精华内容
下载资源
问答
  • matlab求定积分
    2021-10-26 16:29:16

    操作很简单,Matlab yyds

    >> syms x   %申明变量
    
    >> f=sin(x)^3*cos(x)^2
     
    f =
     
    cos(x)^2*sin(x)^3   %定义积分函数
     
    >> int(f,x,0,pi/2)  %求解
     
    ans =
     
    2/15

    更多相关内容
  • matlab求定积分

    千次阅读 2019-12-22 10:47:29
    f在区间[a,b]上对t的定积分。 符号解:例如f=t^2*exp(-t);a=0,b=1 >> clear >> syms t%定义符号变量 >> f=t^2*exp(-t); >> int(f,t,0,1) ans = 2 - 5*exp(-1) 数值解:例如例如f=t^2*...
    求f在区间[a,b]上对t的定积分。
    符号解:例如f=t^2*exp(-t);a=0,b=1
    >> clear
    >> syms t%定义符号变量
    >> f=t^2*exp(-t);
    >> int(f,t,0,1)
    
    ans =
    
    2 - 5*exp(-1)
    数值解:例如例如f=t^2*exp(-t^3);a=0,b=1
    >> clear
    >> t=0:0.0001:1;%中间的0.0001是步长
    >> f=t.^2.*exp(-t.^3);%求节点处的函数值。这一句的"^"和"*"前面的"."表示对应元素乘方、相乘。因为t是向量,只有方阵才可以乘方,矩阵乘法也必须满足相应的维数关系
    >> sum(f*0.0001)%节点处的函数值相当于矩形的高,步长相当于矩形的宽,乘积再求和就得到总面积的近似值。
    
    ans =
    
    0.2107
    

    作者:TianSL

    展开全文
  • matlab求定积分的若干实例,包含注释讲解
  • 今天小编就为大家分享一篇python、Matlab求定积分的实现,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
  • matlab求定积分的三个实例代码

    千次阅读 2021-04-18 03:48:52
    一、符号积分符号积分由函数int来实现。该函数的一般调用格式为:int(s):...int(s,v,a,b):求定积分运算。a,b分别表示定积分的下限和上限。该函数被积函数在区间[a,b]上的定积分。a和b可以是两个具体的数,也可以...

    一、符号积分

    符号积分由函数int来实现。该函数的一般调用格式为:

    int(s):没有指定积分变量和积分阶数时,系统按findsym函数指示的默认变量对被积函数或符号表达式s求不定积分;

    int(s,v):以v为自变量,对被积函数或符号表达式s求不定积分;

    int(s,v,a,b):求定积分运算。a,b分别表示定积分的下限和上限。该函数求被积函数在区间[a,b]上的定积分。a和b可以是两个具体的数,也可以是一个符号表达式,还可以是无穷(inf)。当函数f关于变量x在闭区间[a,b]上可积时,函数返回一个定积分结果。当a,b中有一个是inf时,函数返回一个广义积分。当a,b中有一个符号表达式时,函数返回一个符号函数。

    例:

    求函数x^2+y^2+z^2的三重积分。内积分上下限都是函数,对z积分下限是sqrt(x*y),积分上限是x^2*y;对y积分下限是sqrt(x),积分上限是x^2;对x的积分下限1,上限是2,求解如下:

    >>syms x y z %定义符号变量

    >>F2=int(int(int(x^2+y^2+z^2,z,sqrt(x*y),x^2*y),y,sqrt(x),x^2),x,1,2) %注意定积分的书写格式

    F2 =

    1610027357/6563700-6072064/348075*2^(1/2)+14912/4641*2^(1/4)+64/225*2^(3/4) %给出有理数解

    >>VF2=vpa(F2) %给出默认精度的数值解

    VF2 =

    224.92153573331143159790710032805

    二、数值积分

    1.数值积分基本原理

    求解定积分的数值方法多种多样,如简单的梯形法、辛普生(Simpson)法、牛顿-柯特斯(Newton-Cotes)法等都是经常采用的方法。它们的基本思想都是将整个积分区间[a,b]分成n个子区间[xi,xi+1],i=1,2,…,n,其中x1=a,xn+1=b。这样求定积分问题就分解为求和问题。

    2.数值积分的实现方法

    基于变步长辛普生法,MATLAB给出了quad函数来求定积分。该函数的调用格式为:

    [I,n]=quad('fname',a,b,tol,trace)

    基于变步长、牛顿-柯特斯(Newton-Cotes)法,MATLAB给出了quadl函数来求定积分。该函数的调用格式为:

    [I,n]=quadl('fname',a,b,tol,trace)

    其中fname是被积函数名。a和b分别是定积分的下限和上限。tol用来控制积分精度,缺省时取tol=0.001。trace控制是否展现积分过程,若取非0则展现积分过程,取0则不展现,缺省时取trace=0。返回参数I即定积分值,n为被积函数的调用次数。

    例:

    求函数'exp(-x*x)的定积分,积分下限为0,积分上限为1。

    >>fun=inline('exp(-x.*x)','x'); %用内联函数定义被积函数fname

    >>Isim=quad(fun,0,1) %辛普生法

    Isim =

    0.746824180726425

    IL=quadl(fun,0,1) %牛顿-柯特斯法

    IL =

    0.746824133988447

    三、梯形法求向量积分

    trapz(x,y)—梯形法沿列方向求函数Y关于自变量X的积分(向量形式,数值方法)。

    >>d=0.001;

    >>x=0:d:1;

    >>S=d*trapz(exp(-x.^2))

    S=

    0.7468

    或:

    >>format long g

    >>x=0:0.001:1; %x向量,也可以是不等间距

    >>y=exp(-x.^2); %y向量,也可以不是由已知函数生成的向量

    >>S=trapz(x,y); %求向量积分

    S =

    0.746824071499185

    int的积分可以是定积分,也可以是不定积分(即有没有积分上下限都可以积)可以得到解析的解,比如你对x^2积分,得到的结果是1/3*x^3,这是通过解析的方法来解的。如果int(x^2,x,1,2)得到的结果是7/3

    quad是数值积分,它只能是定积分(就是有积分上下限的积分),它是通过simpson数值积分来求得的(并不是通过解析的方法得到解析解,再将上下限代入,而是用小梯形的面积求和得到的)。如果f=inline('x.^2');quad(f,1,2)得到的结果是2.333333,这个数并不是7/3

    int是符号解,无任何误差,唯一问题是计算速度;quad是数值解,有计算精度限制,优点是总是能有一定的速度,即总能在一定时间内给出一个一定精度的解。

    [FROM: 58.192.116.*]

    对于y=exp(-(x.^2+x+1)/(1+x)),被积函数之原函数无"封闭解析表达式",符号计算无法解题,这是符号计算有限性,结果如下:

    >> syms x

    >>y=exp(-(x.^2+x+1)/(1+x))

    >>s=int(y,x,0,inf)

    y =

    exp((-x^2-x-1)/(1+x))

    Warning: Explicit integral could not be found.

    >> In sym.int at 58

    s =

    int(exp((-x^2-x-1)/(1+x)),x = 0 .. Inf)

    只有通过数值计算解法

    >> dx=0.05; %采样间隔

    >>x=0:dx:1000; %数值计算适合于有限区间上,取有限个采样点,只要终值足够大,精度不受影响

    >>y=exp(-(x.^2+x+1)./(1+x));

    >>S=dx*cumtrapz(y); %计算区间内曲线下图形面积,为小矩形面积累加得

    >>S(end)

    ans =

    0.5641 %所求定积分值

    或进行编程,积分上限人工输入,程序如下:

    %表达式保存为函数文件

    function y=fxy(x)

    y=exp(-(x.^2+x+1)./(1+x)); % save fxy.m

    % main --------主程序

    clear,clc

    h=.001;p=0;a=0;

    R=input('请输入积分上限,R=')

    while a

    p=p+(fxy(a)+fxy(a+h))*h/2;

    a=a+h;

    end

    p=vpa(p,10)

    运行主程序后得到结果:

    请输入积分上限,R=1000

    R =

    1000

    p =

    .5641346055

    其它结果如下:

    0-1: int=.3067601686

    0-2: int=.4599633159

    0-5: int=.5583068217

    0-10: int=.5640928975

    0-100: int=.5641346055

    0-1000: int=.5641346055

    [FROM: 211.65.33.*]

    在积分函数中,sqrt(e1*e2*e3)*cos(n1*pi*x/12).*cos(n2*pi*y/11).*cos(n3*pi*z/9);已知变量e1,e2,e3,n1,n2,n3通过函数参数输入,如果直接用inline或字符串的形式,则表达式中的未知数有9个,分别是e1,e2,e3,n1,n2,n3,x,y,z。而用匿名函数时,已知变量e1,e2,e3,n1,n2,n3就会以常数看待,未知数就只有x,y,z了,可以求三重积分了。

    完整函数程序:

    function Fn(n1,n2,n3)

    if n1==0

    e1=1;

    else if n1>0

    e1=2;

    end

    end

    if n2==0

    e2=1;

    else if n2>0

    e2=2;

    end

    end

    if n3==0

    e3=1;

    else if n3>0

    e3=2;

    end

    end

    F=@(x,y,z)sqrt(e1*e2*e3)*cos(n1*pi*x/12).*cos(n2*pi*y/11).*cos(n3*pi*z/9);

    S=triplequad(F,-6,6,-5.5,5.5,-4.5,4.5) %求三重数值积分

    将以上代码保存为Fn.m程序文件,即m文件,然后运行:

    >> Fn(1,1,1)

    S =

    866.9655

    [FROM: 211.65.33.*]

    三重积分请用三重积分函数triplequad,与三个积分上下限对应,即x=triplequad(F,-6,6,-5.5,5.5,-4.5,4.5)

    其中被积函数F用"匿名函数"来表达,即

    F=@(x,y,z)sqrt(e1*e2*e3)*cos(n1*pi*x/12).*cos(n2*pi*y/11).*cos(n3*pi*z/9);

    如果直接用inline或字符串的形式,则表达式中的未知数有9个,分别是e1,e2,e3,n1,n2,n3,x,y,z。而用匿名函数时,已知变量e1,e2,e3,n1,n2,n3就会以常数看待,未知数就只有x,y,z了。

    完整函数程序:

    function Fn(n1,n2,n3)

    if n1==0

    e1=1;

    else if n1>0

    e1=2;

    end

    end

    if n2==0

    e2=1;

    else if n2>0

    e2=2;

    end

    end

    if n3==0

    e3=1;

    else if n3>0

    e3=2;

    end

    end

    F=@(x,y,z)sqrt(e1*e2*e3)*cos(n1*pi*x/12).*cos(n2*pi*y/11).*cos(n3*pi*z/9);

    x=triplequad(F,-6,6,-5.5,5.5,-4.5,4.5)

    >> Fn(1,1,1)

    x =

    866.9655

    [FROM: 58.192.116.*]

    展开全文
  • MATLAB求定积分

    万次阅读 多人点赞 2017-12-21 10:57:20
    一、符号积分 符号积分由函数int来实现。该函数的一般调用格式为: int(s):没有指定积分...int(s,v,a,b):求定积分运算。a,b分别表示定积分的下限和上限。该函数被积函数在区间[a,b]上的定积分。a和b可以是两个

    一、符号积分
    符号积分由函数int来实现。该函数的一般调用格式为:
    int(s):没有指定积分变量和积分阶数时,系统按findsym函数指示的默认变量对被积函数或符号表达式s求不定积分;
    int(s,v):以v为自变量,对被积函数或符号表达式s求不定积分;
    int(s,v,a,b):求定积分运算。a,b分别表示定积分的下限和上限。该函数求被积函数在区间[a,b]上的定积分。a和b可以是两个具体的数,也可以是一个符号表达式,还可以是无穷(inf)。当函数f关于变量x在闭区间[a,b]上可积时,函数返回一个定积分结果。当a,b中有一个是inf时,函数返回一个广义积分。当a,b中有一个符号表达式时,函数返回一个符号函数。
    例:
    求函数x^2+y^2+z^2的三重积分。内积分上下限都是函数,对z积分下限是sqrt(x*y),积分上限是x^2*y;对y积分下限是sqrt(x),积分上限是x^2;对x的积分下限1,上限是2,求解如下:
    >>syms x y z  %定义符号变量
    >>F2=int(int(int(x^2+y^2+z^2,z,sqrt(x*y),x^2*y),y,sqrt(x),x^2),x,1,2)  %注意定积分的书写格式
    F2 =
    1610027357/6563700-6072064/348075*2^(1/2)+14912/4641*2^(1/4)+64/225*2^(3/4)    %给出有理数解
    >>VF2=vpa(F2)  %给出默认精度的数值解
    VF2 =
    224.92153573331143159790710032805


    二、数值积分
    1.数值积分基本原理
    求解定积分的数值方法多种多样,如简单的梯形法、辛普生(Simpson)法、牛顿-柯特斯(Newton-Cotes)法等都是经常采用的方法。它们的基本思想都是将整个积分区间[a,b]分成n个子区间[xi,xi+1],i=1,2,…,n,其中x1=a,xn+1=b。这样求定积分问题就分解为求和问题。
    2.数值积分的实现方法
    基于变步长辛普生法,MATLAB给出了quad函数来求定积分。该函数的调用格式为:
    [I,n]=quad('fname',a,b,tol,trace)
    基于变步长、牛顿-柯特斯(Newton-Cotes)法,MATLAB给出了quadl函数来求定积分。该函数的调用格式为:
    [I,n]=quadl('fname',a,b,tol,trace)
    其中fname是被积函数名。a和b分别是定积分的下限和上限。tol用来控制积分精度,缺省时取tol=0.001。trace控制是否展现积分过程,若取非0则展现积分过程,取0则不展现,缺省时取trace=0。返回参数I即定积分值,n为被积函数的调用次数。
    例:
    求函数'exp(-x*x)的定积分,积分下限为0,积分上限为1。
    >>fun=inline('exp(-x.*x)','x');  %用内联函数定义被积函数fname
    >>Isim=quad(fun,0,1)  %辛普生法
    Isim =
      0.746824180726425
    IL=quadl(fun,0,1)   %牛顿-柯特斯法
    IL =
    0.746824133988447


    三、梯形法求向量积分
    trapz(x,y)—梯形法沿列方向求函数Y关于自变量X的积分(向量形式,数值方法)。
    >>d=0.001;
    >>x=0:d:1;
    >>S=d*trapz(exp(-x.^2))
    S= 
    0.7468
    或:
    >>format long g
    >>x=0:0.001:1;  %x向量,也可以是不等间距
    >>y=exp(-x.^2);   %y向量,也可以不是由已知函数生成的向量
    >>S=trapz(x,y);   %求向量积分
    S =
        0.746824071499185 
     
     
    附:int与quad区别
    int的积分可以是定积分,也可以是不定积分(即有没有积分上下限都可以积)可以得到解析的解,比如你对x^2积分,得到的结果是1/3*x^3,这是通过解析的方法来解的。如果int(x^2,x,1,2)得到的结果是7/3


    quad是数值积分,它只能是定积分(就是有积分上下限的积分),它是通过simpson数值积分来求得的(并不是通过解析的方法得到解析解,再将上下限代入,而是用小梯形的面积求和得到的)。如果f=inline('x.^2');quad(f,1,2)得到的结果是2.333333,这个数并不是7/3


    int是符号解,无任何误差,唯一问题是计算速度;quad是数值解,有计算精度限制,优点是总是能有一定的速度,即总能在一定时间内给出一个一定精度的解。

    展开全文
  • 共回答了20个问题采纳率:95%syms t r m x>> y=1/(t+2*(r-sqrt(r^2-(m/2-x)^2)));>> f=int(y,0,m);f=simple(f);f1/2*(-i*t*atanh((4*r^2+(-t*(t+4*r))^(1/2)*m)/((t+2*r)^2)^(1/2)/(-m^2+4*r^2)^(1/2))+...
  • MATLAB求定积分

    2022-02-06 20:22:25
    例: syms x; f=(1+log(x))/x; int(f,x,1,2) ans =log(2)+1/2*log(2)^2
  • matlab图像定积分

    千次阅读 2021-04-20 03:41:12
    用递推公式计算定积分(matlab版)_数学_自然科学_专业资料。...数值积分的实现方法 2/3 个人收集整理 仅供参考学习 基于变步长辛普生法,MATLAB 给出了 quad 函数来求定积分。该函数的......I=quadl('x.*sin(x)...
  • 函数y=(sin(1/x)+cos(1/x))^x从1到2的定积分
  • Matlab计算定积分的操作内容讲解

    千次阅读 2021-04-20 14:15:45
    原创Matlab计算定积分的操作内容讲解编辑:小鑫 来源:PC下载网时间...打开Matlab,找到Matlab的命令窗口,点击进入,如图,当然也可以编辑脚本然后通过运行脚本来求定积分。需要在命令行输入syms x, sym的作用是将字...
  • matlab如何求解定积分

    千次阅读 2021-04-23 12:20:22
    用递推公式计算定积分(matlab版)_数学_自然科学_专业资料。...数值积分的实现方法 2/3 个人收集整理 仅供参考学习 基于变步长辛普生法,MATLAB 给出了 quad 函数来求定积分。该函数的......28.matlab计算定积分_数学_...
  • 一些matlab的基础资料-Matlab 和 不定积分与定积分.doc 这些是我在学习期间自己做的一些笔记,简洁明了,分享给大家,希望对刚学习的朋友有所帮助,主要是高等数学内容 逻辑运算:matlab编程基础の基础.doc ...
  • MATLAB定积分的求解

    千次阅读 2020-06-06 13:11:36
    MATLAB定积分求解 用int()函数方法求解 我们以求解e^x在[0,2]内的定积分为例。 ∫02e2dt . \int_0^2e^2dt\,. ∫02​e2dt. 操作步骤如下: 1. 定义变量 在matlab命令窗口中输入命令:syms x 2. 再输入命令:y=...
  • MATLAB求解定积分方程代码,包括了简单的例子和全部代码,采用字符串表示积分函数的方法,符号求解方法和句柄函数表示积分项的计算方法。
  • Matlab求解定积分/不定积分

    万次阅读 多人点赞 2019-10-03 14:30:49
    功能:计算定积分 格式:int(f,x) 功能:计算不定积分 使用int函数之前,先用syms声明x是符号变量 例: 代码: syms x y1=1/(1+x^4); y2=(x*exp(x))/(1+x)^2; y3=1/(x^2+2*x+3); fy1=int(y1) fy2=int(y2,0.....
  • 计算不定积分x^3lnx的值
  • matlab中定义矩阵:A = [1 2 3; 2 3 4; 3 4 5],每行元素空格隔开,两行之间使用分号隔开。 线性代数矩阵乘法运算、求解知识。乘法时注意行列的数量,要前列=后行才能相乘。且AB不一定等于BA(还是有可能相等的,...
  • 该楼层疑似违规已被系统折叠隐藏此楼查看此楼1计算函数zx+e...设z=xe^xy所有的三阶导数4.函数f(x,y,z)=x^2+y^2+z^2在点(1.1.1)处沿方向(1,1,1)的方向导数、5.函数f(x,Y,z)=(y-x^2)(y-x^4)的极值。a71819505152...
  • matlab计算定积分代码惊人的tribble-MATLAB 在本练习中,您将使用黎曼和和 MATLAB 内置函数积分来近似计算函数的定积分值。 该代码接受作为输入:一个函数 fun、一个行向量 n,其条目是分区的子区间的数量,以及两个...
  • matlab定积分的近似计算.ppt MATLAB数学建模与仿真 定积分的近似计算 2 定积分计算的基本公式是牛顿 莱布尼兹公式 但当被积函数的原函数不知道时 如何计算 这时就需要利用近似计算 特别是在许多实际应用中 被积函数...
  • matlab求定积分和不定积分

    千次阅读 2018-08-14 11:20:00
    matlab求定积分与不定积分 创建于2018-03-21 22:42 求定积分与不定积分是一件比较繁琐的事,但是我们可以借助matlab,下面与大家分享解决方法 材料/工具 matlab 不定积分 函数“xe^x”的不定积分 ...
  • MATLAB计算不定积分与定积分

    千次阅读 2022-03-06 17:51:57
    MATLAB可以用于求解函数定积分与不定积分,其中符号积分指令int来求解不定积分问题非常有效。 1.不定积分: 在int命令中加入积分限,就可以求得函数的定积分值。 syms x >> int(log(x)/(1-x)^2) ans = ...
  • 使用Matlab求解定积分/不定积分

    万次阅读 多人点赞 2018-01-28 14:31:40
    功能:计算定积分 格式:int(f,x) 功能:计算不定积分 使用int函数之前,先用syms声明x是符号变量 例: 代码: syms x y1=1/(1+x^4); y2=(x*exp(x))/(1+x)^2; y3=1/(x^2+2*x+3); fy1=int(y1)
  • 龙贝格求定积分.rar

    2019-12-12 21:38:08
    用romberg数值方法求解定积分,可直接运行,程序移植性强,详细注释,研究生学数值分析时亲手写的,初学者可以学习以下
  • matlab int 求定积分

    万次阅读 2018-06-28 11:21:29
    int(s,v,a,b):求定积分运算。a,b分别表示定积分的下限和上限。该函数被积函数在区间[a,b]上的定积分。a和b可以是两个具体的数,也可以是一个符号表达式,还可以是无穷(inf)。当函数f关于变量x在闭区间[a,b]上可积...
  • 从一个椭圆积分看matlab求定积分

    千次阅读 2016-11-09 11:01:11
    一个积分,能出解析解固然好,但是不出解析解,一个数值解基本能够满足实际的需求...下面以椭圆积分为例,我来说一说,matlab如何求定积分。 clc clear syms theta; a=5; b=3; c=sqrt(a^2-b^2); e=c/a;h p=abs(a

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 11,082
精华内容 4,432
关键字:

matlab求定积分

matlab 订阅