-
大整数乘法
2015-05-02 19:44:44大整数乘法这算是分治的运用,在java中有个大数类,用着非常方便,但是在c/c++中就没有那么容易了,
一个整数最多也才2^64两个数字的加法或减法我们可以用数组模拟运算一遍,轻松搞定,但是两个数字的乘法呢,
比如给你这样两个数字:
A= 1234567898765432145673;
B=23456789463784628596936285;
现要求求出c=A*B, 好了问题来了怎么用算法实现呢,数组模拟运算效率太低了,一个n位和m位的数字相乘最少进行n*m次乘法运算,
在说如何运算前,我先说说如何减少乘法运算次数:
数学家高斯曾经说 (a1+b1*i)*(a2+b2*i)这样的两个复数,他可以用三次乘法运算计算出结果,
(a1+b1*i)*(a2+b2*i)=a1*b2 + (a1*b2 + b1*a2)*i - b1*b2 ,仔细一看这不是有4次乘法运算么,
其实他用了一个小优化,假设不是复数 (a1+b1)*(a2+b2) = a1*b2 + (a1*b2 + b1*a2)+ b1*b2
那么 (a1*b2 + b1*a2) = (a1+b1)*(a2+b2) - a1*b2 - b1*b2 ,
所以就可以(a1+b1*i)*(a2+b2*i) = a1*b2 + ((a1+b1)*(a2+b2) - a1*b2 - b1*b2) *i -b1*b2 ;三次乘法,got;
说了这么多这对我们做大数的运算有什么作用呢:
是这样的对于两个大数相乘我们肯定是采用分治的方法
数字A= A1 * 10^(n/2) + A2;
B=B1 * 10^(n/2) + B2; (当两个数字不一样长时在断的前面补0)
==>> A*B = A1 * B1 * 10^n +( A1* B2 + A2*B1 ) * 10^(n/2) + A2*B2
分治的思想是:
getans(A, B)
if ( A.length == 1 and B.length == 1 )
return A*B;
else
return getans(A1, B1)*10^n + (getans(A1, B1) + getans(A1, B2) )* 10^(n/2) + getans(B1, B2);
看样子并不难的样子但是我么来算算时间复杂度,还是以乘法作为基本操作(以加法作为基本操作求出结果和乘法一样):
O(1) = 1;
O(n) = 4O(n/2);
推到过程就不写了,但是最后算出来平均时间复杂度是O(n^2),和直接用数组模拟运算的复杂度是一样的,花这么大的力气写个66的代码并不6,
所以就优化,就用高斯的办法来优化,虽然加法次数增加了,但是最终结果是怎样的呢,推到一地啊就知道了:
换一个姿势后就有了:
数字A= A1 * 10^(n/2) + A2;
B=B1 * 10^(n/2) + B2; (当两个数字不一样长时在断的前面补0)
==>> A*B = A1 * B1 * 10^n +( A*B - A1 * B1 * 10^n - A2*B2 ) * 10^(n/2) + A2*B2;
代码就变成下面的样子:
getans(A, B)
if ( A.length == 1 and B.length == 1 )
return A*B;
else
X <— getans(A1, B1)*10^n ;
Y <— getans(A2, B2) ;
return X + ( getans(A,B) - X - Y )*10^(n/2) + Y;
在来算时间复杂度就变成了:
O(1) = 1;
O(n) = 3*O(n/2);
最后平均时间复杂度就变成了O(n^( log2,3) )了这不就小于O(n^2) 了,
(平均时间复杂度的推导过程涉及到数学变换,所以没有写,这一个递推式的求法很多书山也有讲)
代码借鉴于:http://blog.csdn.net/vsooda/article/details/8543351,感觉他写得很清晰了:
这里我说明一下大家可能会有的一个疑问:为什么:取4位为一节,是因为9999 * 9999 = 99980001 < 10^9 ,
如果取5位那么将会有99999 * 99999 的情况发生,就会超出int 类型的范围,
为什么不一取1位作为一节,当然是这样需要的递归次数更多,效率不如咯,
so,有了下面的模板,其中重载了输入,输出流,大于小于等于等操作符,当然最重要的是 + - * / ^ % 等几个操作符
<span style="font-size:18px;">#include<iostream> #include<string> #include<iomanip> #include<algorithm> using namespace std; #define MAXN 9999 #define MAXSIZE 10 #define DLEN 4 class BigNum { private: int a[500]; //可以控制大数的位数 int len; //大数长度 public: BigNum(){ len = 1;memset(a,0,sizeof(a)); } //构造函数 BigNum(const int); //将一个int类型的变量转化为大数 BigNum(const char*); //将一个字符串类型的变量转化为大数 BigNum(const BigNum &); //拷贝构造函数 BigNum &operator=(const BigNum &); //重载赋值运算符,大数之间进行赋值运算 friend istream& operator>>(istream&, BigNum&); //重载输入运算符 friend ostream& operator<<(ostream&, BigNum&); //重载输出运算符 BigNum operator+(const BigNum &) const; //重载加法运算符,两个大数之间的相加运算 BigNum operator-(const BigNum &) const; //重载减法运算符,两个大数之间的相减运算 BigNum operator*(const BigNum &) const; //重载乘法运算符,两个大数之间的相乘运算 BigNum operator/(const int &) const; //重载除法运算符,大数对一个整数进行相除运算 BigNum operator^(const int &) const; //大数的n次方运算 int operator%(const int &) const; //大数对一个int类型的变量进行取模运算 bool operator>(const BigNum & T)const; //大数和另一个大数的大小比较 bool operator>(const int & t)const; //大数和一个int类型的变量的大小比较 void print(); //输出大数 }; BigNum::BigNum(const int b) //将一个int类型的变量转化为大数 { int c,d = b; len = 0; memset(a,0,sizeof(a)); while(d > MAXN) { c = d - (d / (MAXN + 1)) * (MAXN + 1); d = d / (MAXN + 1); a[len++] = c; } a[len++] = d; } BigNum::BigNum(const char*s) //将一个字符串类型的变量转化为大数 { int t,k,index,l,i; memset(a,0,sizeof(a)); l=strlen(s); len=l/DLEN; if(l%DLEN) len++; index=0; for(i=l-1;i>=0;i-=DLEN) { t=0; k=i-DLEN+1; if(k<0) k=0; for(int j=k;j<=i;j++) t=t*10+s[j]-'0'; a[index++]=t; } } BigNum::BigNum(const BigNum & T) : len(T.len) //拷贝构造函数 { int i; memset(a,0,sizeof(a)); for(i = 0 ; i < len ; i++) a[i] = T.a[i]; } BigNum & BigNum::operator=(const BigNum & n) //重载赋值运算符,大数之间进行赋值运算 { int i; len = n.len; memset(a,0,sizeof(a)); for(i = 0 ; i < len ; i++) a[i] = n.a[i]; return *this; } istream& operator>>(istream & in, BigNum & b) //重载输入运算符 { char ch[MAXSIZE*4]; int i = -1; in>>ch; int l=strlen(ch); int count=0,sum=0; for(i=l-1;i>=0;) { sum = 0; int t=1; for(int j=0;j<4&&i>=0;j++,i--,t*=10) { sum+=(ch[i]-'0')*t; } b.a[count]=sum; count++; } b.len =count++; return in; } ostream& operator<<(ostream& out, BigNum& b) //重载输出运算符 { int i; cout << b.a[b.len - 1]; for(i = b.len - 2 ; i >= 0 ; i--) { cout.width(DLEN); cout.fill('0'); cout << b.a[i]; } return out; } BigNum BigNum::operator+(const BigNum & T) const //两个大数之间的相加运算 { BigNum t(*this); int i,big; //位数 big = T.len > len ? T.len : len; for(i = 0 ; i < big ; i++) { t.a[i] +=T.a[i]; if(t.a[i] > MAXN) { t.a[i + 1]++; t.a[i] -=MAXN+1; } } if(t.a[big] != 0) t.len = big + 1; else t.len = big; return t; } BigNum BigNum::operator-(const BigNum & T) const //两个大数之间的相减运算 { int i,j,big; bool flag; BigNum t1,t2; if(*this>T) { t1=*this; t2=T; flag=0; } else { t1=T; t2=*this; flag=1; } big=t1.len; for(i = 0 ; i < big ; i++) { if(t1.a[i] < t2.a[i]) { j = i + 1; while(t1.a[j] == 0) j++; t1.a[j--]--; while(j > i) t1.a[j--] += MAXN; t1.a[i] += MAXN + 1 - t2.a[i]; } else t1.a[i] -= t2.a[i]; } t1.len = big; while(t1.a[t1.len - 1] == 0 && t1.len > 1) { t1.len--; big--; } if(flag) t1.a[big-1]=0-t1.a[big-1]; return t1; } BigNum BigNum::operator*(const BigNum & T) const //两个大数之间的相乘运算 { BigNum ret; int i,j,up; int temp,temp1; for(i = 0 ; i < len ; i++) { up = 0; for(j = 0 ; j < T.len ; j++) { temp = a[i] * T.a[j] + ret.a[i + j] + up; if(temp > MAXN) { temp1 = temp - temp / (MAXN + 1) * (MAXN + 1); up = temp / (MAXN + 1); ret.a[i + j] = temp1; } else { up = 0; ret.a[i + j] = temp; } } if(up != 0) ret.a[i + j] = up; } ret.len = i + j; while(ret.a[ret.len - 1] == 0 && ret.len > 1) ret.len--; return ret; } BigNum BigNum::operator/(const int & b) const //大数对一个整数进行相除运算 { BigNum ret; int i,down = 0; for(i = len - 1 ; i >= 0 ; i--) { ret.a[i] = (a[i] + down * (MAXN + 1)) / b; down = a[i] + down * (MAXN + 1) - ret.a[i] * b; } ret.len = len; while(ret.a[ret.len - 1] == 0 && ret.len > 1) ret.len--; return ret; } int BigNum::operator %(const int & b) const //大数对一个int类型的变量进行取模运算 { int i,d=0; for (i = len-1; i>=0; i--) { d = ((d * (MAXN+1))% b + a[i])% b; } return d; } BigNum BigNum::operator^(const int & n) const //大数的n次方运算 { BigNum t,ret(1); int i; if(n<0) exit(-1); if(n==0) return 1; if(n==1) return *this; int m=n; while(m>1) { t=*this; for( i=1;i<<1<=m;i<<=1) { t=t*t; } m-=i; ret=ret*t; if(m==1) ret=ret*(*this); } return ret; } bool BigNum::operator>(const BigNum & T) const //大数和另一个大数的大小比较 { int ln; if(len > T.len) return true; else if(len == T.len) { ln = len - 1; while(a[ln] == T.a[ln] && ln >= 0) ln--; if(ln >= 0 && a[ln] > T.a[ln]) return true; else return false; } else return false; } bool BigNum::operator >(const int & t) const //大数和一个int类型的变量的大小比较 { BigNum b(t); return *this>b; } void BigNum::print() //输出大数 { int i; cout << a[len - 1]; for(i = len - 2 ; i >= 0 ; i--) { cout.width(DLEN); cout.fill('0'); cout << a[i]; } cout << endl; } int main(void) { int i,n; BigNum x[101]; //定义大数的对象数组 x[0]=1; for(i=1;i<101;i++) x[i]=x[i-1]*(4*i-2)/(i+1); while(scanf("%d",&n)==1 && n!=-1) { x[n].print(); } } </span>
欢迎大神指正。。。