精华内容
下载资源
问答
  • 研究带分数次扩散项(-Δ)αu的广义三维Navier-Stokes方程(GNS)的正则性。采用能量积分方法,研究GNS方程的解用速度向量的分量来判定正则性,指出:如果抄u1ax3,au2ax3∈Lp2(0,T;Lq2)或者au1ax2,抄u2抄x1∈Lp2(0,T;Lq2),...
  • 介绍了准正交滤波器及其小波,以及正则性的3个命题。运用尺度函数正则性命题分析了长度为2N的准正交小波的正则性,得到正则指标值.对于N=3,4,5,正则指标分别是α3=1.546 4,α4=1.446 4和α5=1.571 0.
  • 有关解在时间t方向上的正则性是在解决发展方程组耦合问题过程中一直关注的目标.由于在解决一些如椭圆-抛物型方程组耦合问题、椭圆-双曲型方程组耦合问题等,都会碰到椭圆型方程中关于时间.t正则性的估计,为此这里针对...
  • 在对偏微分方程的研究过程中,关于方程弱解正则性的研究是一个非常有价值的研究领域。在一定的假设条件下,利用一些方法和技巧术,可以获得一类偏微分方程初边值问题弱解的正则性。这些方法和技巧包括:副近法,弱...
  • 为了研究解的正则性,研究了带旋涡的轴对称三维不可压MHD方程组。考虑2类特殊的MHD方程组的光滑弱解:uθ=0、Br=Bz=0和Br=Bz=0,通过采用能量法、Sobolev嵌入法等,证明了如果速度场的径向方向分量ur满足一定条件,则可...
  • 设I,K是环R的右理想,讨论了环R的平凡扩张R∝R具有右(I0,K0)?(m,n)?内射性(特别地,右(I0,K0)?n?内射性、右(I0,K0)?...此外,本文还讨论了环R[A,B]具有强正则性、弱正则性的充要条件。
  • 目前,国内外有很多关于算子的正则性的研究成果,但是没有准确的方法来说明连续线性算子的正则性。从而,很自然地会考虑到条件比它要弱的算子,这就是Banach格上的广义正则算子。首先从理论上证明了非广义正则紧算子...
  • 因此,本文探讨了迈尔森正则性的定量版本,我们称之为 λ-正则性。 它衡量迈尔森分布的规律性。 在此过程中,我们统一了经济学、计算机科学、应用数学和统计学方面的不同文献。 这个概念之前已经出现过,例如,在 ...
  • SF环的正则性 (2001年)

    2021-04-23 06:33:10
    讨论了SF环的正则性,证明了如果R是SF环且是ZI环,则R是正则的。同时证明了SF环R如果满足下列三条件之一,则R是强正则环:(1)R是ZI环并且每个单奇异右(或左)R-模是GP-内射的;(2) R是SRB环并且每个单奇异右R-模是GP-内射...
  • 利用环的拟理想对环的正则性进行了刻画,主要得到了两个结果:①设R是左SPF-环。若R的每一个极大的左理想是拟理想,则R/J(尺)是强正则环。②设环R的每一个极大的左理想是拟理想。则以下等价:R是强正则环;R是广义...
  • 给出了关于子基的正则空间和相对正则性概念,研究了各种正则性之间的关系,证明了各种正则空间的充要条件,丰富了一般拓扑学中的正则空间和相对正则性理论.
  • 研究带分数次扩散项(-△)a和(-△)b的广义磁流体力学方程组(GMHD)的正则性。这一方程包含了Navier-Stokes方程与通常的磁流体力学方程组(MHD)。本文采用能量积分方法,研究GMHD方程的解用速度向量的分量来判定...
  • 令M是有限集合,A是M的非空子集,FM是M上的全变换半群.定义 FM={f∈FM|f(A)c-}显然,FM是FM的子半群.主要刻画了FM的完全正则元和超富足元的性质,同时描述了FM的完全正则性和超富足性的条件.
  • 图Laplacian的谱在数据科学中起着重要的作用,是聚类和降维算法的基础,如光谱聚类、Laplacian特征图、扩散图等。
  • Gulicklzl和Henne&ldl又分别讨论了Axens正则性的刻划。在文叼中,我们把文中的定义和[3]中的结果推广到一类局部凸拓扑代数。本文讨论具有H性质的各代数的Arens正则性的问题,得到了Aren日正别的充分必要条件。
  • 研究了无界区域Rn上Plate方程全局吸引子的正则性和有限分形维性.该方程的全局吸引子在相空间H2( Rn)×L2( Rn)的存在性已在先期文章建立,现在进一步证明该全局吸引子具有更好的正则性,即它是H4( Rn)×H2( Rn)的有界集...
  • 本文考虑退化弱拟正则映射.利用Hodge分解、逆Holder不等式等工具,证明了其正则结果:存在指数q1=q1(n ,l,k )< 1,使得对每一退化弱K拟正则映射f ∈ W1,ql(Ω,Rn),都有f ∈W1,l (Ω, Rn),即f为退化拟正则映射。
  • 本文在文献[1]的基础上,以代数几何中若干理论和方法为工具,对沿球面上Lagrange插值正则性问题进行了进一步的研究和探讨.文中将文献[1]中所给出构造沿球面插值正则结点组的添加平面法推广到了添加圆锥曲面的情形,...
  • 考察三维不可压Navier-Stokes方程的弱解正则性问题 基于Holder不等式和速度场的不可压缩性质,通过对速度向量的部分分量及相关导数的估计,得到了一个新的关于Leray-Hopf弱解的正则性准则的结果在速度向量的部分分量...
  • 在三维空间的有界区域上考虑不可压缩MHD方程弱解的正则性准则。利用能量估计的方法证明了一些新的涉及压力项商的正则性准则。具体地,证明了若MHD方程的弱解 u,( b) 满足 * 上唯一的强解,其中w+=u+b;w-=u-b。(注:*...
  • 图的半群理论是图的群理论的延伸.图的不可收缩性和end-正则性是其中受到普遍关注的课题.本文揭示了两者之间的内在联系。
  • 为了得到Heisenberg群上具有不连续系数的高阶退化椭圆方程强解的Morrey正则性,利用了Heisenberg群上奇异积分和奇异积分与BMO函数的交换子在Morrey空间上的有界性,通过凝固系数法,并将高阶向量场导数表示为奇异积分及...
  • 本文研究了三维Boussinesq方程弱解的正则性.利用精细的能量估计方法,得到了关于弱解正则性的一些充分条件,同时这些结果表明速度场比温度函数对于解的正则性起者更重要的作用.
  • 运用紧性方法证明了Stokes耦合系统解的存在性,用能量方法建立了解的正则性
  • 一个有限半群是满足左正则性条件的IC富足半群当且仅当它是一个幂等元形成左正则带的纯整超富足半群,但满足左正则性条件的无限IC富足半群不都是幂等元形成左正则带的纯整超富足半群。
  • 对退化椭圆型方程-divA(x,g+u)=f+divh,当p≥2时用扰动向量场的Hodge分解技巧来构造适当的检验函数,得到其很弱解的正则性和稳定性结果。
  • 在Besov空间中研究三维广义Navier-St okes方程弱解的正则性准则.利用Besov空间的对数型不等式,获得了一个关于速度场梯度的正则性准则,证明了当速度场在Besov空间中满足一定的临界增长条件时,方程的弱解实际上是存在...
  • 大数据-算法-非线性椭圆边值问题正解的存在性和正则性.pdf
  • 给出了环的半格和及补半格和的弱正则性的刻画,即若环R是其弱正则子环Rn(α∈r)的半格和,那么R也是弱正则环;若弱正则环R是其子环Rn(α∈r)的补半格和,则Rn(a∈r)都是弱正则环。
  • 首先给出Fuzzy 拓扑空间正则性已有的三种定义.定义1 Fuzzy 拓扑空间(X,■)叫正则空间,如果每个Fuzzy 开集U 都可表示为一族Fuzzy 开集{V_t|t∈T}的并,且■t∈T,V_t

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 336,900
精华内容 134,760
关键字:

正则性