
- 运 用
- 求解决策过程(decision process)最优化的数学方法
- 外文名
- dynamic programming
- 简 称
- DP
- 中文名
- 动态规划
- 学 科
- 运筹学
- 第一本著作
- 《Dynamic Programming》
-
夜深人静写算法(二)- 动态规划
2017-12-28 14:57:36 -
教你彻底学会动态规划——入门篇
2015-08-11 13:26:41动态规划相信大家都知道,动态规划算法也是新手在刚接触算法设计时很苦恼的问题,有时候觉得难以理解,但是真正理解之后,就会觉得动态规划其实并没有想象中那么难。网上也有很多关于讲解动态规划的文章,大多都是...动态规划相信大家都知道,动态规划算法也是新手在刚接触算法设计时很苦恼的问题,有时候觉得难以理解,但是真正理解之后,就会觉得动态规划其实并没有想象中那么难。网上也有很多关于讲解动态规划的文章,大多都是叙述概念,讲解原理,让人觉得晦涩难懂,即使一时间看懂了,发现当自己做题的时候又会觉得无所适从。我觉得,理解算法最重要的还是在于练习,只有通过自己练习,才可以更快地提升。话不多说,接下来,下面我就通过一个例子来一步一步讲解动态规划是怎样使用的,只有知道怎样使用,才能更好地理解,而不是一味地对概念和原理进行反复琢磨。
首先,我们看一下这道题(此题目来源于北大POJ):
数字三角形(POJ1163)
在上面的数字三角形中寻找一条从顶部到底边的路径,使得路径上所经过的数字之和最大。路径上的每一步都只能往左下或 右下走。只需要求出这个最大和即可,不必给出具体路径。 三角形的行数大于1小于等于100,数字为 0 - 99
输入格式:
5 //表示三角形的行数 接下来输入三角形
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
要求输出最大和
接下来,我们来分析一下解题思路:
首先,肯定得用二维数组来存放数字三角形
然后我们用D( r, j) 来表示第r行第 j 个数字(r,j从1开始算)
我们用MaxSum(r, j)表示从D(r,j)到底边的各条路径中,最佳路径的数字之和。
因此,此题的最终问题就变成了求 MaxSum(1,1)
当我们看到这个题目的时候,首先想到的就是可以用简单的递归来解题:
D(r, j)出发,下一步只能走D(r+1,j)或者D(r+1, j+1)。故对于N行的三角形,我们可以写出如下的递归式:
if ( r == N) MaxSum(r,j) = D(r,j) else MaxSum( r, j) = Max{ MaxSum(r+1,j), MaxSum(r+1,j+1) } + D(r,j)
根据上面这个简单的递归式,我们就可以很轻松地写出完整的递归代码:
#include <iostream> #include <algorithm> #define MAX 101 using namespace std; int D[MAX][MAX]; int n; int MaxSum(int i, int j){ if(i==n) return D[i][j]; int x = MaxSum(i+1,j); int y = MaxSum(i+1,j+1); return max(x,y)+D[i][j]; } int main(){ int i,j; cin >> n; for(i=1;i<=n;i++) for(j=1;j<=i;j++) cin >> D[i][j]; cout << MaxSum(1,1) << endl; }
对于如上这段递归的代码,当我提交到POJ时,会显示如下结果:
对的,代码运行超时了,为什么会超时呢?
答案很简单,因为我们重复计算了,当我们在进行递归时,计算机帮我们计算的过程如下图:
就拿第三行数字1来说,当我们计算从第2行的数字3开始的MaxSum时会计算出从1开始的MaxSum,当我们计算从第二行的数字8开始的MaxSum的时候又会计算一次从1开始的MaxSum,也就是说有重复计算。这样就浪费了大量的时间。也就是说如果采用递规的方法,深度遍历每条路径,存在大量重复计算。则时间复杂度为 2的n次方,对于 n = 100 行,肯定超时。
接下来,我们就要考虑如何进行改进,我们自然而然就可以想到如果每算出一个MaxSum(r,j)就保存起来,下次用到其值的时候直接取用,则可免去重复计算。那么可以用n方的时间复杂度完成计算。因为三角形的数字总数是 n(n+1)/2
根据这个思路,我们就可以将上面的代码进行改进,使之成为记忆递归型的动态规划程序:
#include <iostream> #include <algorithm> using namespace std; #define MAX 101 int D[MAX][MAX]; int n; int maxSum[MAX][MAX]; int MaxSum(int i, int j){ if( maxSum[i][j] != -1 ) return maxSum[i][j]; if(i==n) maxSum[i][j] = D[i][j]; else{ int x = MaxSum(i+1,j); int y = MaxSum(i+1,j+1); maxSum[i][j] = max(x,y)+ D[i][j]; } return maxSum[i][j]; } int main(){ int i,j; cin >> n; for(i=1;i<=n;i++) for(j=1;j<=i;j++) { cin >> D[i][j]; maxSum[i][j] = -1; } cout << MaxSum(1,1) << endl; }
当我们提交如上代码时,结果就是一次AC
虽然在短时间内就AC了。但是,我们并不能满足于这样的代码,因为递归总是需要使用大量堆栈上的空间,很容易造成栈溢出,我们现在就要考虑如何把递归转换为递推,让我们一步一步来完成这个过程。我们首先需要计算的是最后一行,因此可以把最后一行直接写出,如下图:
现在开始分析倒数第二行的每一个数,现分析数字2,2可以和最后一行4相加,也可以和最后一行的5相加,但是很显然和5相加要更大一点,结果为7,我们此时就可以将7保存起来,然后分析数字7,7可以和最后一行的5相加,也可以和最后一行的2相加,很显然和5相加更大,结果为12,因此我们将12保存起来。以此类推。。我们可以得到下面这张图:
然后按同样的道理分析倒数第三行和倒数第四行,最后分析第一行,我们可以依次得到如下结果:
上面的推导过程相信大家不难理解,理解之后我们就可以写出如下的递推型动态规划程序:
#include <iostream> #include <algorithm> using namespace std; #define MAX 101 int D[MAX][MAX]; int n; int maxSum[MAX][MAX]; int main(){ int i,j; cin >> n; for(i=1;i<=n;i++) for(j=1;j<=i;j++) cin >> D[i][j]; for( int i = 1;i <= n; ++ i ) maxSum[n][i] = D[n][i]; for( int i = n-1; i>= 1; --i ) for( int j = 1; j <= i; ++j ) maxSum[i][j] = max(maxSum[i+1][j],maxSum[i+1][j+1]) + D[i][j]; cout << maxSum[1][1] << endl; }
我们的代码仅仅是这样就够了吗?当然不是,我们仍然可以继续优化,而这个优化当然是对于空间进行优化,其实完全没必要用二维maxSum数组存储每一个MaxSum(r,j),只要从底层一行行向上递推,那么只要一维数组maxSum[100]即可,即只要存储一行的MaxSum值就可以。
对于空间优化后的具体递推过程如下:
接下里的步骤就按上图的过程一步一步推导就可以了。进一步考虑,我们甚至可以连maxSum数组都可以不要,直接用D的第n行直接替代maxSum即可。但是这里需要强调的是:虽然节省空间,但是时间复杂度还是不变的。
依照上面的方式,我们可以写出如下代码:
#include <iostream> #include <algorithm> using namespace std; #define MAX 101 int D[MAX][MAX]; int n; int * maxSum; int main(){ int i,j; cin >> n; for(i=1;i<=n;i++) for(j=1;j<=i;j++) cin >> D[i][j]; maxSum = D[n]; //maxSum指向第n行 for( int i = n-1; i>= 1; --i ) for( int j = 1; j <= i; ++j ) maxSum[j] = max(maxSum[j],maxSum[j+1]) + D[i][j]; cout << maxSum[1] << endl; }
接下来,我们就进行一下总结:
递归到动规的一般转化方法
递归函数有n个参数,就定义一个n维的数组,数组的下标是递归函数参数的取值范围,数组元素的值是递归函数的返回值,这样就可以从边界值开始, 逐步填充数组,相当于计算递归函数值的逆过程。
动规解题的一般思路
1. 将原问题分解为子问题
- 把原问题分解为若干个子问题,子问题和原问题形式相同或类似,只不过规模变小了。子问题都解决,原问题即解决(数字三角形例)。
- 子问题的解一旦求出就会被保存,所以每个子问题只需求 解一次。
2.确定状态
- 在用动态规划解题时,我们往往将和子问题相关的各个变量的一组取值,称之为一个“状 态”。一个“状态”对应于一个或多个子问题, 所谓某个“状态”下的“值”,就是这个“状 态”所对应的子问题的解。
- 所有“状态”的集合,构成问题的“状态空间”。“状态空间”的大小,与用动态规划解决问题的时间复杂度直接相关。 在数字三角形的例子里,一共有N×(N+1)/2个数字,所以这个问题的状态空间里一共就有N×(N+1)/2个状态。
整个问题的时间复杂度是状态数目乘以计算每个状态所需时间。在数字三角形里每个“状态”只需要经过一次,且在每个状态上作计算所花的时间都是和N无关的常数。
3.确定一些初始状态(边界状态)的值
以“数字三角形”为例,初始状态就是底边数字,值就是底边数字值。
4. 确定状态转移方程
定义出什么是“状态”,以及在该“状态”下的“值”后,就要找出不同的状态之间如何迁移――即如何从一个或多个“值”已知的 “状态”,求出另一个“状态”的“值”(递推型)。状态的迁移可以用递推公式表示,此递推公式也可被称作“状态转移方程”。
数字三角形的状态转移方程:
能用动规解决的问题的特点
1) 问题具有最优子结构性质。如果问题的最优解所包含的 子问题的解也是最优的,我们就称该问题具有最优子结 构性质。
2) 无后效性。当前的若干个状态值一旦确定,则此后过程的演变就只和这若干个状态的值有关,和之前是采取哪种手段或经过哪条路径演变到当前的这若干个状态,没有关系。
好久没看博客发现这篇文章现在已经这么火热了,看了一下评论发现不少人对这篇文章都比较有兴趣,我当初写这篇文章是受到了Coursera上面一门算法课程的启发,大家有兴趣可以去听听这门课程:数据结构与算法
-
动态规划
2019-06-30 21:30:12 -
经典中的经典算法:动态规划(详细解释,从入门到实践,逐步讲解)
2018-10-11 22:27:54动态规划的重要性就不多说,直接进入正题 首先,我们看一下官方定义: 定义: 动态规划算法是通过拆分问题,定义问题状态和状态之间的关系,使得问题能够以递推(或者说分治)的方式去解决。 动态规划算法的基本思想与...首先,本博客为原创作品,欢迎指导,随意转载,如果可以请转载时说明出处,附上本文链接(https://blog.csdn.net/ailaojie/article/details/83014821),谢谢
动态规划的重要性就不多说,直接进入正题首先,我们看一下官方定义:
定义:
动态规划算法是通过拆分问题,定义问题状态和状态之间的关系,使得问题能够以递推(或者说分治)的方式去解决。
动态规划算法的基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息。在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。依次解决各子问题,最后一个子问题就是初始问题的解。
基本思想与策略编辑:
由于动态规划解决的问题多数有重叠子问题这个特点,为减少重复计算,对每一个子问题只解一次,将其不同阶段的不同状态保存在一个二维数组中。
(来自百度百科)
说实话,没有动态规划的基础很难看懂,但是也能从中看出一些信息,下面我翻译成人话:
首先是拆分问题,我的理解就是根据问题的可能性把问题划分成一步一步这样就可以通过递推或者递归来实现.
关键就是这个步骤,动态规划有一类问题就是从后往前推到,有时候我们很容易知道:如果只有一种情况时,最佳的选择应该怎么做.然后根据这个最佳选择往前一步推导,得到前一步的最佳选择
然后就是定义问题状态和状态之间的关系,我的理解是前面拆分的步骤之间的关系,用一种量化的形式表现出来,类似于高中学的推导公式,因为这种式子很容易用程序写出来,也可以说对程序比较亲和(也就是最后所说的状态转移方程式)
我们再来看定义的下面的两段,我的理解是比如我们找到最优解,我们应该讲最优解保存下来,为了往前推导时能够使用前一步的最优解,在这个过程中难免有一些相比于最优解差的解,此时我们应该放弃,只保存最优解,这样我们每一次都把最优解保存了下来,大大降低了时间复杂度说很难理解清楚,容易懵懵懂懂的,所以下面结合实例看一下(建议结合实例,纸上谈兵不太好):
经典的数字三角形问题(简单易懂,经典动态规划);
题目:
可以看出每走第n行第m列时有两种后续:向下或者向右下
由于最后一行可以确定,当做边界条件,所以我们自然而然想到递归求解
解题思路:
下面简单写一下java代码://java代码纯属自己练习,标准答案参考上面的c语言答案 class solution{ public int getMax(){ int MAX = 101; int[][] D = new int[MAX][MAX]; //存储数字三角形 int n; //n表示层数 int i = 0; int j = 0; int maxSum = getMaxSum(D,n,i,j); return maxSum; } public int getMaxSum(int[][] D,int n,int i,int j){ if(i == n){ return D[i][j]; } int x = getMaxSum(D,n,i+1,j); int y = getMaxSum(D,n,i+1,j+1); return Math.max(x,y)+D[i][j]; } }
其实仔细观察,上面的解答过程时间复杂度难以想象的大,那是因为他对有的数字的解进行了多次的重复计算,具体如下图:
如果不明白上图,可以把每条路径都画出来,观察每个数字有多少条路径经过了他,就会一目了然
然后我们就可以自然而然的想到,如果我们每次都把结果保存下来,复杂度就会大大降低
其实答案很简单:
其实这是动态规划很精髓的一部分,是减少复杂度的主要原因
我们都知道,递归一般情况下是可以转化为递推的,不详细解释了,贴上答案:
其实,仔细观察该解题过程,该过程就是标准的动态规划解题过程,如果把该过程画出来(找到每一步的最优解,其他的舍弃)对动态规划会有更深刻的解法
还有就是,递推的另一个好处是可以进行空间优化,如图:
下面总结一下动态规划的解题一般思路:
首先递归应该是我们解决动态规划问题最常用的方法,帅,速度不算太慢
那么递归到动规的一般转化方法为:
如果该递归函数有n个参数,那么就定义一个n维数组,数组下标是递归函数参数的取值范围(也就是数组每一维的大小).数组元素的值就是递归函数的返回值(初始化为一个标志值,表明还未被填充),这样就可以从边界值开始逐步的填充数组,相当于计算递归函数的逆过程(这和前面所说的推导过程应该是相同的).
原文链接:https://blog.csdn.net/ailaojie/article/details/83014821动规解题的一般思路(标准官方,不过经过前边讲解应该就能理解了):
- 将原问题分解为子问题(开头已经介绍了怎么分解) (注意:1,子问题与原问题形式相同或类似,只是问题规模变小了,从而变简单了; 2,子问题一旦求出就要保存下来,保证每个子问题只求解一遍)
- 确定状态(状态:在动规解题中,我们将和子问题相关的各个变量的一组取值,称之为一个"状态",一个状态对应一个或多个子问题所谓的在某个状态的值,这个就是状态所对应的子问题的解,所有状态的集合称为"状态空间".我的理解就是状态就是某个问题某组变量,状态空间就是该问题的所有组变量) 另外:整个问题的时间复杂度就是状态数目乘以每个状态所需要的时间
- 确定一些初始状态(边界条件)的值 (这个视情况而定,千万别以为就是最简单的那个子问题解,上面只是例子,真正实践动规千变万化)
- 确定状态转移方程 (这一步和第三步是最关键的 记住"人人为我"递推,由已知推未知)
适合使用动规求解的问题:
1,问题具有最优子结构
2,无后效性 说的花里胡哨的,其实一般遇到求最优解问题一般适合使用动态规划部分参考资料出自:北大信科郭炜老师
感觉自己洋洋洒洒写了几个小时,对动态规划有了一定的理解,也希望对你们有所帮助,动态规划千变万化,这仅仅是一个理解过程,我们还是应该多练习,共勉吧.转载的话,如果方便请加上转载地址,谢谢.
-
算法-动态规划 Dynamic Programming--从菜鸟到老鸟
2017-07-15 22:58:29前言最近在牛客网上做了几套公司的真题,发现有关动态规划(Dynamic Programming)算法的题目很多。相对于我来说,算法里面遇到的问题里面感觉最难的也就是动态规划(Dynamic Programming)算法了,于是花了好长时间... -
为什么你学不过动态规划?告别动态规划,谈谈我的经验
2019-11-24 23:36:34动态规划难吗?说实话,我觉得很难,特别是对于初学者来说,我当时入门动态规划的时候,是看 0-1 背包问题,当时真的是一脸懵逼。后来,我遇到动态规划的题,看的懂答案,但就是自己不会做,不知道怎么下手。就像做... -
最火的瓜,得用动态规划来吃
2020-04-23 21:45:46罗志祥才是动态规划的高手一、事件的前因后果二、被罗志祥的技术能力折服三、 你要成为这样的高手吗?四、 递归树分析五、 动态规划的代码六、 与妹子沟通是个技术活 今天真是被罗志祥的大瓜砸到了!全网络都是关于... -
【动态规划】01背包问题(通俗易懂,超基础讲解)
2018-08-24 22:29:29问题描述 有n个物品,它们有各自的体积和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和? 为方便讲解和理解,下面讲述的例子均先用具体的数字代入,即:eg:number=4,capacity=8 ...
-
第三题:交互输入的四个整数,计算它们的和以及平均值,并输出
-
Linux与数据库基础
-
【数据分析-随到随学】量化交易策略模型
-
云计算基础-Linux系统管理员
-
【数据分析-随到随学】数据分析建模和预测
-
数采仪,DTU升级调试参数
-
第五题:编写1+1/2+1/3+...+1/n计算程序
-
阿里云云计算ACP考试必备教程
-
java项目实战-机战游戏.docx
-
巨头财报来袭系好安全带,苹果、微软、特斯拉谁将开启美股巨震?
-
2021中国宏观经济形势分析与预测年度报告
-
元数据管理—企业数据治理的基础
-
第六题
-
SaveDataDemo.unitypackage
-
手把手教你R语言行NRI分析
-
Qt and Qt Charts
-
Build a website to permit electronic voting and tabulation.rar
-
Unity游戏开发之数字华容道
-
30个生涯锦囊,带你跳出迷茫,找到适合你的职业方向
-
MTK功能机RF射频参数计算与配置