精华内容
下载资源
问答
  • 实验基于NS-3仿真平台,通过多种网络模型建模的设计,使学生掌握信息网络的Ad hoc拓扑建模、移动性建模、信道建模、协议层建模等方法。另外,本实验借助Netanim实现仿真网络的可视化,旨在直观地学习和掌握网络的...
  • Networkx的四种网络模型一. Networkx的下载安装二. 规则图三、ER随机图四、WS小世界网络五、BA无标度网络 NetworkX提供了4种常见网络的建模方法,分别是:规则图,ER随机图,WS小世界网络和BA无标度网络。 一. ...


    NetworkX提供了4种常见网络的建模方法,分别是:规则图,ER随机图,WS小世界网络和BA无标度网络。

    一. Networkx的下载安装

    画图之前先将NetworkX装好,直接pip install Networkx的话会特别慢,而且通常会失败,所以我一般都是先把库下载下来,再在本地安装。

    1、下载传送门:https://pypi.org/project/networkx/#files
    我下载的这个:
    在这里插入图片描述2、放到自己指定的文件夹(随意)
    3、本地安装
    在这里插入图片描述

    二. 规则图

    规则图差不多是最没有复杂性的一类图,random_graphs.random_regular_graph(d, n)方法可以生成一个含有n个节点,每个节点有d个邻居节点的规则图。
    下面一段示例代码,生成了包含20个节点、每个节点有3个邻居的规则图:

    import networkx as nx
    import matplotlib.pyplot as plt
    #生成了包含20个节点、每个节点有3个邻居的规则图
    RG = nx.random_graphs.random_regular_graph(3, 20)
    #spectral布局
    pos = nx.spectral_layout(RG)
    
    nx.draw(RG, pos, with_labels = False, node_size = 30)
    plt.show()
    

    在这里插入图片描述

    三、ER随机图

    ER随机图是早期研究得比较多的一类“复杂”网络,模型的基本思想是以概率p连接N个节点中的每一对节点。
    用random_graphs.erdos_renyi_graph(n,p)方法生成一个含有n个节点、以概率p连接的ER随机图:

    import networkx as nx
    import matplotlib.pyplot as plt
    #生成一个含有20个节点、以概率p = 0.2连接的ER随机图:
    ER = nx.random_graphs.erdos_renyi_graph(20, 0.2)
    #shell布局
    pos = nx.shell_layout(ER)
    nx.draw(ER, pos, with_labels = False, node_size = 30)
    plt.show()
    

    在这里插入图片描述

    四、WS小世界网络

    用random_graphs.watts_strogatz_graph(n, k, p)方法生成一个含有n个节点、每个节点有k个邻居、以概率p随机化重连边的WS小世界网络。

    import networkx as nx
    import matplotlib.pyplot as plt
    #生成一个含有20个节点、每个节点有4个邻居、以概率p=0.3随机化重连边的WS小世界网络
    WS = nx.random_graphs.watts_strogatz_graph(20, 4, 0.3)
    # circular 布局
    pos = nx.circular_layout(WS)
    nx.draw(WS, pos, with_labels = False, node_size = 30)
    plt.show()
    

    在这里插入图片描述

    五、BA无标度网络

    用random_graphs.barabasi_albert_graph(n, m)方法生成一个含有n个节点、每次加入m条边的BA无标度网络。

    import networkx as nx
    import matplotlib.pyplot as plt
    #生成一个含有20个节点、每次加入1条边的BA无标度网络。
    BA = nx.random_graphs.barabasi_albert_graph(20, 1)
    # spring 布局
    pos = nx.spring_layout(BA)
    nx.draw(BA, pos, with_labels = False, node_size = 30)
    plt.show()
    

    在这里插入图片描述

    六. 总结

    (1)基本绘图流程:
    在NetworkX中,绘制一个网络使用nx.draw()方法,它至少接受一个参数:即你希望绘制的网络G。实际上这个方法非常复杂,它可以指定20多个关键字参数,后边会介绍一些常用的参数,我们先从最简单的情况入手,看看下边的例子:

    import networkx as nx               #导入networkx包
    import matplotlib.pyplot as plt     #导入绘图包matplotlib(需要安装,方法见第一篇笔记)
    G =nx.random_graphs.barabasi_albert_graph(100,1)   #生成一个BA无标度网络G
    nx.draw(G)                      #绘制网络G
    #plt.savefig("ba.png")          #输出方式1: 将图像存为一个png格式的图片文件
    plt.savefig("ba_svg.svg")       #svg矢量图通常放入自己的论文中
    plt.show()                      #输出方式2: 在窗口中显示这幅图像
    

    在这里插入图片描述
    在这里插入图片描述

    (2)运用样式
    上边的代码虽然简单,但生成的图形略显单调。NetworkX提供了一系列样式参数,可以用来修饰和美化图形,达到我们想要的效果。常用的参数包括:
    - node_size: 指定节点的尺寸大小(默认是300,单位未知,就是上图中那么大的点)
    - node_color: 指定节点的颜色 (默认是红色,可以用字符串简单标识颜色,例如’r’为红色,'b’为绿色等,具体可查看手册)
    - node_shape: 节点的形状(默认是圆形,用字符串’o’标识,具体可查看手册)
    - alpha: 透明度 (默认是1.0,不透明,0为完全透明)
    - width: 边的宽度 (默认为1.0)
    - edge_color: 边的颜色(默认为黑色)
    - style: 边的样式(默认为实现,可选: solid|dashed|dotted,dashdot)
    - with_labels: 节点是否带标签(默认为True)
    - font_size: 节点标签字体大小 (默认为12)
    - font_color: 节点标签字体颜色(默认为黑色)
    灵活运用上述参数,可以绘制不同样式的网络图形,例如:nx.draw(G,node_size = 30,with_labels = False) 是绘制节点尺寸为30、不带标签的网络图。

    (3)运用布局
    NetworkX在绘制网络图形方面提供了布局的功能,可以指定节点排列的形式。这些布局包括:
    circular_layout:节点在一个圆环上均匀分布
    random_layout:节点随机分布
    shell_layout:节点在同心圆上分布
    spring_layout: 用Fruchterman-Reingold算法排列节点(这个算法我不了解,样子类似多中心放射状)
    spectral_layout:根据图的拉普拉斯特征向量排列节点?我也不是太明白
    布局用pos参数指定,例如:nx.draw(G,pos = nx.circular_layout(G))。

    我的第二篇博客,部分参考了他人的,参考链接在底部。初学者,欢迎交流!
    参考:https://www.cnblogs.com/forstudy/archive/2012/03/20/2407954.html
    https://www.cnblogs.com/gispathfinder/p/5790949.html

    展开全文
  • 贝叶斯网络模型

    2017-10-24 09:30:35
    大致讲解的是贝叶斯网络模型,以及其基本的学习模式,并且添加了基本的应用方法。
  • 能够在Matlab下,实现bp神经网络模型的初步构建,但具体参数和代码细节需要数据相关信息完善。
  • 针对目前裂缝性储层建模方法存在的问题,探讨DFN离散裂缝网络模型的裂缝性储层建模的思路和方法,提出分大尺度和中小尺度两种裂缝级别建立DFN离散裂缝模型。首先,按照确定性建模方法,以三维地震资料建立大尺度裂缝...
  • 对WS小世界网络和NW小世界网络两种网络模型进行计算机建模,并分析它们的静态网络统计量,包括节点的度分布、平均最短路径和聚类系数等特征指标.进一步得到了WS和NW小世界网络模型的度分布图以及NW小世界网络模型的...
  • 基于超网络的航空网络建模与特性分析
  • MATLAB神经网络模型

    2018-10-17 19:19:44
    MATALB使用神经网络工具箱进行神经网络搭建的详细讲解。
  • Netron是一款神经网络参数模型可视化工具,支持众多框架的神经网络模型可视化,观察模型结构和网络中具体的参数值
  • 主要是用MATLAB来实现几类典型的复杂网络模型的仿真
  • 规划)、图论模型、排队论模型、神经网络模型、现代优化算法(**遗传算法、模拟退火算法、蚁群算法、**禁忌搜索算法)等等。 三、模糊综合评价法、层次分析法、聚类分析法、主成分分析评价法、 灰色综合评价

    最近在学习数学建模系列,数学建模主要分为三个大问题:
    1.预测模型
    2.优化模型
    3.评价模型

    又分为如下的各个子区间:
    一、神经网络预测、灰色预测、拟合插值预测(线性回归)、时间序列
    预测、马尔科夫链预测、微分方程预测、Logistic 模型等等。

    二、规划模型(目标规划、线性规划、非线性规划、整数规划、动态
    规划)、图论模型、排队论模型、神经网络模型、现代优化算法(**遗传算法、模拟退火算法、蚁群算法、**禁忌搜索算法)等等。

    三、模糊综合评价法、层次分析法、聚类分析法、主成分分析评价法、
    灰色综合评价法、人工神经网络评价法等等。

    本文交代神经网络预测的主要方案:
    1.神经网络预测,底层逻辑与评价模型中的主成分和聚类有异曲同工之妙,当遇到多个参数影响某一个参数,且难以用自然规则解释建模的时候,用来确定参数之间的联系,也与线性规划的底层逻辑相似,一通百通。

    2.神经网络预测模型分为3各主要模块
    1、条件神经节点
    2、隐藏神经节点
    3、结果神经节点

    其中1、3可以从目标条件中获得,而2需要通过神经网络预测来进行判断其数量以及与1、3的关系。

    一般来说,2的数量越多,那么结果就越精确,但随之而来的是计算复杂度更高。当遇到过于复杂的情况时,可以考虑采用遗传/模拟退火、确定2的空间

    matlab中,我们一般对于2数量的定义为:
    c=根号下(a+b)+常数,(1~10);取得c的区间后确定一个可信的值。

    调用matlab工具箱:
    举例:隐层和输出层激励函数分别为tansig和logsig函数, 网络训练函数为traingdx, 网络性能函数为mse,隐层神经元数初设为c求到的值。设定网络参数。网络迭代次数epochs为5000次, 期望误差goal为0.00000001, 学习速率lr为0. 01。

    代码:
    P=[3.2 3.2 3 3.2 3.2 3.4 3.2 3 3.2 3.2 3.2 3.9 3.1 3.2;
    9.6 10.3 9 10.3 10.1 10 9.6 9 9.6 9.2 9.5 9 9.5 9.7;
    3.45 3.75 3.5 3.65 3.5 3.4 3.55 3.5 3.55 3.5 3.4 3.1 3.6 3.45;
    2.15 2.2 2.2 2.2 2 2.15 2.14 2.1 2.1 2.1 2.15 2 2.1 2.15;
    140 120 140 150 80 130 130 100 130 140 115 80 90 130;
    2.8 3.4 3.5 2.8 1.5 3.2 3.5 1.8 3.5 2.5 2.8 2.2 2.7 4.6;
    11 10.9 11.4 10.8 11.3 11.5 11.8 11.3 11.8 11 11.9 13 11.1 10.85;
    50 70 50 80 50 60 65 40 65 50 50 50 70 70];
    ?T=[2.24 2.33 2.24 2.32 2.2 2.27 2.2 2.26 2.2 2.24 2.24 2.2 2.2 2.35];
    [p1,minp,maxp,t1,mint,maxt]=premnmx(P,T);
    %创建网络
    net=newff(minmax§,[8,6,1],{ ‘tansig’ , ‘tansig’ , ‘purelin’ }, ‘trainlm’ );
    %设置训练次数
    net.trainParam.epochs = 5000;
    %设置收敛误差
    net.trainParam.goal=0.0000001;
    %训练网络
    [net,tr]=train(net,p1,t1);
    TRAINLM, Epoch 0/5000, MSE 0.533351/1e-007, Gradient 18.9079/1e-010
    TRAINLM, Epoch 24/5000, MSE 8.81926e-008/1e-007, Gradient 0.0022922/1e-010
    TRAINLM, Performance goal met.

    %输入数据(模型跑好,现在是预测部分)
    a=[3.0;9.3;3.3;2.05;100;2.8;11.2;50];
    %将输入数据归一化
    a=premnmx(a);
    %放入到网络输出数据
    b=sim(net,a);
    %将得到的数据反归一化得到预测数据
    c=postmnmx(b,mint,maxt);
    c

    参考原博主:https://blog.csdn.net/c_1996/article/details/72793827

    展开全文
  • 《复杂网络与大数据》第二章:复杂网络模型的学习笔记 目录 1动态演化网络 1.1以网络演化的部件划分 1.2以是否考虑权重划分 1.3以演化网络采用的演化机制划分 1.4以演化网络是否动态变化划分 2社区网络 2.1...

    《复杂网络与大数据》第二章:复杂网络模型的学习笔记

    目录

    1动态演化网络

    1.1以网络演化的部件划分

    1.2以是否考虑权重划分

    1.3以演化网络采用的演化机制划分

    1.4以演化网络是否动态变化划分

    2社区网络

    2.1复杂网络中社区结构的分类

    2.2社区结构评价标准

    3权重网络

    3.1加权网络的度量

    3.2实际加权网络

    3.3加权网络建模

    4相依网络

    4.1相依网络的子网络

    4.2相依网络的相依边

    4.3相依网络的组合方式

     


    1动态演化网络

    演化网络是随着时间的变化而变化的网络。

    1.1以网络演化的部件划分

    1.基于点边的网络演化模型:顾名思义,基于点边的网络演化模型就是指在网络演化过程中网络的结点和边都可以增加或删除的演化模型。

    典型的如BA模型。BA模型是基于增长和择优连接两个原理提出的,增长原理强调了网络节点的演化,择优连接强调了网络边的演化。BA模型具有幂律度分布的特性

    目前大多数的网络演化模型都是基于点边的网络演化模型。

    2.基于边的网络演化模型:即网络演化过程中,节点数不变,但是边可以增加或删除的演化模型。

    例如:ER模型在给定的节点之间采用随机连边策略产生随机图模型;WS模型在给定的节点之间采用边重连的策略产生小世界网络模型;NW模型给定的节点之间采用随机加边的策略产生小世界模型;

    两种网络演化模型谁更合理目前并没有定论。

    1.2以是否考虑权重划分

    1.无权网络演化模型:如果对所研究网络的边没有赋予相应的权值,则该网络就称为无权网络。基本的ER模型、WS小世界模型、NW小世界模型以及BA模型都属于无权网络演化模型。目前基于BA模型产生了大量的无权网络演化模型。根据BA模型的网络增长和择优连接两条规则,这些模型大体可以分为两类:修改增长规则的无权网络演化模型和修改连接规则的无权网络演化模型。

    无权网络演化模型主要针对网络的拓扑演化机制进行研究,不考虑网络的功能、承载业务等,演化结论主要也是通过对网络拓扑结构的评判(是否具有幂律度分布特性、小世界效应等)验证。因此,无权网络演化模型与实际网络演化还有一定差距。

    2.含权网络演化模型:如果对所研究网络的边赋予了相应的权值,则该网络就称为含权网络或加权网络。现实世界的网络几乎都是含权网络。含权网络演化模型的研究对理解真实网络的演化过程具有重要意义。具有代表性的含权网络模型有DW模型, YJ BT模型 , Barrat、Barthelemy和Vespignani提出的简单加权演化网络模型(BBV模型) 以及中国科技大学复杂系统研究小组提出的TDE模型及其改进模型。

    含权网络演化模型认为网络承载的业务与网络拓扑结构是一种共生演化关系,相互驱动。BBV模型(特别是TDE模型) 通过将网络业务耦合人网络拓扑演化过程, 不仅得到网络的幂律度分布,同时得到网络强度的幂律分布、网络权重的幂律分布以及高聚集性和非相称混合性等特征,更加成功地刻画出真实技术网络的特性。

    1.3以演化网络采用的演化机制划分

    1.单一演化机制模型:指演化过程中只采取一种演化机制的模型。ER模型、WS小世界模型、NW小世界模型、BA模型以及众多基于这些模型的改进模型都是单一演化模型。单一演化机制模型能有效研究某一演化机制对网络演化性质的影响,但对处于复杂多变环境中的真实网络而言,采用单一演化机制模型往往太过理想化,因此单一演化机制模型与实际网络相比还存在一定的差距。

    2.混合演化机制模型:混合演化机制模型是指网络在演化过程中采取多种演化机制的模型。为了描述确定性与随机性和谐统一的世界以及增长过程的复杂性和多样性,中国原子能科学研究院网络科学小组的方锦清等人提出并发展了统一的混合网络模型,形成网络理论模型的三部曲。数值模拟和理论分析揭示了统一混合网络演化模型随多个混合比变化的若干特性,将其应用于一些现有的无权和含权复杂网络演化模型,可以得到更接近实际网络的特性。虽然混合演化机制模型能描述网络增长过程的复杂性和多样性,但是真实网络究竟采用了哪些演化机制以及各种演化机制所占比重的确定仍是一个需要解决的难题。

    1.4以演化网络是否动态变化划分

    1.静态网络演化模型:在相邻两个时间步内,网络节点及节点之间的关系一直保持不变,则称这类网络为静态网络。目前研究的网络演化模型基本上都属于此类型。

    2.动态网络演化模型:在相邻两个时间步内,网络节点及节点之间的关系(边)具有可变性,则称这类网络为动态网络。动态网络系统中,节点的状态和拓扑都是动态演化的,节点的状态和网络的拓扑之间可能是相互影响的,且系统在整体层面上会展示出各种各样的集体行为。当前的研究重点主要是系统具有什么样的集体动力学行为、如何干预或控制此系统等。

    2社区网络

    目前,社区还没有明确的定义。一般而言,社区是指网络中具有相似属性的节点集合,社区内部关系紧密,社区之间节点关系稀疏。Fortunato从网络节点相似度,局部和全局3个角度总结了常见的社区的定义。

    1. 节点相似度定义:社区是由网络中相似节点构成的集合。同一个社区中的节点在异构的网络中呈现相似的特征,所以可以根据节点的相似度划分社区。通常采用层次聚类方法度量节点相似度和发现社区结构。
    2. 局部定义:社区是与网络中其他部分只有少量关联的部分。即社区内部个体关系紧密。
    3. 全局定义:社区是整个网络系统的一种划分,整个网络构成一棵层次树状图,根据某种特征函数值进行划分,得到最优的社区结构。这种特征函数也就是一种社区划分的衡量标准,对社区结构给出了一种量化定义。最常见的特征医数是 Newman 等人提出的模块度函数。

    综合以上3中定义可以看出,节点相似度是利用节点属性对网络进行划分,社会网络分析领域经常采用这种定义。然而,在复杂网络中,由于节点的属性非常复杂,很难获得有效的信息,因此大多数复杂的网络社区都使用后两种定义,利用网络拓扑来发现社区结构。

    2.1复杂网络中社区结构的分类

    在复杂网络中,有两种类型的社团结构:层次结构和重叠结构,它们可能同时存在于复杂网络中。
    1.层次结构

    社区层次结构是对社会网络中不同层次、不同粒度社区的整合。现实世界中的大多数网络系统都显示出层次的形态。真实网络通常由社区组成,而这样的社区中包含较小的社区,小社区中可能包含更小的社区等。社区层次结构的意义在于揭示复杂网络中社区之间的上下包含关系。层次结构在社会网络中普遍存在,如篮球和羽毛球俱乐部都属于球类俱乐部,围棋和象棋俱乐部都属于棋牌俱乐部,而球类和棋牌类俱乐部都属于体育俱乐部。发现网络社区层次结构,可以深人理解不同尺度下网络结构及网络结构之间的关系,从而更好地反映真实系统的情况,有利于进行系统分析。目前发现社区层次结构较多采用层次聚类的方法,按照网络图中节点之间的距离或者相似度进行聚类,将整个网络结构构建成为一棵树状图。树状图表示了网络社区的层次结构,如图所示,每个节点是树状图中的叶子,然后通过连接构成树状图,组成一个完整的网络。树状图中的每一层代表不同的社区,从底层到高层社区数量越来越少,社区规模越来越大。


    2.重叠结构


    研究发现,现实世界中许多网络社区之间通常并不是彼此独立的,而是相互关联的。换言之,网络由相互关联,彼此重叠的社区组成,社区之间存在重叠的节点。社区的重叠结构是指社区中每个节点并非只属于一个独立的社区,而是存在某些节点可能属于多个社区。例如,在社会网络中,根据不同的分类方法,每个人可能会划分到多个不同的社区(如家庭、公司、兴趣小组、学校等):在科学家合作网络中,一个物理学家同时也可能是一个数学家,因此他将同时处于分别由物理学家和数学家构成的两个社区中。社区重叠结构更加符合真实世界的社区之间的关系,反映了更加真实的网络结构。复杂网络中层次重重社区如图所示,从图中可以发现某些节点在不同的社区之间起着桥梁的作用,同时属于两个不同的社区。

    2.2社区结构评价标准

    采用层次聚类算法是针对已知社区数目(层次)的网络,你需要先构成网络的层次树状图,每一层对应网络的一个划分。但是实际中网络的社区数目往往是未知的。

    如何从树状图中获得最优的社区划分,需要一个度量标准。这里介绍一个划分标准——模块度

    所谓模块性,是指在  一个真实社团内部的节点的边在该网络中所占的比例期望值  与   在保持该网络节点社团属性不变的情况下,边根据节点的度随机链接时,社团内部节点的边占该网络全部边的比例期望值   的比值。社团结构划分的越好,该比值越大。通常用Q函数定量描述社团划分的模块水平:

    Q=(一个真实社团内部的节点的边在该网络中所占的比例期望值)/( 在保持该网络节点社团属性不变的情况下,边根据节点的度随机链接时,社团内部节点的边占该网络全部边的比例期望值)

    其中,m为边数,ki,kj为节点vi,vj的度,它们中间有边的可能性为(ki*kj)/2m,若有边Aij=1,否则等于0。ci,cj分别是vi,vj所属的社区,当ci=cj时δ(ci,cj)=1,否则等于0。

    Q值范围【-0.5,1),值越大,社区划分越准确。在实际中,Q值最高点一般在0.3~0.7之间.

    3权重网络

    权重网络就是带权重的网络。之前只讨论边是否存在的二进制网络只是纯粹的拓扑模型,不足以解释实际系统观察中的丰富而复杂的性质。

    3.1加权网络的度量

    加权图一般表示为G=(V,E,W)。首要特征是权分布Q(w),即特定边的权为w的概率。

    下面介绍的度量是无权网络中一些概念的拓展与补充,并将权与拓扑相结合。

    1.点的强度,强度分布与相关性

    强度是度概念的推广:由边的个数推广为边权的和。

    s_{i}=\sum_{j\in N_{i}} w_{ij}

    当权与拓扑结构无关时,度数为k的点的强度S(k)约等于<w>*k,<w>为平均强度。

    点vi的边权可能均匀分布,也可能只有少数权占优势。权的不等性由Y_{i}度量,它的定义为
    Y_i=\sum _{j \in N_i }(\frac{w_{ij}}{S_i})^2 

    即每条边权占强度比值的平方和。如果边的权值都差不多,则Y(k)=1/k,若只有一条边起主要作用,则Y(k)=1。

    强度分布R(S)度量了点强度为S的概率,和度分布P(K)一起构成了加权网络的有用信息。点vi的最近邻度数的加权平均为:

    k^w_{nn,i}=\frac{1}{S}\sum_{j\in N_i} a_{ij}\omega _{ij}k_j

    这个量可以刻画加权网络的同类匹配性和非同类匹配性。当k^w_{nn,i}>k_{nn,i}时,权值大的点倾向于链接度大的点,否则相反。

    2.加权最短路径

    有些情况下边的物理长度是有用的,边的长度L可以定义为vi到vj的欧几里何空间距离。在一般加权网络中,边长可以用权的函数表示,如L=1/wij,尽管此假设不满足三角不等式。加权最短路径可以定义为vi到vj中边长和的最小值,此时最短路径不再是含有最少边的路径。

    3.加权聚集系数

    之前所说的聚集系数没有考虑到加权网络中有些邻居节点比其他点更重要,这里令vi的加权聚集系数定义为:

    C_i^w=\frac{1}{S_i(k_i-1)}\sum_{j,k}\frac{w_ij+w_ik}{2}a_{ij} a_{jk} a_{ki} ,取值【0,1】

    加权聚集系数既考虑了vi的邻居闭三角形个数,又考虑了总相对权。C^wC^w(k)分别表示所有点的加权聚集系数均值和所有k度点的加权聚集系数均值。对于大型随机网络,有C^w=C,C^w(k)=C(k)。然而实际情况却可能看到两种相反的情况,如果C^w>C,则顶点关联三元组更可能由权高的边组成;相反如果C^w<C,则表示网络的拓扑聚集由权低的边形成。​​

    3.2实际加权网络

    不同链接的权展示了不同的分布和幂律行为等复杂统计特征。权和拓扑的相关性为观察这类组织结构提供了互补的视角。

    1.生物网络(以代谢网络为例)

    若以E大肠杆菌的新陈代谢反应作为加权网络研究,节点vi,vj表示代谢物i,j,有向边eij代表代谢物 i 到 j 的反应,权wij代表从代谢物 i 到 j 的流量。

    在最优生长条件下,权分布很好的符合幂律分布:

    Q(w)\propto (w_0+w)^{-r_w},其中w0=0.003,rw=1.5。

    这代表越高的权出现的概率越小,即流量越高的反应出现的概率越小。

    同时在权的不等性方面,我们发现对于E大肠杆菌的代谢,其入度出度都符合

    Y(k)\propto k^{-0.27},即权的不等性与k^{-0.27}成正比。

    在之前2.6.1我们定义权的不等性时我们知道,如果权分布平均,则Y(k)越趋近于1/k。因此在E大肠杆菌代谢网络中,节点的度k越大,其权不等性Y(k)\propto k^{-0.27}与1/k的距离越远。即度越大的节点,权分布越不均匀。即某个代谢物生成或者消耗反应越多,越有可能某个反应携带了大多数的反应物。

    2.社会网络(以合作网为例)

    合作网是目前拥有广泛数据库的社会网络。以无权科学合作网为例,科学家作为端点,如果两位科学家合作过文章,则连一条边。但是合作多的科学家之间明显比合作少的科学家之间联系更紧密,为了解释这一现象,我们需要合作频数来衡量作者间的关系。比如我们可以定义作者i,j之间相互作用的为:

    w_{ij}=\frac{\sum_p \delta_i^p \delta_j^p }{n_p-1},p的定义域为所有的文章,如果作者i是文章p的作者之一,则\delta _i^p=1,否则为0 ,np是文章p的作者数。

    即合作过的文章越多,合作文章的共同作者越少,两位科学家之间的权越大,联系越紧密。

    现在我们根据这种权的定义,来研究一个N=12722的,1995-1998年间给凝聚态物理提交论文草稿的科学家的合作网。实际观察中,该网络具有以下特征:

    1. 该网络的分布R(S)和P(k)都是重尾分布的。
    2. 权与拓扑结构无关,即S(k)=<w>*k,度为k的节点的强度等于平均权乘以度数k。
    3. k>=10时,加权聚集系数C^w(k)>C(k),这意味着顶点关联三元组更可能由权高的边组成,即合作者多的科学家之间趋于相互合作,组成稳定的研究组就能产生大量文章。
    4. 点vi的最近邻度数的加权平均k^w_{nn,i}k_{nn,i}都随着k呈幂律增长,表明该网络呈现了一个社会网络的典型特征,同类匹配性。

    3.技术网络

    以世界航空网为加权网并进行分析。节点vi,vj表示机场i,j,权wij为机场i到机场j的航班的有效座位数。该实际网络展示了小世界和无标度属性。

    1. 特别的,该网络的度分布形势为p(k)=k^{-\gamma }f(k/k_x),其中\gamma=2.0;f(k/k_x)是指数断开函数,因为单个机场能提供的最大数目链接是有限的。
    2. 节点的强度分布R(S)是重尾的,且权与度之间存在非平凡关联:边的平均权和两端点的度数之间的关系为<wij>=(ki*kj)^θ,指数θ=0.5。
    3. 度数为k的点的强度服从幂律分布S(k)=AK^\beta,指数β=1.5,这表明机场越大,可处理的运输量越大。
    4. 在k的整个取值范围内,加权聚集系数C^w(k)有更多有界变化,即度数高的机场易形成具有高运输量的相关组。
    5. 由于高流量链接在网络中枢上,所以有高度数的点趋于和同样具有高度数的点结成派系的现象,即“富人俱乐部”现象。

    3.3加权网络建模

    1.YJBT模型

    YJBT模型是加权无标度网络的最小模型,模型中随着网络增长,拓扑和权都受择优连接规则驱动。

    1. YJBT模型的拓扑结构与BA网络相同。开始于m0个点,每一时步,添加一个具有m<m0条边的新节点vj。点vj与已有的点vi相连的概率为\frac{k_i}{\sum_lk_l},即vi节点的度/全部节点的度
    2. 每条边权为w_{ij}=\frac{k_i}{\sum_ik_i},即vi节点的度/要连接的节点的度之和。可以发现新节点的边权之和为1 。

    YJBT模型产生了无标度网络,度为幂律分布P(k)~k^{-3} ,强度也为幂律分布R(S)=S^{-\gamma _s} ,其中指数\gamma _s强烈依赖于m,渐进的强度分布最终收敛于度分布。

    因为YJBT模型生成过程的演示在网络上没有找到,所以我自己写了一个:https://github.com/changyaoxing/ComplexNetworkModel_YJBT

    2.ZTZH模型

    ZTZH模型是YJBT模型的一般化,在点的度和适应度的权值分配上加入了随机因素。对于每条新建连接l_{ji},以概率p按照YJBT模型的形式w_{ij}=\frac{k_i}{\sum_ik_i}赋予其权值,以概率1-p按照w_{ij}=\frac{\eta _i}{\sum_i\eta _i}的形式赋予权值,其中\eta _i是赋予点vi的适应度参数,服从区间【0,1】上的均匀分布\rho (\eta )。p=1时,模型就还原成了YJBT模型,p=0时,权值完全有适应度决定。模型产生了强度幂律分布R(S)~S^{-r_s},其指数r_s的特征是对概率p高度敏感,r_s从p=0时的值r_s=3随着p的增加而连续递减。和YJBT模型一样,关于P(k)的差异是对数修正项的结果,可以用p调整,当p=0时,差异消失。YJBT模型发现对所有p>0都有r_s依赖m的变化,仅当p=0时,r_s独立于m在一个依赖于点连接和适应度的边形成机制模型中也发现了类似的结果。

    3.AK模型

    AK网络的结构增长与边权相耦合。模型定义如下:

    1. 每一个时间步,加入一个新点vj,连接到一个目标点vi,连接概率与点vi的强度成正比:\prod _{j\rightarrow i}=\frac{S_i}{\sum_l S_l},此规则放宽了\frac{k_i}{\sum_lk_l}的度择优连接规则,考虑强度连接规则。
    2. 对每一条边赋予一个从分布ρ(w)取出的权值。

    所得网络是树,其强度分布R(S)当S趋近于无穷时,逼近静态胖尾分布R(S)~S^(-γ),与边权分布ρ(w)无关。特别的,当ρ(w)为指数分布时,R(S)为所有的代数分布。

    4.BBV模型

    之前的YJBT、ZTZH、AK模型都是基于网络拓扑增长,即产生边的同时为其赋予一个权值,以后就不再变化。这种模型忽略了新节点和边的加入可能引发的权的动态变化,忽略了演化和增进的相互作用是自然的网络的普遍特征。例如,一条新航线的开辟会影响其他航线的流量。

    BBV模型是基于加权驱动动力学和与局域网络增长相结合的权增加机理,这种结合模仿了实际情况中观察到的相互作用的变化。

    1. 模型开始于m0个初始点,连接权为w0;
    2. 每一时间步添加新点vj和m条边,权值是w0。以\prod _{j\rightarrow i}=\frac{S_i}{\sum_l S_l}的概率随机与已有的节点vi连接;
    3. 新边eji的出现引起vi何其邻居vl之间的权的局部调整,按照w_{il}\rightarrow w_{il}+\Delta w_{il}的格式进行。其中\Delta w_{il}=\delta \frac{w_{il}}{S_i},即vi因为新边eji的出现,强度增加了\delta,每条边按权重占强度比例分配\delta
    4. 此时vi的强度变化为S\rightarrow S+w_0+\delta 。

    BBV模型生成的网络展示了权、度和强度分布的幂律行为、指数是非平凡的且与w0和\delta相关。若令w0=1,这时的模型只考虑一个单独参数\delta,即由于添加新边而增加的点的强度。当时间无穷大,即点无穷多时,权分布呈幂律分布Q(w)~w^{-r_w}r_w=2+\frac{1}{\delta }。点的度数分布和强度分布服从于有相同指数r=r_s=\frac{4\delta +3}{2\delta +1}的幂律分布P(k)\propto k^{-r_s}R(S)\propto S^{-r_s}

    5.DM模型

    BBV模型中强度高的点吸引新边,然后修正这些点的边权。DM模型中,权高的边增加权值并吸引新的连接。一种指向强的点,一种指向强的边。DM模型规则如下:

    1. 以权成比例的概率选择一条边,并将其权增加常数δ。
    2. 新点连接到该边的两个端点,并赋予权值1 。

    结果边权、点的度数、点的强度都成幂律分布,指数分别等于r_w=2+\frac{2}{\delta }r=r_s=2+\frac{1}{1+\delta } 。

    4相依网络

    现实中的网络或多或少的都与其他的网络相关联,比如物理依附,信息交换等。2003年的意大利停电事故就是因为电网的某个节点故障,导致其相连的计算机控制节点断电,结构控制网络无法有效调控电网,造成全国性的断电。研究相依网络对设计更健壮的网络系统,提高网络设施抵御风险的能力具有重要意义。

    相依网络有三个要素:相依网络的子网络,相依网络的相依边,相依网络的组合方式。

    4.1相依网络的子网络

    相依网络的鲁棒性受子网络的影响很大。子网对相依网络的鲁棒性的影响主要是靠子网络的类型节点数、平均度等特性。

    子网络的类型可以是ER网络、RR网络、SF网络、BA网络、WS网络等。其他条件相同时,这些网络作为子网组成的相依网络的鲁棒性表现如下:

    RR-RR>ER-ER>SF-ER>SF-SF,这是子网络节点度分布决定的,子网络的度分布越均匀,相依网络的鲁棒性越好。

    网间相似性:子网络内部度数高的节点间倾向于产生相依关联。例如机场网和港口网组成的系统中,令相依关联为地理位置相同,则重要的港口节点倾向于链接重要的机场节点。

    在研究港口-机场的相依网络时发现:网间相似性越高,相依网络在面临随机失效时的鲁棒性越好。即我们可以通过提高度高节点间的相依边的可靠性,增强相依网络的鲁棒性。

    4.2相依网络的相依边

    相依边是相依网络的存在基础,也是影响相依网络鲁棒性的最直接因素。相依边主要通过其方向、类型以及比例等属性影响整个网络的鲁棒性。

    相依边分为有向和无向两种,当其他条件相同时,有向相依边的相依网络鲁棒性较差。因为有向系统可能产生更长的相依链

    相依链指在两个子网A、B组成的相依模型中,A中的节点u支持B的节点v,而v反过来又支持A的节点w,如此循环往复形成的相依节点集。相依链上节点的故障会通过相依链在子网间传播,还可能扩散到与相依链链接的其他节点上,引起故障的级联,降低系统的鲁棒性。

    相依边类型有连接边(connectivity links)和依赖边(dependency links)两种。连接边的作用是连接不同网络的节点,使子网络能够协同工作;依赖边表示某个节点的功能依赖于其他节点。据此可以将相依网络分为三种,即子网络间只存在依赖边/只存在连街边/同时存在连接边和依赖边的相依网络。

    相依网络的相依强度q指的是相依网络中有相依关系的节点所占的比例:q=0表示子网络间无相依关系;q=1表示子网络完全相依,即节点之间具有一一对应的相依关系。当相依强度p由0向1变化时,相依网络的鲁棒性会变差。

    4.3相依网络的组合方式

    随着研究的深入,学者们从子网络规模和组合方式的角度对相依网络进行了拓展,目前研究的重点是网络组成的网络——多层网络(network of network,NON)的鲁棒性。

    目前研究较多的是由ER、RR等网络作为子网络,以链形、星形、树形和环形组合方式组成的NON的性质。

     

    展开全文
  • 功能脑网络为理解大脑功能激活模式及大脑信息传递结构提供了一种有效的生物标记,如何更加有效地利用先验信息构建准确的脑网络模型尤为重要。提出了一种基于群体相似性约束的功能脑网络模型,通过引入张量低秩约束,...
  • BA网络建模

    2018-06-02 00:35:22
    matlab代码构建的BA网络的源码,并且运行后显示网络的度分布
  • 复杂网络建模总结

    千次阅读 2020-10-27 23:29:38
    本文针对数学建模美赛中的复杂网络题,做了一些总结,具体涉及一些该题的注意事项。 注意事项 定义点和边的意义 制定连接规则,删除孤立节点(代表影响很小的点),可以限制网络的大小,减小运算量,同时也可以...

    本文针对数学建模美赛中的复杂网络题,做了一些总结,具体涉及一些该题的注意事项。

    注意事项

    1. 定义点和边的意义
    2. 制定连接规则,删除孤立节点(代表影响很小的点),可以限制网络的大小,减小运算量,同时也可以克服PageRank的不足点
    3. 网络根据有向/无向,有环/无环,有/无标度,可以根据其性质,制定不同的算法,简化传统的算法
    4. 常用度量的指标:度,中心性,聚类系数,密度,中介性Degree, Centrality, Clustering coefficient,  Density,  Betweenness一定要将各种指标联系实际,分析每种情况的特性
    5. 结合现实考虑,即使简化了也要表明出来
    6. 除了重要性,还应该考虑节点的权威性(如时间)等现实因素
    7. 考虑节点的时间因素,现实中的一切都是因果的,比如引用模型中,只能引用比自己先发表的论文,而且此时满足偏序关系
    8. 注意关系的自反性、对称性、传递性
    9. 关系网络:相容关系、等价关系、偏序关系;对分析出来的关系做说明,即使没有什么用也可以说明,来体现对该网络性质的研究
    10. 对网络关系性质的分析也是一个重点,网络的性质和建立网络的规则有关,规则又是由实际的问题情况决定
    11. 网络的稳定性探究也是很重要的一点,可以分析参数对排序或者其他结果的影响,还可以考虑节点缺失对网络造成的影响
    12. 拥有关系和引用关系类似
    13. 对于性质类似的网络,对不同问题采用不同的量化方法,制定规则量化为适合模型的值,使得模型可以推广
    14. 对于一道题搭了几个网络,可以将这几个网络的性质进行对比分析,最好还能说出各自的用途
    15. 扩散可以用到矢量分析与场论的知识,用梯度、散度、旋度来分析
    16. 传染病模型也经常用在网络题里面
    17. 1959年,汉森首次提出了交通可达性的概念,这被定义为接受道路网络中节点之间相互作用的机会。
    18. 可以自己定义算法,把边的权重转换到点上,这样就可以使用修正的PageRank算法求解点的重要性

    使得初始时点的权重为1,但是每条边的传递权重不同,而其邻接边的权重相加仍然为1(参考2014C--25318

     

    编程和图表

    1. 对于外行难懂的复杂网络图,最好给出图的解释,各种东西代表什么
    2. 对自己定义的网络规则最好用图来展示一下
    3. 复杂网络考虑计算复杂度,特别是在有改进的情况下说明复杂度的改善
    4. 网络有很重要的一点就是测试其稳定性

    数据预处理

    1. 复杂网络的题也常常涉及大数据,对于空白数据的处理很重要,对于空缺太多的数据直接删掉
    2. 接着对剩余数据处理;或者通过聚类,被聚类到一起的点,空缺数值可以用该类中数值完整的值的均值和方差来生成;最常用的就是插值,不过没有什么亮点
    3. C/D题,数据支撑和合理性很重要
    4. 归一化、标准化、中心化特别重要,记得说明各自的意义

    ​​​​​​​过程

    1. 一开始建立各项指标,用数据对属性进行描述,为数据预处理提供依据。同时这些指标的分类不同,可能作用于底层网络或者顶层网络,可能是节点指标也可能是边的指标(可以给边加权,可以给点加权注意两种网络的适用算法不同)
    2. 接着设置算法,选择算法;结合实际的问题,分析其是否有什么不合理的地方,对于不合理的地方想一想改进的措施
    3. 必要时考虑一下计算复杂度,考虑是否改善,对复杂度改善后可以使用原算法来验证正确性;考虑是否有可以用来类比的模型
    4. 建立好静态的网络结构之后,接下来就是要确定规则(类似于仿真规则),使网络变成动态模型
    5. 网络的改善就是不停对规则进行更改
    6. 注意模型建立好之后先验证合理性,再应用​​​​​​​

    一般情况都用双层网络,既不会过于简单,也不会计算量太大

    相关性很强(同一地区、同一背景等)的各集团作为高一层的节点,底层的网络由各个单独的节点构成

    采用双层网络模型有两种思路:

    1、先手动根据节点的某种/某些相似性把一些满足相似性的节点规定为一个集团,各个集团作为上层网络的节点

    2、直接所有节点一视同仁,然后用节点划分的方法,对网络进行分割,分割后每个集团作为底层网络,然后更改边的类型,集团内保持不变,集团间建立新的连接方式

    灵敏性/稳健性分析

    1. 研究网络是否是无标度性。(有些结论已经有了,比如社交网络就是无标度,先了解背景,如果没有研究文献再自己计算)其实复杂网络的无标度特性与网络的鲁棒性分析具有密切的关系。无标度网络中幂律分布特性的存在极大地提高了高度数节点存在的可能性,因此,无标度网络同时显现出针对随机故障的鲁棒性和针对蓄意攻击的脆弱性。这种鲁棒且脆弱性对网络容错和抗攻击能力有很大影响。研究表明,无标度网络具有很强的容错性,但是对基于节点度值的选择性攻击而言,其抗攻击能力相当差,高度数节点的存在极大地削弱了网络的鲁棒性,一个恶意攻击者只需选择攻击网络很少的一部分高度数节点,就能使网络迅速瘫痪。
    2. 删除重要节点,看对网络的影响
    3. 改变指标值/删除指标,分析影响
    4. 用斜率来度量影响是一种非常常见的方法,和灵敏度分析中分析参数的影响类似,特别是有解析式的时候
    5. 网络一般分析结果都是
      从节点的变化分析
      从边的参数变化分析
      从这个网络的演变(传播过程)分析
    展开全文
  • 神经网络模型用于数学建模

    万次阅读 多人点赞 2019-04-26 16:01:52
    1 神经网络简介 目录 1 神经网络简介 1.1 人工神经元结构 激活函数 ϕ(⋅ ) Matlab 中的激活(传递)函数 1.2 网络结构及工作方式 2 蠓虫分类问题与多层前馈网络 2.1 蠓虫分类问题 2.2 多层前馈网络 2.3 后...
  • 复杂网络模型总结

    千次阅读 2020-10-27 16:09:31
    分类 均匀性分类 均匀网络(如WS小世界模型) 度数分布较均匀 非均匀网络(如BA无标度网络) 度数分布极度不均匀 ...局域世界演化网络模型:优先连接不是整个网络而是局域,如找导师时想获取本校的
  • 研究了贝叶斯神经网络建模预测问题,通过融入模型参数的先验知识,在给定数据样本 及模型假设下进行后验概率的贝叶斯推理
  • 数学建模-神经网络模型

    万次阅读 多人点赞 2019-01-20 15:26:28
    人工神经网络是在现代神经科学的基础上提出和发展起来的,旨在反映人脑结构及功能的一种抽象数学模型。自1943 年美国心理学家W. McCulloch 和数学家W. Pitts 提出形式神经元的抽象数学模型—MP 模型以来,人工神经...
  • 摘 要:在智能交通领域,车辆调度是一个...通过引入虚拟节点、虚拟连接路径等建模元素,给出了车辆调度网络模型的形式化数学描述和图形化表达方式,提出了基于优先级的分层调度网络,最后实例验证了该模型的有效性。
  • 针对传统网络模型难以反映多军种联合作战特点的问题,在传统树状网络拓扑模型的基础上加入了横向连接,构建了一个基于复杂网络的联合作战网络模型。该模型打破了“以平台为中心”的作战样,式,体现了信息化条件下联合...
  • Matlab之神经网络分析,30种不同的案列,数学建模的必备知识。
  • 先对xun.m运行,不断修改w,b和c;直到误差达到最小,将修改完的w,b和c,修改预测yuce.m中 的值。
  • 第十九章 神经网络模型
  • OpenPNM, 一种用于多孔介质孔隙网络建模的python 包 OpenPNM概述是一个开源项目,旨在为多孔介质研究人员提供一个现成的框架来执行各种孔隙网络模拟。 OpenPNM的主要功能和功能包括:表示基于邻接矩阵的稀疏表示的...
  • 针对 LEO(低轨)卫星网络的通信过程建模技术进行了研究,首先建立了 LEO卫星网络通信过程的随机 Petri 网( SPN)模型,然后,在给定参数条件下,通过求解与 SPN模型同构的马尔可夫链所对应的线性方程组,得出了性能指标——...
  • 代码绝对完整,毫无任何恶意修改,拿来直接用。可对其进行修改。绝对诚信~交通流量预测。
  • 复杂ER网络上的经典SIR模型的实现,对经典的SIR模型进行数据验证。
  • 搭建浅层神经网络模型步骤总结

    千次阅读 2020-02-25 17:44:09
    搭建浅层神经网络模型步骤总结1. 构建数据集2. 初始化4个变量3. 网络参数W和b的初始化4. 正向传播 (FP)5. 损失函数6. 反向传播 (BP)7. 根据梯度下降法对网络参数进行更新8. 循环迭代 1. 构建数据集 2. 初始化4个变量...
  • BP神经网络模型

    千次阅读 2020-05-01 10:27:14
    在我看来BP神经网络就是一个”万能的模型+误差修正函数“,每次根据训练得到的结果与预想结果进行误差分析,进而修改权值和阈值,一步一步得到能输出和预想结果一致的模型。举一个例子:比如某厂商生产一种产品,...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 1,196,603
精华内容 478,641
关键字:

网络模型