精华内容
下载资源
问答
  • RC电路

    2015-12-16 16:49:29
    RC电路 编辑 全称Resistance-Capacitance Circuits。一个 相移电路(RC电路)或称 RC滤波器、 RC网络, 是一个包含利用电压源、电流源驱使电阻器、电容器运作的电路。 中文名RC电路外文名Resistance-...

    RC电路

    编辑
    全称Resistance-Capacitance Circuits。一个 相移电路RC电路)或称 RC滤波器RC网络, 是一个包含利用电压源电流源驱使电阻器电容器运作的电路。
    中文名
    RC电路
    外文名
    Resistance-Capacitance Circuits
    别    称
    相移电路、RC滤波器、 RC网络
    应用学科
    物理
    适用领域范围
    计算机电路

    一个最简单的RC电路是由一个电容器和一个电阻器组成的,称为一阶RC电路。
    先从数学上最简单的情形来看RC电路的特性。假定RC电路接在一个电压值为
    的直流电源上很长的时间了,电容上的电压已与电源相等(关于充电的过程在后面讲解),在某时刻
    突然将电阻左端S接地,电容上进入了放电状态。理论分析时,将时刻
    取作时间的零点。
    依据KVL定律,建立电路方程:
    初值条件是
    这是一阶齐次微分方程,其通解为:
    ,
    代入原方程后得:
    特征方程为:
    特征根为:
    根据
    得:
    ;
    故满足初值的微分方程的解为:
    .
    可以看出电容上电压衰减的快慢取决于指数中
    的大小,其大小仅取决于电路结构与元件的参数。
    当电阻的单位是Ω,电容的单位是F时,乘积RC的单位为秒(s),用
    表示。
    则电容电压可记为
    0
    时间常数是电容上电压下降到初始值的1/e=36.8% 经历的时间。
    t =4t时 ,电容电压已经很小,一般认为电路进入稳态
    以上称为RC一阶电路的零输入响应。

    (1)RC 串联电路
    电路的特点:由于有电容存在不能流过直流电流,电阻和电容都对电流存在阻碍作用,其总阻抗由电阻和容抗确定,总阻抗随频率变化而变化。RC 串联有一个转折频率: f0=1/2πR1C1  当输入信号频率大于 f0 时,整个 RC 串联电路总的阻抗基本不变了,其大小等于 R1。
    (2)RC 并联电路
    RC 并联电路既可通过直流又可通过交流信号。它和 RC 串联电路有着同样的转折频率:f0=1/2πR1C1。 当输入信号频率小于f0时,信号相对电路为直流,电路的总阻抗等于 R1;当输入信号频率大于f0 时 C1 的容抗相对很小,总阻抗为电阻阻值并上电容容抗。当频率高到一定程度后总阻抗为 0。
    (3)RC 串并联电路
    RC 串并联电路存在两个转折频率f01 和 f02:  f01=1/2πR2C1, f02=1/2πC1*[R1*R2/(R1+R2)]  当信号频率低于 f01 时,C1 相当于开路,该电路总阻抗为 R1+R2。
    当信号频率高于 f02 时,C1 相当于短路,此时电路总阻抗为 R1。
    当信号频率高于 f01 低于 f02 时,该电路总阻抗在 R1+R2 到R1之间变化。

    暂态响应编辑

    根据电路中外加激励的情况,将电路暂态过程中的响应分三种;
    1.:零状态响应:换路后电路中的储能元件无初始储能,仅由激励电源维持的响应。
    1:零输入响应:换路后电路中无独立电源,仅由储能元件初始储能维持的响应。
    3:全响应:换路后,电路中既存在独立的激励电源,储能元件又有初始储能,它们共同维持的响应。
    参考资料
    • 1.  邱关源.电路:高等教育出版社,2006年:141-142
    展开全文
  • RC电路(积分电路,微分电路)

    万次阅读 多人点赞 2016-12-01 19:46:01
    RC电路是电阻器电容器电路(RC电路)或者RC过滤器,RC网络是电路a和电容器驾驶的组成由电阻器电压或当前来源.一次RC电路由一个电阻器和一台电容器组成,是RC电路的简单例子。RC电路在模拟电路、脉冲数字电路中得到广泛...
    RC电路是电阻电容器电路(RC电路)或者RC过滤器,RC网络是电路a和电容器驾驶的组成由电阻器电压或当前来源.一次RC电路由一个电阻器和一台电容器组成,是RC电路的简单例子。RC电路在模拟电路、脉冲数字电路中得到广泛的应用。

    目录

    • RC电路的分类
    • RC电路的典型应用
    • RC实用电路
    RC电路

    RC电路的分类

    •   (1)RC 串联电路

      RC 串联电路

        电路的特点:由于有电容存在不能流过直流电流,电阻和电容都对电流存在阻碍作用,其总阻抗由电阻和容抗确定,总阻抗随频率变化而变化。RC 串联有一个转折频率: f0=1/2πR1C1

        当输入信号频率大于 f0 时,整个 RC 串联电路总的阻抗基本不变了,其大小等于 R1。

        (2)RC 并联电路

      RC 并联电路

        RC 并联电路既可通过直流又可通过交流信号。它和 RC 串联电路有着同样的转折频率:f0=1/2πR1C1。 当输入信号频率小于f0时,信号相对电路为直流,电路的总阻抗等于 R1;当输入信号频率大于f0 时 C1 的容抗相对很小,总阻抗为电阻阻值并上电容容抗。当频率高到一定程度后总阻抗为 0。

        (3)RC 串并联电路

      RC 串并联电路

        RC 串并联电路存在两个转折频率f01 和 f02:

        f01=1/2πR2C1, f02=1/2πC1*[R1*R2/(R1+R2)]

        当信号频率低于 f01 时,C1 相当于开路,该电路总阻抗为 R1+R2。

        当信号频率高于 f02 时,C1 相当于短路,此时电路总阻抗为 R1。

        当信号频率高于 f01 低于 f02 时,该电路总阻抗在 R1+R2 到R1之间变化。

     
     
     
    积分电路的作用是:消减变化量,突出不变量。RC电路的积分条件:RC≥Tk,Tk是脉冲周期,积分电路可将矩形脉冲波转换为锯齿波或三角波,还可将锯齿波转换为抛物波。电路原理很简单,都是基于电容的冲放电原理,这里就不详细说了,这里要提的是电路的时间常数R*C,构成积分电路的条件是电路的时间常数必须要大于或等于10倍于输入波形的宽度。
    微分电路的作用是:消减不变量,突出变化量。微分电路可把矩形波转换为尖脉冲波,电路的输出波形只反映输入波形的突变部微分电路分,即只有输入波形发生突变的瞬间才有输出。而对恒定部分则没有输出。输出的尖脉冲波形的宽度与R*C有关(即电路的时间常数),R*C越小,尖脉冲波形越尖,反之则宽。此电路的R*C必须远远少于输入波形的宽度,否则就失去了波形变换的作用,变为一般的RC耦合电路了,一般R*C少于或等于输入波形宽度的微分电路1/10就可以了。

     

    在模拟及脉冲数字电路中,常常用到由电阻R和电容C组成的RC电路,在些电路中,电阻R和电容C的取值不同、输入和输出关系以及处理的波形之间的关系,产生了RC电路的不同应用,下面分别谈谈微分电路、积分电路、耦合电路、脉冲分压器以及滤波电路。

      1. RC微分电路

      如图1所示,电阻R和电容C串联后接入输入信号VI,由电阻R输出信号VO,当RC 数值与输入方波宽度tW之间满足:RC<<tW,这种电路就称为微分电路。在 R两端(输出端)得到正、负相间的尖脉冲,而且发生在方波的上升沿和下降沿,如图2 所示。

      

      

      在t=t1时,VI由0→Vm,因电容上电压不能突变(来不及充电,相当于短路,VC=0),输入电压VI全降在电阻R上,即VO=VR=VI=V m 。随后(t》t1),电容C的电压按指数规律快速充电上升,输出电压随之按指数规律下降(因VO=VI-VC=Vm-VC),经过大约3τ(τ=R × C)时,VCVm,VO0,τ(RC)的值愈小,此过程愈快,输出正脉冲愈窄。

      t=t2时,VI由Vm→0,相当于输入端被短路,电容原先充有左正右负的电压V m开始按指数规律经电阻R放电,刚开始,电容C来不及放电,他的左端(正电)接地,所以VO=-Vm,之后VO随电容的放电也按指数规律减小,同样经过大约3τ后,放电完毕,输出一个负脉冲。

      只要脉冲宽度tW>(5~10)τ,在tW时间内,电容C已完成充电或放电(约需3 τ),输出端就能输出正负尖脉冲,才能成为微分电路,因而电路的充放电时间常数τ必须满足:τ<(1/5~1/10)tW,这是微分电路的必要条件。

      由于输出波形VO与输入波形VI之间恰好符合微分运算的结果[VO=RC( dVI/dt)],即输出波形是取输入波形的变化部分。如果将VI按傅里叶级展开,进行微分运算的结果,也将是VO的表达式。他主要用于对复杂波形的分离和分频器,如从电视信号的复合同步脉冲分离出行同步脉冲和时钟的倍频应用。

      2. RC耦合电路

      图1中,如果电路时间常数τ(RC)>>tW,他将变成一个RC耦合电路。输出波形与输入波形一样。如图3所示。

      

      (1)在t=t1时,第一个方波到来,VI由0→Vm,因电容电压不能突变(VC=0),VO=VR=VI=Vm。

      (2)t1<t<t2时,因τ>>tW,电容C缓慢充电,VC缓慢上升为左正右负,V O=VR=VI-VC,VO缓慢下降。

      (3)t=t2时,VO由Vm→0,相当于输入端被短路,此时,VC已充有左正右负电压Δ[Δ=(VI/τ)×tW],经电阻R非常缓慢地放电。

      (4)t=t3时,因电容还来不及放完电,积累了一定电荷,第二个方波到来,电阻上的电压就不是Vm,而是VR=Vm-VC(VC≠0),这样第二个输出方波比第一个输出方波略微往下平移,第三个输出方波比第二个输出方波又略微往下平移,…,最后,当输出波形的正半周“面积”与负半周“面积”相等时,就达到了稳定状态。也就是电容在一个周期内充得的电荷与放掉的电荷相等时,输出波形就稳定不再平移,电容上的平均电压等于输入信号中电压的直流分量(利用C的隔直作用),把输入信号往下平移这个直流分量,便得到输出波形,起到传送输入信号的交流成分,因此是一个耦合电路。

      以上的微分电路与耦合电路,在电路形式上是一样的,关键是tW与τ的关系,下面比较一下τ与方波周期T(T》tW)不同时的结果,如图4所示。在这三种情形中,由于电容C的隔直作用,输出波形都是一个周期内正、负“面积”相等,即其平均值为0,不再含有直流成份。

      ①当τ>>T时,电容C的充放电非常缓慢,其输出波形近似理想方波,是理想耦合电路。

      ②当τ=T时,电容C有一定的充放电,其输出波形的平顶部分有一定的下降或上升,不是 理想方波。

      ③当τ<<T时,电容C在极短时间内(tW)已充放电完毕,因而输出波形为上下尖脉冲,是微分电路。

      

    3. RC积分电路

      如图5所示,电阻R和电容C串联接入输入信号VI,由电容C输出信号V0,当RC (τ)数值与输入方波宽度tW之间满足:τ》》tW,这种电路称为积分电路。在

      

      

      电容C两端(输出端)得到锯齿波电压,如图6所示。

      

      (3)t=t2时,VI由Vm→0,相当于输入端被短路,电容原先充有左正右负电压VI(VI《Vm)经R缓慢放电,VO(VC)按指数规律下降。

      这样,输出信号就是锯齿波,近似为三角形波,τ》》tW是本电路必要条件,因为他是在方波到来期间,电容只是缓慢充电,VC还未上升到Vm时,方波就消失,电容开始放电,以免电容电压出现一个稳定电压值,而且τ越大,锯齿波越接近三角波。输出波形是对输入波形积分运算的结果,他是突出输入信号的直流及缓变分量,降低输入信号的变化量。

      4. RC滤波电路(无源)

      在模拟电路,由RC组成的无源滤波电路中,根据电容的接法及大小主要可分为低通滤波电路(如图7)和高通滤波电路(如图8)。

      

      

      (1)在图7的低通滤波电路中,他跟积分电路有些相似(电容C都是并在输出端),但他们是应用在不同的电路功能上,积分电路主要是利用电容C充电时的积分作用,在输入方波情形下,来产生周期性的锯齿波(三角波),因此电容C及电阻R是根据方波的tW来选取,而低通滤波电路,是将较高频率的信号旁路掉(因XC=1/(2πfC),f较大时,XC较小,相当于短路),因而电容C的值是参照低频点的数值来确定,对于电源的滤波电路,理论上C值愈大愈好。

      (2)图8的高通滤波电路与微分电路或耦合电路形式相同。在脉冲数字电路中,因RC与脉宽tW的关系不同而区分为微分电路和耦合电路;在模拟电路,选择恰当的电容C值,就可以有选择性地让较高频的信号通过,而阻断直流及低频信号,如高音喇叭串接的电容,就是阻止中低音进入高音喇叭,以免烧坏。另一方面,在多级交流放大电路中,他也是一种耦合电路。

      5. RC脉冲分压器

      当需要将脉冲信号经电阻分压传到下一级时,由于电路中存在各种形式的电容,如寄生电容,他相当于在负载侧接有一负载电容(如图9),当输入一脉冲信号时,因电容CL的充电,电压不能突变,使输出波形前沿变坏,失真。为此,可在R1两端并接一加速电容 C1,这样组成一个RC脉冲分压器(如图10)。

      

      

      

      (1)t=0+时,电容视为短路,电流只流经C1,CL,VO由C1和CL分压得到:

      

      但是,任何信号源都有一定的内阻,以及一些电路的需要,通常采取过补偿的办法,如电视信号中,为突出传送图像的轮廓,采用勾边电路,就是通过加大C1的取值。

      求RC电路的放电时间为1分锺,电压从9V降到5v.放电电流为300mA左右,选择最佳的的R值和C值。

      RC电路的放电方程是:UC=US*e-t/RC,其中,US=9,UC=5,t=60,代入公式可求出时间常数RC的值,现在关键的就是要确定R和C的值了,它只能通过你所要求的放电电路来选择了,由放电电流公式:I=C*dU/dt,再将此公式代入上面的公式中可得:I=-US*C/RCe-t/RC,将C看成一个未知参数,然后作出I-t曲线,计算出该曲线与直线I=300所围成的面积,这个积分上下限为t=0-60,去使面积最小的C值就可.

    转载于http://blog.sina.com.cn/s/blog_710b9b8a0100wmor.html

    展开全文
  • RC电路全称Resistance-Capacitance Circuits。一个 相移电路(RC电路)或称 RC滤波器、 RC网络, 是一个包含利用电压源、电流源驱使电阻器、电容器运作的电路。一个简单的RC电路是由一个电容器和一个电阻器组成的,...
  • 串联RC的瞬态响应-串联RC电路的正弦响应MATLAB/Simulink
  • 串联RC的瞬态响应-串联RC电路的阶跃响应MATLAB/Simulink
  • 本文主要简单介绍了RC电路的应用
  • RC电路的应用总结

    2020-10-23 09:23:34
    RC电路在模拟电路、脉冲数字电路中得到广泛的应用,由于电路的形式以及信号源和R,C元件参数的不同,因而组成了RC电路的各种应用形式:微分电路、积分电路、耦合电路、滤波电路及脉冲分压器。
  • RC电路知识讲解

    万次阅读 多人点赞 2019-05-22 20:04:52
    RC电路是指由电阻R和电容C组成的电路,他是脉冲产生和整形电路中常用的电路。1.RC 1.RC充电电路 电源通过电阻给电容充电,由于一开始电容两端的电压为0,所以电压的电压都在电阻上,这时电流大,充电速度快。随着...

    RC电路是指由电阻R和电容C组成的电路,他是脉冲产生和整形电路中常用的电路。1.RC
    1.RC充电电路

    在这里插入图片描述电源通过电阻给电容充电,由于一开始电容两端的电压为0,所以电压的电压都在电阻上,这时电流大,充电速度快。随着电容两端电压的上升,电阻两端的电压下降,电流也随之减小,充电速度变小。

    在这里插入图片描述

    充电的速度与电阻和电容的大小有关。电阻R越大,充电越慢,电容C越大,充电越慢。衡量充电速度的常数t(tao)=RC。
    2.RC放电电路

    在这里插入图片描述

    电容C通过电阻R放电,由于电容刚开始放电时电压为E,放电电流I=E/R,改电流很大,所以放电速度很快。随着电容不断的放电,电容的电压也随着下降。电流也很快减小。
    电容的放电速度与RC有关,R的阻值越大,放电速度越慢。电容越大,放电速度越慢。
    在这里插入图片描述
    3.RC积分电路
    RC积分电路可以将矩形波转变成三角波(或锯齿波)。
    在这里插入图片描述

    电路工作原理:
    在0-t1时间,矩形波为低电平,无电压对电容进行充电,所以输出电压为0。
    在t1-t2时间,矩形波为高电平,有电压对电容进行充电,输出电压慢慢上升,由于时间常数tao=RC远大于脉冲的宽度tw,所以t2时间,输出电压无法到达高电平Vm。
    在t2-t4时间,矩形波为低电平,电容C开始放电。
    积分电路应该满足时间常数tao=RC远大于脉冲的宽度tw,一般大于3tw就行。
    在这里插入图片描述
    4.RC微分电路
    RC微分电路可以将矩形波转化为宽度很窄的尖峰脉冲信号。

    在这里插入图片描述

    电路工作原理:
    在0-t1时间里,矩形波为低电平,输入电压为0,无电流流过电容和电阻,所以电阻两端电压为0.
    在t1-t2时间里,矩形波为高电平,输入电压为Vm,这时电容还没被充电,所以电阻两端电压为Vm,t1以后,电容开始充电,电阻两端的电压也随之下降。由于时间常数很小,所以电容很快就充电完成,电容电压上升到Vm,电阻电压为0。
    在t2-t3时间,矩形波为低电平,输入电压为0,电容相当于一个电源,电阻得到一个下正上负的电压,随着电容的放电,电阻两端的电压也下降。

    在这里插入图片描述

    展开全文
  • 计算并绘制充电 RC 电路的时间相关电流和电荷。 该代码中的电流和电荷方程是通过将基尔霍夫环路规则应用于带有电池的简单 RC 电路而获得的。 参考: http://physics.bu.edu/~duffy/semester2/c11_RC.html
  • 本文主要介绍了利用RC电路作为芯片复位的原理,分为上电复位和按键复位。下面一起来看看
  • RC电路的使用

    2012-04-25 22:09:58
    RC电路RC电路RC电路RC电路RC电路RC电路
  • RC电路在模拟电路、脉冲数字电路中得到广泛的应用,由于电 路的形式以及信号源和R,C元件参数的不同,因而组成了RC电路的各种应用形式:微分电路 、积分电路、耦合电路、滤波电路及脉冲分压器。 在模拟及脉冲数字...
  • 导读: RC电路在模拟电路、脉冲数字电路中得到广泛的应用,由于电 路的形式以及信号源和R,C元件参数的不同,因而组成了RC电路的各种应用形式:微分电路 、积分电路、耦合电路、滤波电路及脉冲分压器。
  • RC电路 CR电路 理解

    万次阅读 2017-06-07 15:29:02
    在模拟及脉冲数字电路中,常常用到由电阻R和电容C组成的RC电路,在些电路中, 电阻R和电容C的取值不同、输入和输出关系以及处理的波形之间的关系,产生了RC电路的 不同应用,下面分别谈谈微分电路、积分电路、耦合...
    在模拟及脉冲数字电路中,常常用到由电阻R和电容C组成的RC电路,在些电路中, 电阻R和电容C的取值不同、输入和输出关系以及处理的波形之间的关系,产生了RC电路的 不同应用,下面分别谈谈微分电路、积分电路、耦合电路、脉冲分压器以及滤波电路。
    1. RC微分电路

      如图1所示,电阻R和电容C串联后接入输入信号VI,由电阻R输出信号VO,当RC 数值与输入方波宽度tW之间满足:RC<<tW,这种电路就称为微分电路。在 R两端(输出端)得到正、负相间的尖脉冲,而且发生在方波的上升沿和下降沿,如图2 所示


     在t=t1时,VI由0→Vm,因电容上电压不能突变(来不及充电,相当于短 路,VC=0),输入电压VI全降在电阻R上,即VO=VR=VI=V m 。随后(t>t1),电容C的电压按指数规律快速充电上升,输出电压随之按指数规 律下降(因VO=VI-VC=Vm-VC),经过大约3τ(τ=R × C)时,VCVm,VO0,τ(RC)的值愈小,此过程愈快,输出正 脉冲愈窄。
      t=t2时,VI由Vm→0,相当于输入端被短路,电容原先充有左正右负的电压V m开始按指数规律经电阻R放电,刚开始,电容C来不及放电,他的左端(正电)接地 ,所以VO=-Vm,之后VO随电容的放电也按指数规律减小,同样经过大 约3τ后,放电完毕,输出一个负脉冲。
      只要脉冲宽度tW>(5~10)τ,在tW时间内,电容C已完成充电或放电(约需3 τ),输出端就能输出正负尖脉冲,才能成为微分电路,因而电路的充放电时间常数τ必须 满足:τ<(1/5~1/10)tW,这是微分电路的必要条件。
      由于输出波形VO与输入波形VI之间恰好符合微分运算的结果[VO=RC( dVI/dt)],即输出波形是取输入波形的变化部分。如果将VI按傅里叶级展开 ,进行微分运算的结果,也将是VO的表达式。他主要用于对复杂波形的分离和分频器 ,如从电视信号的复合同步脉冲分离出行同步脉冲和时钟的倍频应用。
    2. RC耦合电路
      图1中,如果电路时间常数τ(RC)>>tW,他将变成一个RC耦合电路。输 出波形与输入波形一样。如图3所示。


     (1)在t=t1时,第一个方波到来,VI由0→Vm,因电容电压不能突变(VC=0),VO=VR=VI=Vm
      (2)t1<t<t2< span="" style="font-family: Simsun; font-size: 14px; line-height: 28px; background-color: rgb(248, 252, 253);">时,因τ>>tW,电容C缓慢充电,VC缓慢上升为左正右负,V O=VR=VI-VC,VO缓慢下降。
      (3)t=t2时,VO由Vm→0,相当于输入端被短路,此时,VC已充有左 正右负电压Δ[Δ=(VI/τ)×tW],经电阻R非常缓慢地放电。
      (4)t=t3时,因电容还来不及放完电,积累了一定电荷,第二个方波到来,电阻上的电 压就不是Vm,而是VR=Vm-VC(VC≠0),这样第二个输出 方波比第一个输出方 波略微往下平移,第三个输出方波比第二个输出方波又略微往下平移,…,最后,当输出波 形的正半周“面积”与负半周“面积”相等时,就达到了稳定状态。也就是电容在一个周期 内充得的电荷与放掉的电荷相等时,输出波形就稳定不再平移,电容上的平均电压等于输入 信号中电压的直流分量(利用C的隔直作用),把输入信号往下平移这个直流分量,便得到 输出波形,起到传送输入信号的交流成分,因此是一个耦合电路。
      以上的微分电路与耦合电路,在电路形式上是一样的,关键是tW与τ的关系,下面比 较一下τ与方波周期T(T>tW)不同时的结果,如图4所示。在这三种情形中,由于电 容C的隔直作用,输出波形都是一个周期内正、负“面积”相等,即其平均值为0,不再含有 直流成份。
      ①当τ>>T时,电容C的充放电非常缓慢,其输出波形近似理想方波,是理想耦合电路。 
    ②当τ=T时,电容C有一定的充放电,其输出波形的平顶部分有一定的下降或上升,不是 理想方波。
      ③当τ<<t< span="">时,电容C在极短时间内(tW)已充放电完毕,因而输出波形为上下尖脉 冲,是微分电路。


    3. RC积分电路
      如图5所示,电阻R和电容C串联接入输入信号VI,由电容C输出信号V0,当RC (τ)数值与输入方波宽度tW之间满足:τ>>tW,这种电路称为积分电路。在



    电容C两端(输出端)得到锯齿波电压,如图6所示


    (3)t=t2时,VI由Vm→0,相当于输入端被短路,电容原先充有左正右负电 压VI经R缓慢放电,VO(VC)按指数规律下降。 
      这样,输出信号就是锯齿波,近似为三角形波,τ>>tW是本电路必要条件,因为他是 在方波到来期间,电容只是缓慢充电,VC还未上升到Vm时,方波就消失,电容 开始放电,以免电容电压出现一个稳定电压值,而且τ越大,锯齿波越接近三角波。输出波 形是对输入波形积分运算的结果

    ,他是突出输入信号的直流及缓变分量,降低输入信号的变化量。
    4. RC滤波电路(无源)
      在模拟电路,由RC组成的无源滤波电路中,根据电容的接法及大小主要可分为低通滤波 电路(如图7)和高通滤波电路(如图8)。



    (1)在图7的低通滤波电路中,他跟积分电路有些相似(电容C都是并在输出端),但 他们是应 用在不同的电路功能上,积分电路主要是利用电容C充电时的积分作用,在输入方波情形下 ,来产生周期性的锯齿波(三角波),因此电容C及电阻R是根据方波的tW来选取,而 低通滤波电路,是将较高频率的信号旁路掉(因XC=1/(2πfC),f较大时,XC较 小,相当于短路),因而电容C的值是参照低频点的数值来确定,对于电源的滤波电路,理 论上C值愈大愈好。
      (2)图8的高通滤波电路与微分电路或耦合电路形式相同。在脉冲数字电路中,因RC与脉 宽tW的关系不同而区分为微分电路和耦合电路;在模拟电路,选择恰当的电容C值, 就可以有选择性地让较高频的信号通过,而阻断直流及低频信号,如高音喇叭串接的电容, 就是阻止中低音进入高音喇叭,以免烧坏。另一方面,在多级交流放大电路中,他也是一种 耦合电路。
    5. RC脉冲分压器
      当需要将脉冲信号经电阻分压传到下一级时,由于电路中存在各种形式的电容,如寄生电容 ,他相当于在负载侧接有一负载电容(如图9),当输入一脉冲信号时,因电容CL的 充电,电压不能突变,使输出波形前沿变坏,失真。为此,可在R1两端并接一加速电容 C1,这样组成一个RC脉冲分压器(如图10)




    (1)t=0+时,电容视为短路,电流只流经C1,CL,VO由C1和CL分压得到: 


    但是,任何信号源都有一定的内阻,以及一些电路的需要,通常采取过补偿的办法,如电视 信号中,为突出传送图像的轮廓,采用勾边电路,就是通过加大C1的取值。

    展开全文
  • RC电路在电子电路中是一种信号传输电路,功能多样,应用灵活。首先从理论角度,分析其具有的微分、移相或高通滤波器功能或积分、移相或低通滤波器功能,然后应用Multisim软件对RC电路进行仿真,分别设置不同类型、...
  • RC电路应用

    2012-09-26 11:09:49
    在模拟及脉冲数字电路中,常常用到由电阻R 和电容C 组成的RC 电路,在这些电路中,电阻R 和电容C 的取值不同、输入和输出关系以及处理的波形之间的关系,产生了RC 电路的不同应用
  • RC电路分析计算

    千次阅读 2020-02-02 21:43:33
    RC电路有一个电容和一个电阻组成,可以是并联或者串联,可用作滤波,移相等。下面以RC串联电路为例计算分析电路的电流电压特性和频率特性。 RC串联电路 如上图所示,假设RC电路电源电压为Us,电容大小为C,电容两...
  • 一阶rc电路.zip

    2019-07-06 15:10:04
    对一阶RC电路用multisim软件进行仿真,直观教学,使学生更易接受
  • RC电路的瞬态响应.pdf

    2019-07-23 18:53:04
    本实验活动的目标是通过脉冲波形研究串联RC电路的瞬态响应并 了解时间常数的概念。 背景: 在本实验活动中,将向RC电路施加一个脉冲波形,以分析该电 路的瞬态响应。RC电路对电路时间常数的影响由与之相关...
  • RC电路 波形分析

    千次阅读 2019-01-08 16:27:04
    在模拟及脉冲数字电路中,常常用到由电阻R和电容C组成的RC电路,在些电路中, 电阻R和电容C的取值不同、输入和输出关系以及处理的波形之间的关系,产生了RC电路的 不同应用,下面分别谈谈微分电路、积分电路、耦合...
  • RC电路应用分析

    2020-01-02 13:25:58
    关于RC电路的应用总结 出处:电子产品世界 发布于:2015-12-17 09:52:22 | 17010 次阅读 RC电路...
  • RC电路在模拟电路、脉冲数字电路中得到广泛的应用,由于电 路的形式以及信号源和R,C元件参数的不同,因而组成了RC电路的各种应用形式:微分电路 、积分电路、耦合电路、滤波电路及脉冲分压器。 在模拟及脉冲数字...
  • RC电路应用计算

    万次阅读 2016-10-17 15:37:16
    RC电路在模拟电路、脉冲数字电路中得到广泛的应用,由于电 路的形式以及信号源和R,C元件参数的不同,因而组成了RC电路的各种应用形式:微分电路 、积分电路、耦合电路、滤波电路及脉冲分压器。关键词:RC电路。微分...
  • MATLAB求解一阶RC电路和二阶RLC电路

    千次阅读 2020-12-29 20:28:31
    MATLAB求解一阶RC电路和二阶RLC电路理论知识:交互界面介绍一阶RC全相应Multisim仿真:仿真结果为:二阶RLC电路Multisim仿真:仿真结果为:实现代码: 理论知识: 一阶RC电路全相应:根据节点电压法求出戴维宁等效...
  • RC电路充电时间计算

    2013-07-08 14:39:55
    RC电路充电时间计算
  • 基于MATLAB模拟RC电路的暂态过程.pdf
  • RC电路的优化波形松弛方法:离散情况

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 2,483
精华内容 993
关键字:

rc电路