拉普拉斯变换 订阅
拉普拉斯变换是工程数学中常用的一种积分变换,又名拉氏变换。 [1]  拉氏变换是一个线性变换,可将一个有参数实数t(t≥ 0)的函数转换为一个参数为复数s的函数。拉普拉斯变换在许多工程技术和科学研究领域中有着广泛的应用,特别是在力学系统、电学系统、自动控制系统、可靠性系统以及随机服务系统等系统科学中都起着重要作用。 展开全文
拉普拉斯变换是工程数学中常用的一种积分变换,又名拉氏变换。 [1]  拉氏变换是一个线性变换,可将一个有参数实数t(t≥ 0)的函数转换为一个参数为复数s的函数。拉普拉斯变换在许多工程技术和科学研究领域中有着广泛的应用,特别是在力学系统、电学系统、自动控制系统、可靠性系统以及随机服务系统等系统科学中都起着重要作用。
信息
提出时间
约1812年
别    称
拉氏变换
提出者
拉普拉斯
应用学科
数学、工程数学
中文名
拉普拉斯变换
适用领域范围
信号系统、电子工程、轨道交通、自动化等
外文名
Laplace Transform
拉普拉斯变换公式概念
拉普拉斯变换 [2]  是对于t>=0函数值不为零的连续时间函数x(t)通过关系式 (式中-st为自然对数底e的指数)变换为复变量s的函数X(s)。它也是时间函数x(t)的“复频域”表示方式。据此,在“电路分析”中,元件的伏安关系可以在复频域中进行表示,即电阻元件:V=RI,电感元件:V=sLI,电容元件:I=sCV。如果用电阻R与电容C串联,并在电容两端引出电压作为输出,那么就可用“分压公式”得出该系统的传递函数为H(s)=(1/RC)/(s+(1/RC)),于是响应的拉普拉斯变换Y(s)就等于激励的拉普拉斯变换X(s)与传递函数H(s)的乘积,即Y(s)=X(s)H(s)如果定义:f(t)是一个关于t的函数,使得当t<0时候,f(t)=0;s是一个复变量; 是一个运算符号,它代表对其对象进行拉普拉斯积分int_0^infty e' dt;F(s)是f(t)的拉普拉斯变换结果。则 f(t)的拉普拉斯变换由下列式子给出: 。拉普拉斯逆变换是已知F(s) 求解 f(t) 的过程。用符号 表示。拉普拉斯逆变换的公式是:对于所有的t>0,f(t)= mathcal ^ left=frac int_ ^ F(s)' e'ds,c' 是收敛区间的横坐标值,是一个实常数且大于所有F(s)' 的个别点的实部值。为简化计算而建立的实变量函数和复变量函数间的一种函数变换。对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域中求出同样的结果在计算上容易得多。拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化。在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。引入拉普拉斯变换的一个主要优点,是可采用传递函数代替微分方程来描述系统的特性。这就为采用直观和简便的图解方法来确定控制系统的整个特性(见信号流程图、动态结构图)、分析控制系统的运动过程(见奈奎斯特稳定判据、根轨迹法),以及综合控制系统的校正装置(见控制系统校正方法)提供了可能性。 用 f(t)表示实变量t的一个函数,F(s)表示它的拉普拉斯变换,它是复变量s=σ+j&owega;的一个函数,其中σ和&owega; 均为实变数,j2=-1。F(s)和f(t)间的关系由下面定义的积分所确定:如果对于实部σ >σc的所有s值上述积分均存在,而对σ ≤σc时积分不存在,便称 σc为f(t)的收敛系数。对给定的实变量函数 f(t),只有当σc为有限值时,其拉普拉斯变换F(s)才存在。习惯上,常称F(s)为f(t)的象函数,记为F(s)=L[f(t)];称f(t)为F(s)的原函数,记为f(t)=L-1[F(s)]。函数变换对和运算变换性质  利用定义积分,很容易建立起原函数 f(t)和象函数 F(s)间的变换对,以及f(t)在实数域内的运算与F(s)在复数域内的运算间的对应关系。表1和表2分别列出了最常用的一些函数变换对和运算变换性质。拉普拉斯变化的存在性:为使F(s)存在,积分式必须收敛。有如下定理:如因果函数f(t)满足:(1)在有限区间可积,(2)存在σ0使|f(t)|e-σt在t→∞时的极限为0,则对于所有σ大于σ0,拉普拉斯积分式绝对且一致收敛。
收起全文
精华内容
下载资源
问答

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 12,242
精华内容 4,896
关键字:

拉普拉斯变换