精华内容
下载资源
问答
  • 连续内存分配与非连续内存分配

    千次阅读 2018-09-22 08:45:03
    连续内存分配 首次适配:空闲分区以地址递增的次序链接。分配内存时顺序查找,找到大小能满足要求的第一个空闲分区。 最优适配:空闲分区按容量递增形成分区链,找到第一个能满足要求的空闲分区。 最坏适配:空闲...

    连续内存分配

    1. 首次适配:空闲分区以地址递增的次序链接。分配内存时顺序查找,找到大小能满足要求的第一个空闲分区。
    2. 最优适配:空闲分区按容量递增形成分区链,找到第一个能满足要求的空闲分区。
    3. 最坏适配:空闲分区以容量递减的次序链接。找到第一个能满足要求的空闲分区,也就是挑选出最大的分区。

     

    非连续内存分配

    一、分页式存储管理介绍:

           用户程序逻辑地址空间->页(连续)

           物理内存空间->块(离散)

           页表(内存中):key=页号,value=块号(内存中的物理块)

           快表(高速缓冲区存储器中):key=页号,value=块号(内存中的物理块)

    1. 基本思想:用户程序的地址空间被划分成若干固定大小的区域,称为“页”,相应地,内存空间分成若干个物理块,页和块的大小相等。可将用户程序的任一页放在内存的任一块中,实现了离散分配。
    2. 分页概念:逻辑空间分页,物理空间分块,页与块同样大,页连续块离散,用页号查页表,由硬件做转换,页面和内存块大小一般选为2的若干次幂(便于管理)。页表作用:实现从页号到物理地址的映射
    3. 分页存储管理的地址机构:页号4位,每个作业最多2的4次方=16页,表示页号从0000~1111(24-1),页内位移量的位数表示页的大小,若页内位移量12位,则2的12次方=4k,页的大小为4k,页内地址从000000000000~111111111111
    4. 页表:分页系统中,允许将进程的每一页离散地存储在内存的任一物理块中,为了能在内存中找到每个页面对应的物理块,系统为每个进程建立一张页面映射表,简称页表。页表的作用是实现从页号到物理块号的地址映射。
    5. 具有快表的地址变换机构:分页系统中,CPU每次要存取一个数据,都要两次访问内存(访问页表、访问实际物理地址)。为提高地址变换速度,增设一个具有并行查询能力的特殊高速缓冲存储器,称为“联想存储器”或“快表”,存放当前访问的页表项,快表就是存放在高速缓冲存储器的部分页表。它起页表相同的作用。包含快表机制的内存管理中,当要访问内存数据的时候,首先将页号在快表中查询,如果查找到说明要访问的页表项在快表中,那么直接从快表中读取相应的物理块号;如果没有找到,那么访问内存中的页表,从页表中得到物理地址,同时将页表中的该映射表项添加到快表中(可能存在快表换出算法)。只需要一次内存访问
    6. 多级页表:在某些计算机中如果内存的逻辑地址很大,将会导致程序的页表项会很多,而页表在内存中是连续存放的,所以相应的就需要较大的连续内存空间。为了解决这个问题,可以采用两级页表或者多级页表的方法,其中外层页表一次性调入内存且连续存放,内层页表离散存放。相应的访问内存页表的时候需要一次地址变换,访问逻辑地址对应的物理地址的时候也需要一次地址变换,而且一共需要访问内存3次才可以读取一次数据。
    7. 如果存储器采用基本分页机制,那么操作系统会为每个进程或任务建立一个页表(这个页表可能是一级的也可能是多级的)。整个操作系统中有多个进程在运行,那么系统就会有多个页表。页表在内存中的存储位置由寄存器CR3给出。

    二、分段式存储管理

    1、基本思想:将用户程序地址空间分成若干个大小不等的段,每段可以定义一组相对完整的逻辑信息。存储分配时,以段为单位,段与段在内存中可以不相邻接,也实现了离散分配。

    2、分段存储方式的引入:方便编程、分段共享、分段保护、动态链接、动态增长

    3、分段地址结构:作业的地址空间被划分为若干个段,每个段定义了一组逻辑信息。例程序段、数据段等。每个段都从0开始编址,段长不一样,并采用一段连续的地址空间。段的长度由相应的逻辑信息组的长度决定,因而各段长度不等。整个作业的地址空间是二维的。一维是段号,一维是(段内地址/段表项的长度);由于分段管理中,每个段内部是连续内存分配,但是段和段之间是离散分配的,因此也存在一个逻辑地址到物理地址的映射关系,相应的就是段表机制。段表中的每一个表项记录了该段在内存中的起始地址和该段的长度。段表可以放在内存中也可以放在寄存器中。

    4、访问内存的次数:访问内存的时候根据段号和(段内地址/段表项的长度/段内位移量)计算当前访问段在段表中的位置,然后访问段表,得到该段的物理地址,根据该物理地址以及段内偏移量就可以得到需要访问的内存。由于也是两次内存访问,所以分段管理中同样引入了联想寄存器。

    5、如果存储器采用基本分段机制,那么操作系统会为每个进程或任务建立一个段表

    分段总结:作业空间是二维的,一维段号、一维段内地址/段内位移量(段长),段表由段号、段长、基址组成,用户通过段号到段表中获得段长与基址,从而定位到内存中的数据。内存空间中,每个段之间不连续,但是每个段自己内部是连续的

    三、分页和分段的主要区别(两者都不要求作业连续存放)

    1、段是信息的逻辑单位,分段的目的是为了更好地实现共享,根据用户的需要划分,因此段对用户是可见的;页是信息的物理单位,是为了管理主存的方便而划分的,分页是为了实现非连续分配,以便解决内存碎片问题,或者说分页是由于系统管理的需要,其对用户是透明的

    2、段的大小不固定,由它所完成的功能决定;页的大小固定(一般为4K),由系统决定,将逻辑地址划分为页号和页内地址是由机器硬件实现的。

    3、段向用户提供二维地址(段号+段内地址);页向用户提供的是一维地址(页号)

    4、段是信息的逻辑单位,便于存储保护和信息的共享,页的保护和共享受到限制。

    四、段页式存储管理

    1、基本思想:

           分页系统能有效地提高内存的利用率,而分段系统能反映程序的逻辑结构,便于段的共享与保护,将分页与分段两种存储方式结合起来,就形成了段页式存储管理方式。

           在段页式存储管理系统中,作业的地址空间首先被分成若干个逻辑分段,每段都有自己的段号,然后再将每段分成若干个大小相等的页。对于主存空间也分成大小相等的页,主存的分配以页为单位。

           段页式系统中,作业的地址结构包含三部分的内容:段号、页号、页内位移量

           程序员按照分段系统的地址结构将地址分为段号与段内位移量,地址变换机构将段内位移量分解为页号和页内位移量。

           为实现段页式存储管理,系统应为每个进程设置一个段表,包括每段的段号,该段的页表始址和页表长度(本来是段内基址和段长),如下图。每个段有自己的页表,记录段中的每一页的页号和存放在主存中的物理块号。

           如果采用段页式结合的机制,那么一般一个进程或任务,操作系统会给其建立一个段表,而段表中的每个段又会对应一个页表,也就是说,段页式机制的每个进程有一个段表,有多个页表。

    2、地址变换的过程:

    (1)程序执行时,从PCB中取出段表始址和段表长度,装入段表寄存器。

    (2)由地址变换机构将逻辑地址自动分成段号、页号和页内地址。(涵盖了段表+页表)

    (3)将段号与段表长度进行比较,若段号大于或等于段表长度,则表示本次访问的地址已超越进程的地址空间,产生越界中断。

    (4)将段表始址与段号和段表项长度的乘积相加,便得到该段表项在段表中的位置。

    (5)取出段描述子得到该段的页表始址和页表长度。

    (6)将页号与页表长度进行比较,若页号大于或等于页表长度,则表示本次访问的地址已超越进程的地址空间,产生越界中断。

    (7)将页表始址与页号和页表项长度的乘积相加,便得到该页表项在页表中的位置。

    (8)取出页描述子得到该页的物理块号。

    (9)对该页的存取控制进行检查。

    (10)将物理块号送入物理地址寄存器中,再将有效地址寄存器中的页内地址直接送入物理地址寄存器的块内地址字段中,拼接得到实际的物理地址。

    3、访问内存的次数

           在段页式系统中,为了获得一条指令或数据,须三次访问内存。第一次访问是访问内

           存中的段表,从中取得页表始址;第二次访问是访问内存中的页表,从中取出该页所在的物理块号,并将该块号与页内地址一起形成指令或数据的物理地址;第三次访问才是真正从第二次访问所得的地址中,取出指令或数据。

    4、段页式总结:

           作业空间分段,再将每段分成大小相等的页,内存也分页

           作业空间是二维的,分段号、页号、页内偏移量

           程序员按照分段系统的地址结构将地址分为段号与段内位移量(段的长度),地址变换机构将段内位移量分解为页号和页内位移量

    五、在网上找到了一个比较形象的比喻,挺不错的,列出来如下:

           打个比方,比如说你去听课,带了一个纸质笔记本做笔记。笔记本有100张纸,课程有语文、数学、英语三门,对于这个笔记本的使用,为了便于以后复习方便,你可以有两种选择。

           第一种是,你从本子的第一张纸开始用,并且事先在本子上做划分:第2张到第30张纸记语文笔记,第31到60张纸记数学笔记,第61到100张纸记英语笔记,最后在第一张纸做个列表,记录着三门笔记各自的范围。这就是分段管理,第一张纸叫段表。

           第二种是,你从第二张纸开始做笔记,各种课的笔记是连在一起的:第2张纸是数学,第3张是语文,第4张英语……最后呢,你在第一张纸做了一个目录,记录着语文笔记在第3、7、14、15张纸……,数学笔记在第2、6、8、9、11……,英语笔记在第4、5、12……。这就是分页管理,第一张纸叫页表。你要复习哪一门课,就到页表里查寻相关的纸的编号,然后翻到那一页去复习

    来自码农翻身 关于非连续内存分配的理解介绍:

    虚拟内存:时间局部性原理+空间局部性原理

    分页:

    每页4KB,装载程序的时候按4KB装载

            物理内存分块/页框(Page Frame),虚拟地址空间分页

            操作系统维持一个页表,用来映射虚拟页面和物理页面

            如果访问到一个没有被映射到物理内存的页面,则产生缺页中断

                  地址分为两部分:页号+偏移量(分段机制),由CPU的MMU实现地址的转换

                  由页号p在内存中的页表找到对应的页框号/块f,再到程序的物理地址中找到f块,对应偏移量i就可以得到程序了

            为了防止每次都要多次访问内存,可以在MMU的缓存中存放快表

    分段+分页:段页式存储管理机制

           将程序分为代码段、数据段、堆栈段便于存储管理(比如修改代码段的时候可以立马抛出异常)

           地址分为段号+偏移量,通过段号找到段的基址,和偏移量相加得到一个线性地址,这个线性地址再通过分页系统进行转换,最后形成物理地址

    参考链接:

    http://link.zhihu.com/?target=http%3A//blog.csdn.net/wangrunmin/article/details/7967293

    linux cp的原理(有助于理解文件存储系统)

    展开全文
  • 内存分配方式与内存分配算法

    千次阅读 2018-03-14 20:24:56
    内存分配方式有两种,连续内存分配方式和离散内存分配方式。不同的分配方式又有不同的分配算法。 内存分配算法,其实就是:有一大块空闲的资源,如何合理地分配资源?内存分配的思想可以用到很多其他的领域。比如...

    内存分配方式有两种,连续内存分配方式和离散内存分配方式。不同的分配方式又有不同的分配算法。

    内存分配算法,其实就是:有一大块空闲的资源,如何合理地分配资源?内存分配的思想可以用到很多其他的领域。比如Java虚拟机是如何将内存分配与回收的?再比如文件系统是如何将磁盘块分配与回收的?其本质就是如何把空闲的资源分配出去,分配之后又如何回收?目标就是分配快,回收也快,而且还不浪费。那么,就需要根据资源的特点、以及应用场景做权衡从而选择何种方式进行分配与回收。

    ①连续内存分配方式

    1)固定分区分配

    将内存划分成若干个固定大小的块。将程序装入块中即可。内存划分成各个块之后,块大小不再改变。当然,划分块的方式有:所有的块大小相等;划分的块大小不相等。

    这种方式,在实际的内存分配之前,就已经知道了所有的内存块大小了。

    2)动态分区分配

    需要一个空闲表 或者 空闲链 来记录目前系统中空间的内存区域。在内存分配时,需要查找空间表或空闲链找到一块内存分配给当前进程。

    动态分区分配算法:

    a)首次适应法

    b)循环首次适应法

    c)最佳适应法

    d)最坏适应法

    e)快速适应法

    3)可重定位分区分配

    说白了,就是增加了内存移动的功能。由于若干次内存分配与回收之后,各个空闲的内存块不连续了。通过“重定位”,将已经分配的内存“紧凑”在一块(就类似于JVM垃圾回收中的复制算法)从而空出一大块空闲的内存出来。

    ”紧凑“是需要开销的,比如需要重新计算 地址,这也为什么JVM垃圾回收会导致STW的原因。

    而离散分配方式–不管是分页还是分段,都是直接将程序放到各个离散的页中。从而就不存在“紧凑”一说了。

    连续内存分配方式涉及两种操作:内存分配操作 和 内存回收操作

    ②离散内存分配方式

    内存资源是有限的,程序要运行,必须得加载到内存。如果内存已经满了,而现在又有新的程序要运行,怎么办?—SWAP

    把当前不用的程序(数据)先换出内存,从而就有空间 加载当前需要运行的程序的一部分数据进入内存,这样大大提高了内存的利用率。

    由于牵涉到换入与换出,前面的连续内存分配方式就有点不适用了。因为,最明显的一个问题:对于连续内存分配方式,究竟换出哪部分数据呢?

    而这种只装入部分”数据”就可以使程序运行的机制,就是虚拟存储器的本质。

    1)分页存储管理

    将进程的逻辑地址空间分成若干大小相等的页面;同时,也将物理内存分成相等大小的页面(称为块或frame)。在为进程分配内存时,以块为单位将进程的若干页 可以 装入到内存中多个不邻接的物理块中。

    从上可以看出:“离散” 体现在:进程在内存中分配的空间(物理块)是不连续的。而对于连续分配方式,进程在内存的分配的空间是连续的。

    现在考虑32位系统,每个物理块的大小为4KB。如何把逻辑地址 转换成 物理地址?

    对每个进程而言,都有着自己的页表。页表的本质就是逻辑地址到物理地址的映射。

    分页存储中的逻辑地址的结构如下:

    这里写图片描述

    1)由于进程的逻辑页面大小与物理块(页帧)大小相同,故都为4K,因此需要12个位表示4K的大小(2^12=4K),即图中的【0-11】

    2)【12-31】表示的是页号。一共有20个位表示页号,也即:对于一个进程而言,一共可以有1M(2^20=1M)个页。

    3)每个进程的逻辑地址空间范围为0-2^32-1,因为:每个页大小为4K,一共有1M个页。故进程可用的逻辑空间为2^32B

    逻辑地址到物理地址的转换需要用到页表。具体细节是有一个“地址变换机构”,它有一个寄存器保存页表在内存的起始地址 以及 页表的长度。

    上面提到,一个进程最多可以有1M个页,故页表就有1M个页表项。假设每个页表项只有1B,那页表的大小也有1MB,所以:一般而言,页表也是很大的,不能全放在寄存器中,故页表也是存储在内存中的。(有些机器有“快表”,快表就是一个寄存器,它保存了页表中的部分表项);其次,也可以使用多级页表以解决单个页表太大的问题。

    那现在给定一个逻辑地址,怎么知道其物理地址呢?

    ①将【12-31】位的页号与 页表的长度比较。页号不能大于页表长度,否则越界。

    ②根据页号 找到 该页号所在的页表项,即该页号对应着哪个页表项。因为,页表项里面就存放着物理地址。

    那如何查找页表项呢?将页号乘以页表项的长度(每个页表项,其实就是一个逻辑的页 到 物理页 的映射信息),就知道了该逻辑页对应着哪个页表项(根据页号匹配页表项一般是由硬件完成的)

    然后,正如前面提到,页表也是保存在内存中的,故需要页表的内存始址(这是也为什么地址变换机构 保存 页表在内存的起始地址的原因),将页表始址 与 上面的乘积相加,就得到了该逻辑页对应的页表项的物理地址。读这个页表项的物理地址中的内容,就知道了该逻辑页对应的物理块地址(物理地址)。从而,就完成了逻辑地址到物理地址的转换。

    从上面可以看出,CPU每存取一个数据时,需要两次访问主存。一次是访问页表项的物理地址,得到了数据的物理块地址。第二次拿着物理块地址去取数据。

    在分页存储管理方式下:由于取一个数据,需要二次访存,CPU处理速度降低了一半,正由于这个原因:引入了“快表”(又称TLB(Translation Lookaside Buffer)),快表是个寄存器,用来保存那些当前访问过的页表项。从而,读页表项时,不需要再访存了,而是直接从寄存器中读取。

    虚拟存储器

    谈到虚拟存储器,总是说它从逻辑上扩充了内存的容量,why?

    内存是有限的,作业初始时保存在磁盘上的,如果要运行,必须得将相应的程序(数据)加载到内存中。那如果要运行的作业特别多,无法一下子装入内存,怎么办?

    一种方式是加内存条,这是从物理上扩充内存的容量。

    另一种方式是:先把作业的一部分程序(数据)装入内存,先让它运行着,运行过程中发现: 咦,我还需要其他的数据,而这些数据还未装入内存,因此就产生中断(缺页中断)再将数据加载到内存。

    采用这种方式,系统一次就可以将很多作业装入内存运行了。这时,从物理上看,内存还是原来的大小,但是它能运行的作业多了,因此说从逻辑上扩充了内存。

    将虚拟存储器这种思想与分页存储管理结合,一次只将作业的部分页面加载到内存中,形成了一个强大的内存分配与管理系统了。引入了虚拟存储器,同样需要有页表,记录逻辑地址到物理地址的映射,只不过此时的页表更复杂了,因为,有些页可能还在磁盘上。;还需要有缺页中断处理机构,因为毕竟只将一部分数据装入内存,会引起缺页中断嘛,就需要处理中断嘛;还需要地址变换机构,这里的地址变换机构功能更多,因为需要处理中断情况下的地址变换。

    转载自:https://www.cnblogs.com/hapjin/p/5689049.html

    展开全文
  • 图解Golang的内存分配

    万次阅读 2019-06-09 20:11:07
    一般程序的内存分配 在讲Golang的内存分配之前,让我们先来看看一般程序的内存分布情况: 以上是程序内存的逻辑分类情况。 我们再来看看一般程序的内存的真实(真实逻辑)图: Go的内存分配核心思想 Go是内置运行时的...

    一般程序的内存分配

    在讲Golang的内存分配之前,让我们先来看看一般程序的内存分布情况:

    以上是程序内存的逻辑分类情况。

    我们再来看看一般程序的内存的真实(真实逻辑)图:

    Go的内存分配核心思想

    Go是内置运行时的编程语言(runtime),像这种内置运行时的编程语言通常会抛弃传统的内存分配方式,改为自己管理。这样可以完成类似预分配、内存池等操作,以避开系统调用带来的性能问题,防止每次分配内存都需要系统调用。

    Go的内存分配的核心思想可以分为以下几点:

    • 每次从操作系统申请一大块儿的内存,由Go来对这块儿内存做分配,减少系统调用
    • 内存分配算法采用Google的TCMalloc算法。算法比较复杂,究其原理可自行查阅。其核心思想就是把内存切分的非常的细小,分为多级管理,以降低锁的粒度。
    • 回收对象内存时,并没有将其真正释放掉,只是放回预先分配的大块内存中,以便复用。只有内存闲置过多的时候,才会尝试归还部分内存给操作系统࿰
    展开全文
  • 静态内存分配与动态内存分配

    千次阅读 2019-05-25 14:05:02
    静态内存分配与动态内存分配 动机 平时看c/c++的书籍时,总会看到一种观点,说是C/C++语言使用的时候动态内存分配是最重要的,使用malloc等函数分配的内存必须要释放,否则及其容易出现内存泄露。但是自己有时候挺...

    静态内存分配与动态内存分配

    动机

    平时看c/c++的书籍时,总会看到一种观点,说是C/C++语言使用的时候动态内存分配是最重要的,使用malloc等函数分配的内存必须要释放,否则及其容易出现内存泄露。但是自己有时候挺奇怪的,啥时候的内存要自己释放,啥时候的内存是编译器释放呢?

    内存模型

    在这里插入图片描述
    这是csapp上面的linux进程内存分布图,从图中最下面往上看,只读段和读写段,在代码编译结束的时候就已经固定了,这一部分在整个进程生命周期是不会改变的。
    这一部分的内存是动态分配的,也就是需要我们程序员自己进行释放的,
    共享库这是链接的时候复制过来的库的代码 所以其实也是固定的
    ==栈-==用户站,编译器用它来实现函数调用,它是动态的,但是在这一部分,也就是函数内部的变量,是不需要程序员手动管理的,由编译器管理。

    通过对比加深理解

    内存的静态分配和动态分配的区别主要是两个:

    一是时间不同。静态分配发生在程序编译和连接的时候。动态分配则发生在程序调入和执行的时候。
    二是空间不同堆都是动态分配的,没有静态分配的堆。栈有2种分配方式:静态分配和动态分配。静态分配是编译器完成的,比如局部变量的分配。动态分配由函数malloc进行分配。不过栈的动态分配和堆不同,他的动态分配是由编译器进行释放,无需我们手工实现。

    对于一个进程的内存空间而言,可以在逻辑上分成3个部份:代码区,静态数据区和动态数据区。动态数据区一般就是“堆栈”。“栈(stack)”和“堆(heap)”是两种不同的动态数据区,栈是一种线性结构,堆是一种链式结构。进程的每个线程都有私有的“栈”,所以每个线程虽然代码一样,但本地变量的数据都是互不干扰。一个堆栈可以通过“基地址”和“栈顶”地址来描述。全局变量和静态变量分配在静态数据区,本地变量分配在动态数据区,即堆栈中。程序通过堆栈的基地址和偏移量来访问本地变量。

    所以,举个生动的例子就是说,静态分配内存的数据都是从生下来就拥有内存位置,不需要你去管理,而动态内存是后天要拼搏获取的内存位置,同时用完了也要释放

    动态内存分配是哪些数据?

    1.变长数组。
    2.声明的指针指向一个内存,用malloc等内存分配函数申请。

    总结

    最后发现就是一句话,如果有自己申请的就需要自己释放,不然就没有什么关系,而自己申请的大多也都是声明一个指针然后调用内存申请的函数,现代C++都是用RAII就没有这个问题了,析构的时候一般就不需要手动释放内存了。

    展开全文
  • jemalloc 内存分配器 是什么

    万次阅读 2021-08-04 13:39:40
    jemalloc 内存分配器 是什么? 内存池 所谓内存池,是指应用程序向操作系统(或 JVM)申请一块内存,自己管理这一块内存,对象的创建和销毁都从这块内存中分配和回收,这么一块内存就可以称作内存池, 对应地,管理...
  • 文章目录一、连续内存分配1、内存碎片的问题(1)外部碎片(2)内部碎片2、连续内存分配算法(1)首次适配(2)最优适配(3)最差适配3、碎片整理方法4、连续内存分配的缺点二、非连续内存分配1、非连续分配的优点2...
  • C#堆内存分配和栈内存分配

    千次阅读 2015-08-24 14:46:55
    C#堆内存分配和栈内存分配  五大内存分区  在C#中,内存分成5个区,他们分别是堆、栈、自由存储区、全局/静态存储区和常量存储区。 栈,就是那些由编译器在需要的时候分配,在不需要的时候自动清楚的...
  • 内存分配方式

    千次阅读 2018-05-05 20:14:42
    内存分配方式有两种:连续内存分配方式和离散内存分配方式。不同的分配方式又有不同的分配算法。①连续内存分配方式1)固定分区分配将内存划分成若干个固定大小的块。将程序装入块中即可。内存划分成各个块之后,块...
  • 简单理解动态内存分配和静态内存分配的区别

    千次阅读 多人点赞 2015-06-22 13:38:22
    在涉及到内存分配时,我们一般都要考虑到两种内存分配方式,一种是动态内存分配,另一种是静态内存分配,我们该怎么理解这两者的区别呢? 在我看来,静态内存分配和动态内存分配比较典型的例子就是数组和链表,数组...
  • 经过内存分配过程的准备阶段,我们分析到了Heap的AllocObjectWithAllocator()方法。 接下来我们将具体分析对象内存分配的过程。 ART对象分配过程解析——内存分配阶段 AllocObjectWithAllocator方法 首先我们来看...
  • #include<stdio.h&...二、动态内存分配函数  malloc :从堆上分配内存  realloc : 在之前分配的内存块的基础上,将内存重新分配为更大或者更小的部分  calloc: 从堆上分配内存并清零  fre...
  • c语言 动态内存分配

    千次阅读 多人点赞 2021-02-25 13:58:48
    动态内存分配数据类型总览内存分配1 整形内存分配2浮点数内存分配 数据类型总览 内存分配 1 整形内存分配 原码: 直接将二进制按照正负数的形式翻译成二进制。其中最高位为符号位 正数为1 负数为0. 反码: 将原码...
  • mapreduce内存分配

    千次阅读 2018-07-05 10:29:17
    稍微有点mapreduce使用经验的同学肯定对OOM不陌生,对的,我目前在mapReduce里面遇到的最多的报错也是内存分配出错,所以看到好多hadoop执行脚本里面有好多关于内存的参数,虽然是知道和内存分配有关系,但是我依然...
  • C语言动态内存分配函数

    万次阅读 多人点赞 2019-06-02 23:46:57
    目录 1.malloc()2.free()3.calloc()4.realloc()5....所开辟的内存是在栈中开辟的固定大小的 ,如a是4字节 ,数组b是40字节 ,并且数组在申明时必须指定其长度 , 因为数组的内存是在编译时分配好的 . 如果我们想在...
  • 内存分配思想引入 全网最硬核 JVM TLAB 分析 2. TLAB生命周期与带来的问题思考 全网最硬核 JVM TLAB 分析 3. JVM EMA期望算法与TLAB相关JVM启动参数 全网最硬核 JVM TLAB 分析 4. TLAB 基本流程全分析 .
  • C内存分配方式与C++内存分配方式

    千次阅读 2016-03-23 17:22:12
    C内存分配方式: 栈区(stack)—由编译器自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。堆区(heap)—一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收。...
  • 进程概述和内存分配

    万次阅读 2016-06-16 17:28:08
    每个进程所所分配内存由很多部分组成,通常我们称之为段,一般会有如下段: 文本段 包含了进程执行的程序机器语言指令,文本段具有只读属性,以防止进程通过错误指针意外修改自身的指令。初始化数据段包含了显示...
  • 前一段时间查看资料得知内存管理的算法大致有两种:内存分配算法、内存页面置换算法,对这些算法虽然可能不需要实现,但是需要了解其中的概念原理,以备不时之需。 内存分配的算法主要有5种: 第一种是固定内存分配...
  • JVM内存分配策略

    千次阅读 2019-01-23 18:00:34
    JVM内存分配策略 java的内存自动管理可以总结为自动分配和自动回收内存。 对象内存的分配主要是在堆上分配内存,对象主要分配在新生代的Eden区上,如果启动了本地线程分配缓冲,将按线程有限分配在TLAB上。少数...
  • 内存分配算法

    千次阅读 2019-04-25 00:15:02
    内存分配算法: (1)首次适应算法(First Fit):从空闲分区表的第一个表目起查找该表,把最先能够满足要求的空闲区分配给作业,这种方法的目的在于减少查找时间。为适应这种算法,空闲分区表(空闲区链)中的空闲...
  • 内存分配与回收策略

    万次阅读 2020-04-15 16:46:50
    内存分配与回收策略 对象的内存分配,就是在堆上分配(也可能经过 JIT 编译后被拆散为标量类型并间接在栈上分配),对象主要分配在新生代的 Eden 区上,少数情况下可能直接分配在老年代,分配规则不固定,取决于当前...
  • JVM进阶(三)——内存分配与回收策略

    万次阅读 多人点赞 2017-01-08 14:47:08
    JVM进阶(三)——内存分配与回收策略  各位小伙伴大家好,还记得上一博文《JVM进阶(二)——初识JAVA堆》我们讲了什么吗?虚拟机中的堆,他是整个内存模型中占用最大的一部分,而且不是连续的。当有需要分配内存的...
  • Java内存管理-内存分配与回收

    千次阅读 2017-12-29 17:48:00
    Java内存管理-内存分配与回收
  • golang 内存分配

    千次阅读 2018-03-22 11:53:59
     从上述结构图来看,内存分配器还是有一点小复杂的,但根据具体的逻辑层次可以拆分成三大模块--cache,central,heap,然后一个一个的模块分析下去,逻辑就显得特别清晰明了了。位于结构图最下边的Cache就是cache...
  • C - 结构体内存分配

    千次阅读 多人点赞 2018-11-07 14:41:39
    ,经过学习,特把有关结构体内存分配的相关知识记录下来。 内存对齐:要了解结构体的内存分配,首先需要了解内存对齐的概念。之所以会有内存对齐的概念,是因为,在操作系统中,数据的存放时按照字节存放的,而...
  • C++内存分配方式

    千次阅读 2020-08-27 21:49:06
    内存分配运算内置于处理器的指令集中,效率高,分配的内存容量有限。 堆,就是那些由malloc等分配的内存块,用free来释放内存。 自由存储区,那些由new分配的内存块,由应用程序去控制,一般一个new就要对应一个...
  • Java内存区域划分和内存分配策略

    千次阅读 多人点赞 2020-05-15 12:32:46
    Java内存区域划分和内存分配策略 如果不知道,类的静态变量存储在那? 方法的局部变量存储在那? 赶快收藏 Java内存区域主要可以分为共享内存,堆、方法区和线程私有内存,虚拟机栈、本地方法栈和程序计数器。如下...
  • 动态内存分配函数

    千次阅读 2018-03-28 21:43:28
    一、静态存储分配与动态存储分配: 二、动态内存分配函数 malloc calloc realloc free new delete
  • slab内存分配器是linux内核中比较经典的内存分配器,目前已经被slub内存分配器取代了。不过为了致敬经典,更是为理解slub分配器做铺垫,我还是会从slab分配器讲起。 为什么需要slab内存分配器? 这个问题其实...
  • C/C++ 动态内存分配

    万次阅读 多人点赞 2019-06-30 18:03:06
    首先我们看看 c 语言是如何进行动态内存分配的; c 语言主要是使用malloc / calloc / realloc 来进行内存申请的。 malloc / realloc / calloc三者的共同点与不同点: 共同点 1、都是从堆上进行动态内存分配 2、...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 1,399,751
精华内容 559,900
关键字:

内存分配