(x)(x-x0)从而f'(x0)=H(x0)

    证明:设f(x)在x0可导,令 H(x)=[f(x)-f(x0)]/(x-x0),x∈U'(x0)(x0去心邻域);H(x)=f'(x0),x=x0

    因lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=f'(x0)=H(x0)

    所以H(x)在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)

    反之,设存在H(x),x∈U(x0),它在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)

    因存在极限lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=lim(x->x0)f'(x)=H(x0)

    所以f(x)在点x0可导,且f'(x0)=H(x0)

    引理证毕。

    设u=φ(x)在点u0可导,y=f(u)在点u0=φ(x0)可导,则复合函数F(x)=f(φ(x))在x0可导,且F'(x0)=f'(u0)φ'(x0)=f'(φ(x0))φ'(x0)

    证明:由f(u)在u0可导,由引理必要性,存在一个在点u0连续的函数H(u),使f'(u0)=H(u0),且f(u)-f(u0)=H(u)(u-u0)

    又由u=φ(x)在x0可导,同理存在一个在点x0连续函数G(x),使φ'(x0)=G(x0),且φ(x)-φ(x0)=G(x)(x-x0)

    于是就有,f(φ(x))-f(φ(x0))=H(φ(x))(φ(x)-φ(x0))=H(φ(x))G(x)(x-x0)

    因为φ,G在x0连续,H在u0=φ(x0)连续,因此H(φ(x))G(x)在x0连续,再由引理的充分性可知F(x)在x0可导,且

    F'(x0)=f'(u0)φ'(x0)=f'(φ(x0))φ'(x0)

    证法二:y=f(u)在点u可导,u=g(x)在点x可导,则复合函数y=f(g(x))在点x0可导,且dy/dx=(dy/du)*(du/dx)

    证明:因为y=f(u)在u可导,则lim(Δu->0)Δy/Δu=f'(u)或Δy/Δu=f'(u)+α(lim(Δu->0)α=0)

    当Δu≠0,用Δu乘等式两边得,Δy=f'(u)Δu+αΔu

    但当Δu=0时,Δy=f(u+Δu)-f(u)=0,故上等式还是成立。

    又因为Δx≠0,用Δx除以等式两边,且求Δx->0的极限,得

    dy/dx=lim(Δx->0)Δy/Δx=lim(Δx->0)[f'(u)Δu+αΔu]/Δx=f'(u)lim(Δx->0)Δu/Δx+lim(Δx->0)αΔu/Δx

    又g(x)在x处连续(因为它可导),故当Δx->0时,有Δu=g(x+Δx)-g(x)->0

    则lim(Δx->0)α=0

    最终有dy/dx=(dy/du)*(du/dx)

    展开全文
  • 宜城教育资源网www.ychedu.com复合函数求导公式大全_复合函数求导法则_复合函数求导经典例题_复合函数求导导学案复合函数求导导学案定义编辑设函数Y=f(u)的定义域为D,函数u=φ(x)的值域为Z,如果D∩Z,则y通过u构成...

    宜城教育资源网www.ychedu.com复合函数求导公式大全_复合函数求导法则_复合函数求导经典例题_复合函数求导导学案复合函数求导导学案定义编辑设函数Y=f(u)的定义域为D,函数u=φ(x)的值域为Z,如果D∩Z,则y通过u构成x的函数,称为x的复合函数,记作Y=f[φ(x)]。x为自变量,y为因变量,而u称为中间变量。如等都是复合函数。而就不是复合函数,因为任何x都不能使y有意义。由此可见,不是任何两个函数放在一起都能构成一个复合函数。复合函数通俗地说就是函数套函数,是把几个简单的函数复合为一个较为复杂的函数。复合函数中不一定只含有两个函数,有时可能有两个以上,如y=f(u),u=φ(v),v=ψ(x),则函数y=f{φ[ψ(x)]}是x的复合函数,u、v都是中间变量。[2]定义域编辑若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是D={x|x∈A,且g(x)∈B}综合考虑各部分的x的取值范围,取他们的交集。求函数的定义域主要应考虑以下几点:⑴当为整式或奇次根式时,R的值域;⑵当为偶次根式时,被开方数不小于0(即≥0);⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;⑷当为指数式时,对零指数幂或负整数指数幂,底不为0(如,中)。⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。⑹分段函数的定义域是各段上自变量的取值集合的并集。⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。⑼对数函数的真数必须大于零,底数大于零且不等于1。⑽三角函数中的切割函数要注意对角变量的限制。[3]周期性编辑设y=f(u)的最小正周期为T1,μ=φ(x)的最小正周期为T2,则y=f(μ)的最小正周期为T1*T2,任一周期可表示为k*T1*T2(k属于R+).单调(增减)性编辑决定因素依y=f(u),μ=φ(x)的单调性来决定。即"增+增=增;减+减=增;增+减=减;减+增=减",可以简化为"同增异减"。基本步骤判断复合函数的单调性的步骤如下:⑴求复合函数的定义域;⑵将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数);⑶判断每个常见函数的单调性;⑷将中间变量的取值范围转化为自变量的取值范围;⑸求出复合函数的单调性。例题例如:讨论函数y=的单调性。解:函数定义域为R;令u=x2-4x+3,y=0.8u;指数函数y=0.8u在(-∞,+∞)上是减函数;u=x2-4x+3在(-∞,2]上是减函数,在[2,+∞)上是增函数;∴函数y=在(-∞,2]上是增函数,在[2,+∞)上是减函数。复合函数求导编辑规则复合函数求导的前提:复合函数本身及所含函数都可导。法则1:设u=g(x),对f(u)求导得:f'(x)=f'(u)*g'(x);法则2:设u=g(x),a=p(u),对f(a)求导得:f'(x)=f'(a)*p'(u)*g'(x);复合函数的导数应用举例1、求:函数f(x)=(3x+2)3+3的导数。解:设u=g(x)=3x+2;f(u)=u3+3;f'(u)=3u2=3(3x+2)2;g'(x)=3;f'(x)=f'(u)*g'(x)=3(3x+2)2*3=9(3x+2)2;2、求f(x)=的导数。解:设u=g(x)=x-4,a=p(u)=u2+25f(a)=;f'(a)==;p'(u)=2u=2(x-4);g'(x)=1;f'(x)=f'(a)*p'(u)*g'(x)==.复合函数求导法则链式法则(英文chainrule)是微积分中的求导法则,用以求一个复合函数的导数。所谓的复合函数,是指以一个函数作为另一个函数的自变量。如设f(x)=3x,g(x)=3x+3,g(f(x))就是一个复合函数,并且g′(f(x))=3链式法则(chainrule)若h(a)=f(g(x))则h'(a)=f'(g(x))g'(x)链式法则用文字描述,就是"由两个函数凑起来的复合函数,其导数等于里函数代入外函数的值之导数,乘以里边函数的导数。"证明证法一:先证明个引理f(x)在点x0可导的充要条件是在x0的某邻域U(x0)内,存在一个在点x0连续的函数H(x),使f(x)-f(x0)=H(x)(x-x0)从而f'(x0)=H(x0)证明:设f(x)在x0可导,令H(x)=[f(x)-f(x0)]/(x-x0),x∈U'(x0)(x0去心邻域);H(x)=f'(x0),x=x0因lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=f'(x0)=H(x0)所以H(x)在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)反之,设存在H(x),x∈U(x0),它在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)因存在极限lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=lim(x->x0)f'(x)=H(x0)所以f(x)在点x0可导,且f'(x0)=H(x0)引理证毕。设u=φ(x)在点u0可导,y=f(u)在点u0=φ(x0)可导,则复合函数F(x)=f(φ(x))在x0可导,且F'(x0)=f'(u0)φ'(x0)=f'(φ(x0))φ'(x0)证明:由f(u)在u0可导,由引理必要性,存在一个在点u0连续的函数H(u),使f'(u0)=H(u0),且f(u)-f(u0)=H(u)(u-u0)又由u=φ(x)在x0可导,同理存在一个在点x0连续函数G(x),使φ'(x0)=G(x0),且φ(x)-φ(x0)=G(x)(x-x0)于是就有,f(φ(x))-f(φ(x0))=H(φ(x))(φ(x)-φ(x0))=H(φ(x))G(x)(x-x0)因为φ,G在x0连续,H在u0=φ(x0)连续,因此H(φ(x))G(x)在x0连续,再由引理的充分性可知F(x)在x0可导,且F'(x0)=f'(u0)φ'(x0)=f'(φ(x0))φ'(x0)证法二:y=f(u)在点u可导,u=g(x)在点x可导,则复合函数y=f(g(x))在点x0可导,且dy/dx=(dy/du)*(du/dx)证明:因为y=f(u)在u可导,则lim(Δu->0)Δy/Δu=f'(u)或Δy/Δu=f'(u)+α(lim(Δu->0)α=0)当Δu≠0,用Δu乘等式两边得,Δy=f'(u)Δu+αΔu但当Δu=0时,Δy=f(u+Δu)-f(u)=0,故上等式还是成立。又因为Δx≠0,用Δx除以等式两边,且求Δx->0的极限,得dy/dx=lim(Δx->0)Δy/Δx=lim(Δx->0)[f'(u)Δu+αΔu]/Δx=f'(u)lim(Δx->0)Δu/Δx+lim(Δx->0)αΔu/Δx又g(x)在x处连续(因为它可导),故当Δx->0时,有Δu=g(x+Δx)-g(x)->0则lim(Δx->0)α=0最终有dy/dx=(dy/du)*(du/dx) 宜城教育资源网www.ychedu.com

    展开全文
  • 复合函数求导公式有哪些2018-08-01 17:24:23文/丁雪竹有很多的同学是非常的想知道,复合函数求导公式是什么,小编整理了相关信息,希望会对大家有所帮助!复合函数如何求导规则:1、设u=g(x),对f(u)求导得:f'(x)=f...
  • 一、反函数的导数设x在间ix假定x=ϕ(y)在iy内单调、可导,而且ϕ'(y)≠0,则反函数y=f(x)=ϕ(y)是直接函数,y=f(x)是它的反函数,={x|x=ϕ(y),y∈iy}内也是单调、可导的,而且f'(x)=1ϕ'(y)*:∀x∈ixx,给于是x以...
  • 函数求导公式

    千次阅读 2018-03-18 20:09:08
  • 基本初等函数求导公式与微分公式.(C ) ' 0 ( x ) ' x 1 (ax)' ax lna (e x ) ' e x dC 0 d ( x ) x 1dx d(ax) ax lnxdx d (e x ) e x dx
  • 026 三角函数求导公式推导

    千次阅读 2017-10-01 11:09:31
    026 三角函数求导公式推导
  • 反函数的求导法则是:反函数的导数是原函数导数的倒数。...反函数求导1、反函数的导数就是原函数导数的倒数。2、设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的...
  • 信息举报时间:2021-01-14 本页为您甄选多篇描写分式复合函数求导公式大全,分式复合函数求导公式大全精选,分式复合函数求导公式大全大全,有议论,叙事 ,想象等形式。文章字数有400字、600字、800字....复合函数...
  • 二元函数求导公式_多元隐函数求导

    千次阅读 2021-01-09 14:56:19
    但不是所有的方程式都能确定一个函数,也不能保证这个函数是连续的和可以求导的。例如,由于x,y,z无论取什么实数都不满足这个方程,从而这个方程不能确定任何实函数。原来我们讲一元函数的隐函数...
  • 反三角函数求导公式反正弦函数的求导:(arcsinx)'=1/√(1-x^2)反余弦函数的求导:(arccosx)'=-1/√(1-x^2)反正切函数的求导:(arctanx)'=1/(1+x^2)反余切函数的求导:(arccotx)'=-1/(1+x^2)反三角函数遵循的规则为了...
  • 本篇就来讲一讲这个基本方法,掌握了它各种多元复合函数求导,包括各种隐函数求导,无论多复杂都手到擒来。一. 基本步骤非常简单:(1)先理清函数关系,画出函数关系图;(2)按照规则写出式子(有几条路径就是几...
  • 常见函数求导公式

    2021-03-15 10:25:33
    求导公式推导
  • 函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠Ø,那么...复合函数如何求导f[g(x)]中,设g(x)=u,则f[g(x)]=f(u),从而(公式):f'[g(x)]=f'(u)*g'(x)呵呵,我们的老师写在黑板...
  • 有许多的同学是非常的想了解,复合函数求导公式是什么,小编整理了相关信息,期待会对大伙有所帮助!复合函数怎么求导规则:1、设u=g(x),对f(u)求导得:f'(x)=f'(u)*g'(x);2、设u=g(x),a=p(u),对f(a)求导得:f'(x...
  • 【长篇符咒预警~慎点!回答本题,纯粹是因为这题勾起了我由来已久欲一吐为快之槽……请原谅我的无聊...定理10.1.15(复合函数求导——链式法则):设 , 是 的极限点,并设 是 的极限点。设 是在 处可微的函数且 , ...
  • o6paT皿aa中,K”抓] 函数的完全逆象,即对给定函数值域的每个元素y都对应所给函数定义域的一切那样的元素的集合,使它们被映成y若用f表示给定的函数,则用f一‘表示f的反函数.这样,若f:X~Y且Yf为f的值域,玛CY,则...
  • _01常函数与幂函数求导公式_视频讲解_1、幂函数导数求导公式推导举例____02基本初等函数求导公式_视频讲解_2、基本初等函数八个导数公式(要熟记)3、利用导数公式求函数导数举例说明(1)所求函数符合导数公式,则...
  • sigmoid函数: 对于X求导推导:
  • 以前背过正弦函数求导公式,就是sin'x = cos x,可是总也没推导过。这两天看了很多网上的推导做法,简直是误人子弟。含糊不清的,曲线救国的,各种做法满天飞,也是好笑。在这儿,我尽量地再仔细地推导一遍,本着...
  • 函数求导公式

    万次阅读 2018-04-22 08:42:34
    函数F(x,y)F(x,y)F(x,y)在点P(x0,y0)P(x0,y0)P(x_0,y_0)的某一邻域内具有连续的偏导数,且F(x0,y0)=0,Fx(x0,y0)≠0F(x0,y0)=0,Fx(x0,y0)≠0F(x_0,y_0)=0,F_x(x_0,y_0) \neq 0,则方程F(x,y)=0F(x,y)=0F(x,y)=0在点...
  • 基本函数求导公式

    2019-08-06 11:12:29
  • 幂指函数求导公式——备忘

    千次阅读 2017-09-10 20:51:41
    前言今天做题的时候发现一个奇怪函数求导,形式如下: y=f(x)g(x)求y′ y = f(x)^{g(x)} \\ 求 y^{'} 在网上找了半天才找到解法,所以备忘一下。求导方法 参考文献[1] 幂指函数求导
  • 反三角函数定义域y=arcsin(x),定义域[-1,1]y=arccos(x),定义域[-1,1]y=arctan(x),定义域(-∞, ∞)y=arccot(x),定义域(-∞, ∞)sin(arcsin x)=x,定义域[-1,1]反三角函数公式大全两角和公式sin(A B) = ...
  • 原标题:算法中的微积分:5大函数求导公式让你在面试中脱颖而出全文共3893字,预计学习时长10分钟 图源:unsplash就业市场上, 机器学习工程师总是受到质疑,人们不相信他们数学功底深厚。事实上,所有机器学习算法...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 1,019
精华内容 407
关键字:

函数求导公式