卷积 订阅
在泛函分析中,卷积、旋积或摺积(英语:Convolution)是通过两个函数f 和g 生成第三个函数的一种数学算子,表征函数f 与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。 展开全文
在泛函分析中,卷积、旋积或摺积(英语:Convolution)是通过两个函数f 和g 生成第三个函数的一种数学算子,表征函数f 与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。
信息
外文名
Convolution
定    义
分析数学中一种重要的运算
其    他
可以被看作是“滑动平均”的推广
中文名
卷积
卷积简介
褶积(又名卷积)和反褶积(又名去卷积)是一种积分变换的数学方法,在许多方面得到了广泛应用。用褶积解决试井解释中的问题,早就取得了很好成果;而反褶积,直到最近,Schroeter、Hollaender和Gringarten等人解决了其计算方法上的稳定性问题,使反褶积方法很快引起了试井界的广泛注意。有专家认为,反褶积的应用是试井解释方法发展史上的又一次重大飞跃。他们预言,随着测试新工具和新技术的增加和应用,以及与其它专业研究成果的更紧密结合,试井在油气藏描述中的作用和重要性必将不断增大 [1]  。
收起全文
精华内容
下载资源
问答
  • 卷积神经网络

    万次阅读 多人点赞 2014-11-29 16:20:41
    自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet、cuda-convnet2。为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益。...

    卷积神经网络

    转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/41596663

    自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet、cuda-convnet2。为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益。正文之前,先说几点自己对于CNN的感触。先明确一点就是,Deep Learning是全部深度学习算法的总称,CNN是深度学习算法在图像处理领域的一个应用。

    • 第一点,在学习Deep learning和CNN之前,总以为它们是很了不得的知识,总以为它们能解决很多问题,学习了之后,才知道它们不过与其他机器学习算法如svm等相似,仍然可以把它当做一个分类器,仍然可以像使用一个黑盒子那样使用它。

    • 第二点,Deep Learning强大的地方就是可以利用网络中间某一层的输出当做是数据的另一种表达,从而可以将其认为是经过网络学习到的特征。基于该特征,可以进行进一步的相似度比较等。

    • 第三点,Deep Learning算法能够有效的关键其实是大规模的数据,这一点原因在于每个DL都有众多的参数,少量数据无法将参数训练充分。

    接下来话不多说,直接奔入主题开始CNN之旅。

    1. 神经网络

    首先介绍神经网络,这一步的详细可以参考资源1。简要介绍下。神经网络的每个单元如下:

     

    其对应的公式如下:

     

    其中,该单元也可以被称作是Logistic回归模型。当将多个单元组合起来并具有分层结构时,就形成了神经网络模型。下图展示了一个具有一个隐含层的神经网络。

     

    其对应的公式如下:

     

    比较类似的,可以拓展到有2,3,4,5,…个隐含层。

    神经网络的训练方法也同Logistic类似,不过由于其多层性,还需要利用链式求导法则对隐含层的节点进行求导,即梯度下降+链式求导法则,专业名称为反向传播。关于训练算法,本文暂不涉及。

    2 卷积神经网络

    在图像处理中,往往把图像表示为像素的向量,比如一个1000×1000的图像,可以表示为一个1000000的向量。在上一节中提到的神经网络中,如果隐含层数目与输入层一样,即也是1000000时,那么输入层到隐含层的参数数据为1000000×1000000=10^12,这样就太多了,基本没法训练。所以图像处理要想练成神经网络大法,必先减少参数加快速度。就跟辟邪剑谱似的,普通人练得很挫,一旦自宫后内力变强剑法变快,就变的很牛了。

    2.1 局部感知

    卷积神经网络有两种神器可以降低参数数目,第一种神器叫做局部感知野。一般认为人对外界的认知是从局部到全局的,而图像的空间联系也是局部的像素联系较为紧密,而距离较远的像素相关性则较弱。因而,每个神经元其实没有必要对全局图像进行感知,只需要对局部进行感知,然后在更高层将局部的信息综合起来就得到了全局的信息。网络部分连通的思想,也是受启发于生物学里面的视觉系统结构。视觉皮层的神经元就是局部接受信息的(即这些神经元只响应某些特定区域的刺激)。如下图所示:左图为全连接,右图为局部连接。

     

    在上右图中,假如每个神经元只和10×10个像素值相连,那么权值数据为1000000×100个参数,减少为原来的万分之一。而那10×10个像素值对应的10×10个参数,其实就相当于卷积操作。

    2.2 参数共享

    但其实这样的话参数仍然过多,那么就启动第二级神器,即权值共享。在上面的局部连接中,每个神经元都对应100个参数,一共1000000个神经元,如果这1000000个神经元的100个参数都是相等的,那么参数数目就变为100了。

    怎么理解权值共享呢?我们可以这100个参数(也就是卷积操作)看成是提取特征的方式,该方式与位置无关。这其中隐含的原理则是:图像的一部分的统计特性与其他部分是一样的。这也意味着我们在这一部分学习的特征也能用在另一部分上,所以对于这个图像上的所有位置,我们都能使用同样的学习特征。

    更直观一些,当从一个大尺寸图像中随机选取一小块,比如说 8x8 作为样本,并且从这个小块样本中学习到了一些特征,这时我们可以把从这个 8x8 样本中学习到的特征作为探测器,应用到这个图像的任意地方中去。特别是,我们可以用从 8x8 样本中所学习到的特征跟原本的大尺寸图像作卷积,从而对这个大尺寸图像上的任一位置获得一个不同特征的激活值。

    如下图所示,展示了一个3×3的卷积核在5×5的图像上做卷积的过程。每个卷积都是一种特征提取方式,就像一个筛子,将图像中符合条件(激活值越大越符合条件)的部分筛选出来。

     

    2.3 多卷积核

    上面所述只有100个参数时,表明只有1个10*10的卷积核,显然,特征提取是不充分的,我们可以添加多个卷积核,比如32个卷积核,可以学习32种特征。在有多个卷积核时,如下图所示:

     

    上图右,不同颜色表明不同的卷积核。每个卷积核都会将图像生成为另一幅图像。比如两个卷积核就可以将生成两幅图像,这两幅图像可以看做是一张图像的不同的通道。如下图所示,下图有个小错误,即将w1改为w0,w2改为w1即可。下文中仍以w1和w2称呼它们。

    下图展示了在四个通道上的卷积操作,有两个卷积核,生成两个通道。其中需要注意的是,四个通道上每个通道对应一个卷积核,先将w2忽略,只看w1,那么在w1的某位置(i,j)处的值,是由四个通道上(i,j)处的卷积结果相加然后再取激活函数值得到的。

     

     

     

    所以,在上图由4个通道卷积得到2个通道的过程中,参数的数目为4×2×2×2个,其中4表示4个通道,第一个2表示生成2个通道,最后的2×2表示卷积核大小。

    2.4 Down-pooling

    在通过卷积获得了特征 (features) 之后,下一步我们希望利用这些特征去做分类。理论上讲,人们可以用所有提取得到的特征去训练分类器,例如 softmax 分类器,但这样做面临计算量的挑战。例如:对于一个 96X96 像素的图像,假设我们已经学习得到了400个定义在8X8输入上的特征,每一个特征和图像卷积都会得到一个 (96 − 8 + 1) × (96 − 8 + 1) = 7921 维的卷积特征,由于有 400 个特征,所以每个样例 (example) 都会得到一个 7921 × 400 = 3,168,400 维的卷积特征向量。学习一个拥有超过 3 百万特征输入的分类器十分不便,并且容易出现过拟合 (over-fitting)。

    为了解决这个问题,首先回忆一下,我们之所以决定使用卷积后的特征是因为图像具有一种“静态性”的属性,这也就意味着在一个图像区域有用的特征极有可能在另一个区域同样适用。因此,为了描述大的图像,一个很自然的想法就是对不同位置的特征进行聚合统计,例如,人们可以计算图像一个区域上的某个特定特征的平均值 (或最大值)。这些概要统计特征不仅具有低得多的维度 (相比使用所有提取得到的特征),同时还会改善结果(不容易过拟合)。这种聚合的操作就叫做池化 (pooling),有时也称为平均池化或者最大池化 (取决于计算池化的方法)。

     

    至此,卷积神经网络的基本结构和原理已经阐述完毕。

    2.5 多层卷积

    在实际应用中,往往使用多层卷积,然后再使用全连接层进行训练,多层卷积的目的是一层卷积学到的特征往往是局部的,层数越高,学到的特征就越全局化。

    3 ImageNet-2010网络结构

    ImageNet LSVRC是一个图片分类的比赛,其训练集包括127W+张图片,验证集有5W张图片,测试集有15W张图片。本文截取2010年Alex Krizhevsky的CNN结构进行说明,该结构在2010年取得冠军,top-5错误率为15.3%。值得一提的是,在今年的ImageNet LSVRC比赛中,取得冠军的GoogNet已经达到了top-5错误率6.67%。可见,深度学习的提升空间还很巨大。

    下图即为Alex的CNN结构图。需要注意的是,该模型采用了2-GPU并行结构,即第1、2、4、5卷积层都是将模型参数分为2部分进行训练的。在这里,更进一步,并行结构分为数据并行与模型并行。数据并行是指在不同的GPU上,模型结构相同,但将训练数据进行切分,分别训练得到不同的模型,然后再将模型进行融合。而模型并行则是,将若干层的模型参数进行切分,不同的GPU上使用相同的数据进行训练,得到的结果直接连接作为下一层的输入。

     

    上图模型的基本参数为:
    
    • 输入:224×224大小的图片,3通道
    • 第一层卷积:11×11大小的卷积核96个,每个GPU上48个。
    • 第一层max-pooling:2×2的核。
    • 第二层卷积:5×5卷积核256个,每个GPU上128个。
    • 第二层max-pooling:2×2的核。
    • 第三层卷积:与上一层是全连接,3*3的卷积核384个。分到两个GPU上个192个。
    • 第四层卷积:3×3的卷积核384个,两个GPU各192个。该层与上一层连接没有经过pooling层。
    • 第五层卷积:3×3的卷积核256个,两个GPU上个128个。
    • 第五层max-pooling:2×2的核。
    • 第一层全连接:4096维,将第五层max-pooling的输出连接成为一个一维向量,作为该层的输入。
    • 第二层全连接:4096维
    • Softmax层:输出为1000,输出的每一维都是图片属于该类别的概率。

    4 DeepID网络结构

    DeepID网络结构是香港中文大学的Sun Yi开发出来用来学习人脸特征的卷积神经网络。每张输入的人脸被表示为160维的向量,学习到的向量经过其他模型进行分类,在人脸验证试验上得到了97.45%的正确率,更进一步的,原作者改进了CNN,又得到了99.15%的正确率。

    如下图所示,该结构与ImageNet的具体参数类似,所以只解释一下不同的部分吧。

     

    上图中的结构,在最后只有一层全连接层,然后就是softmax层了。论文中就是以该全连接层作为图像的表示。在全连接层,以第四层卷积和第三层max-pooling的输出作为全连接层的输入,这样可以学习到局部的和全局的特征。

    5 参考资源

    • [1] http://deeplearning.stanford.edu/wiki/index.php/UFLDL%E6%95%99%E7%A8%8B 栀子花对Stanford深度学习研究团队的深度学习教程的翻译
    • [2] http://blog.csdn.net/zouxy09/article/details/14222605 csdn博主zouxy09深度学习教程系列
    • [3] http://deeplearning.net/tutorial/ theano实现deep learning
    • [4] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. 2012: 1097-1105.
    • [5] Sun Y, Wang X, Tang X. Deep learning face representation from predicting 10,000 classes[C]//Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on. IEEE, 2014: 1891-1898.

    更多内容欢迎关注微信公众后【雨石记】。

     

    展开全文
  • 卷积

    千次阅读 多人点赞 2019-11-10 15:13:11
    卷积什么是卷积卷积的数学定义一维卷积示意图二维卷积示意图卷积的物理意义 什么是卷积 卷积的数学定义 (f∗g)(t)=∫Rf(x)g(t−x)dx (f*g)(t) = \int_R f(x)g(t-x)dx (f∗g)(t)=∫R​f(x)g(t−x)dx 一般称为ggg为...

    什么是卷积

    卷积的数学定义

    (fg)(t)=Rf(x)g(tx)dx (f*g)(t) = \int_R f(x)g(t-x)dx
    一般称为gg为作用在ff上的filter或kernel

    一维卷积示意图

    在这里插入图片描述

    二维卷积示意图

    在这里插入图片描述

    卷积的物理意义

    小明存入100元钱,年利率是5%,按复利计算(即将每一年所获利息加入本金,以计算下一年的利息),那么在五年之后他能拿到的钱数是100(1+5%)5100(1+5\%)^5,如下表所示:
    在这里插入图片描述
    将这笔钱存入银行的一年之后,小明又往银行中存入了100元钱,年利率仍为5%,那么这笔钱按复利计算,到了第五年,将收回的钱数是100(1+5%)4100(1+5\%)^4,我们将这一结果作为新的一行加入上面的表格中:
    在这里插入图片描述
    以此类推,如果小明每年都往银行中存入新的100元钱,那么这个收益表格将是这样的:
    在这里插入图片描述
    可见,最终小明拿到的钱将等于他各年存入的钱分别计算复利之后得到的钱数的总和,即:
    用求和符号来简化这个公式,可以得到:
    i=15f(i)g(5i),where  f(i)=100,g(5i)=(1.05)5i \sum_{i=1}^5 f(i)g(5-i), where \; f(i)=100,g(5-i)=(1.05)^{5-i}
    在上式中,f(i)f(i)为小明的存钱函数,而g(i)g(i)为存入银行的每一笔钱的复利计算函数。

    将这个公式推广到连续的情况,也就是说,小明在从0到tt的这一段时间内,每时每刻都往银行里存钱,他的存钱函数为f(τ) (0τt)f(\tau)\ (0\leq \tau\leq t),而银行也对他存入的每一笔钱按复利公式计算收益:g(tτ)=(1+5%)tτg(t-\tau)=(1+5\%)^{t-\tau},则小明到时间t将得到的总钱数为:
    0tf(τ)g(tτ)dτ=0tf(τ)(1+5%)tτdτ\int_{0}^{t} f(\tau)g(t-\tau)d\tau=\int_{0}^{t} f(\tau)(1+5\%)^{t-\tau}d\tau
    这也就是卷积的表达式了,上式可以记为(fg)(t)(f\ast g)(t)

    我们将小明的存款函数视为一个信号发生(也就是激励)的过程,而将复利函数g(tτ)g(t-\tau)视为一个系统对信号的响应函数(也就是响应),那么二者的卷积(fg)(t)(f\ast g)(t)就可以看做是在t时刻对系统进行观察,得到的观察结果(也就是输出)将是过去产生的所有信号经过系统的「处理/响应」后得到的结果的叠加,这也就是卷积的物理意义了

    整理自:
    https://zhuanlan.zhihu.com/p/54505069
    https://blog.csdn.net/jzwong/article/details/47422645

    展开全文
  • 卷积神经网络概念与原理

    万次阅读 多人点赞 2016-09-05 10:00:27
    一、卷积神经网络的基本概念 受Hubel和Wiesel对猫视觉皮层电生理研究启发,有人提出卷积神经网络(CNN),Yann Lecun 最早将CNN用于手写数字识别并一直保持了其在该问题的霸主地位。近年来卷积神经网络在多个方向...

    一、卷积神经网络的基本概念

     

           受Hubel和Wiesel对猫视觉皮层电生理研究启发,有人提出卷积神经网络(CNN),Yann Lecun 最早将CNN用于手写数字识别并一直保持了其在该问题的霸主地位。近年来卷积神经网络在多个方向持续发力,在语音识别、人脸识别、通用物体识别、运动分析、自然语言处理甚至脑电波分析方面均有突破。

           卷积神经网络与普通神经网络的区别在于,卷积神经网络包含了一个由卷积层和子采样层构成的特征抽取器。在卷积神经网络的卷积层中,一个神经元只与部分邻层神经元连接。在CNN的一个卷积层中,通常包含若干个特征平面(featureMap),每个特征平面由一些矩形排列的的神经元组成,同一特征平面的神经元共享权值,这里共享的权值就是卷积核。卷积核一般以随机小数矩阵的形式初始化,在网络的训练过程中卷积核将学习得到合理的权值。共享权值(卷积核)带来的直接好处是减少网络各层之间的连接,同时又降低了过拟合的风险。子采样也叫做池化(pooling),通常有均值子采样(mean pooling)和最大值子采样(max pooling)两种形式。子采样可以看作一种特殊的卷积过程。卷积和子采样大大简化了模型复杂度,减少了模型的参数。

    二、卷积神经网络的应用场景

     

    三、卷积神经网络的原理

    3.1 神经网络

           首先介绍神经网络,这一步的详细可以参考资源1。简要介绍下。神经网络的每个单元如下:

    logistic

           其对应的公式如下:

    equal

           其中,该单元也可以被称作是Logistic回归模型。当将多个单元组合起来并具有分层结构时,就形成了神经网络模型。下图展示了一个具有一个隐含层的神经网络。

    equal

            其对应的公式如下:

    equal

           比较类似的,可以拓展到有2,3,4,5,…个隐含层。

           神经网络的训练方法也同Logistic类似,不过由于其多层性,还需要利用链式求导法则对隐含层的节点进行求导,即梯度下降+链式求导法则,专业名称为反向传播。关于训练算法,本文暂不涉及。

    3.2 卷积神经网络

           受Hubel和Wiesel对猫视觉皮层电生理研究启发,有人提出卷积神经网络(CNN),Yann Lecun 最早将CNN用于手写数字识别并一直保持了其在该问题的霸主地位。近年来卷积神经网络在多个方向持续发力,在语音识别、人脸识别、通用物体识别、运动分析、自然语言处理甚至脑电波分析方面均有突破。

           卷积神经网络与普通神经网络的区别在于,卷积神经网络包含了一个由卷积层和子采样层构成的特征抽取器。在卷积神经网络的卷积层中,一个神经元只与部分邻层神经元连接。在CNN的一个卷积层中,通常包含若干个特征平面(featureMap),每个特征平面由一些矩形排列的的神经元组成,同一特征平面的神经元共享权值,这里共享的权值就是卷积核。卷积核一般以随机小数矩阵的形式初始化,在网络的训练过程中卷积核将学习得到合理的权值。共享权值(卷积核)带来的直接好处是减少网络各层之间的连接,同时又降低了过拟合的风险。子采样也叫做池化(pooling),通常有均值子采样(mean pooling)和最大值子采样(max pooling)两种形式。子采样可以看作一种特殊的卷积过程。卷积和子采样大大简化了模型复杂度,减少了模型的参数。卷积神经网络的基本结构如图所示:

     

           卷积神经网络由三部分构成。第一部分是输入层。第二部分由n个卷积层和池化层的组合组成。第三部分由一个全连结的多层感知机分类器构成。

    3.2.1局部感受野

           卷积神经网络有两种神器可以降低参数数目,第一种神器叫做局部感知野。一般认为人对外界的认知是从局部到全局的,而图像的空间联系也是局部的像素联系较为紧密,而距离较远的像素相关性则较弱。因而,每个神经元其实没有必要对全局图像进行感知,只需要对局部进行感知,然后在更高层将局部的信息综合起来就得到了全局的信息。网络部分连通的思想,也是受启发于生物学里面的视觉系统结构。视觉皮层的神经元就是局部接受信息的(即这些神经元只响应某些特定区域的刺激)。如下图所示:左图为全连接,右图为局部连接。

    equal

            在上右图中,假如每个神经元只和10×10个像素值相连,那么权值数据为1000000×100个参数,减少为原来的万分之一。而那10×10个像素值对应的10×10个参数,其实就相当于卷积操作。

    3.2.3 权值共享

           但其实这样的话参数仍然过多,那么就启动第二级神器,即权值共享。在上面的局部连接中,每个神经元都对应100个参数,一共1000000个神经元,如果这1000000个神经元的100个参数都是相等的,那么参数数目就变为100了。

           怎么理解权值共享呢?我们可以这100个参数(也就是卷积操作)看成是提取特征的方式,该方式与位置无关。这其中隐含的原理则是:图像的一部分的统计特性与其他部分是一样的。这也意味着我们在这一部分学习的特征也能用在另一部分上,所以对于这个图像上的所有位置,我们都能使用同样的学习特征。

           更直观一些,当从一个大尺寸图像中随机选取一小块,比如说 8x8 作为样本,并且从这个小块样本中学习到了一些特征,这时我们可以把从这个 8x8 样本中学习到的特征作为探测器,应用到这个图像的任意地方中去。特别是,我们可以用从 8x8 样本中所学习到的特征跟原本的大尺寸图像作卷积,从而对这个大尺寸图像上的任一位置获得一个不同特征的激活值。

           如下图所示,展示了一个3×3的卷积核在5×5的图像上做卷积的过程。每个卷积都是一种特征提取方式,就像一个筛子,将图像中符合条件(激活值越大越符合条件)的部分筛选出来。

    equal

    3.2.4 多卷积核

           上面所述只有100个参数时,表明只有1个10*10的卷积核,显然,特征提取是不充分的,我们可以添加多个卷积核,比如32个卷积核,可以学习32种特征。在有多个卷积核时,如下图所示:

    equal

           上图右,不同颜色表明不同的卷积核。每个卷积核都会将图像生成为另一幅图像。比如两个卷积核就可以将生成两幅图像,这两幅图像可以看做是一张图像的不同的通道。如下图所示,下图有个小错误,即将w1改为w0,w2改为w1即可。下文中仍以w1和w2称呼它们。

          下图展示了在四个通道上的卷积操作,有两个卷积核,生成两个通道。其中需要注意的是,四个通道上每个通道对应一个卷积核,先将w2忽略,只看w1,那么在w1的某位置(i,j)处的值,是由四个通道上(i,j)处的卷积结果相加然后再取激活函数值得到的。

    equal

    equal

           所以,在上图由4个通道卷积得到2个通道的过程中,参数的数目为4×2×2×2个,其中4表示4个通道,第一个2表示生成2个通道,最后的2×2表示卷积核大小。

    3.2.5 Down-pooling

           在通过卷积获得了特征 (features) 之后,下一步我们希望利用这些特征去做分类。理论上讲,人们可以用所有提取得到的特征去训练分类器,例如 softmax 分类器,但这样做面临计算量的挑战。例如:对于一个 96X96 像素的图像,假设我们已经学习得到了400个定义在8X8输入上的特征,每一个特征和图像卷积都会得到一个 (96 − 8 + 1) × (96 − 8 + 1) = 7921 维的卷积特征,由于有 400 个特征,所以每个样例 (example) 都会得到一个 7921 × 400 = 3,168,400 维的卷积特征向量。学习一个拥有超过 3 百万特征输入的分类器十分不便,并且容易出现过拟合 (over-fitting)。

           为了解决这个问题,首先回忆一下,我们之所以决定使用卷积后的特征是因为图像具有一种“静态性”的属性,这也就意味着在一个图像区域有用的特征极有可能在另一个区域同样适用。因此,为了描述大的图像,一个很自然的想法就是对不同位置的特征进行聚合统计,例如,人们可以计算图像一个区域上的某个特定特征的平均值 (或最大值)。这些概要统计特征不仅具有低得多的维度 (相比使用所有提取得到的特征),同时还会改善结果(不容易过拟合)。这种聚合的操作就叫做池化 (pooling),有时也称为平均池化或者最大池化 (取决于计算池化的方法)。

    equal

            

           子采样有两种形式,一种是均值子采样(mean-pooling),一种是最大值子采样(max-pooling)。两种子采样看成特殊的卷积过程,如图下图所示:

           (1)均值子采样的卷积核中每个权重都是0.25,卷积核在原图inputX上的滑动的步长为2。均值子采样的效果相当于把原图模糊缩减至原来的1/4。

           (2)最大值子采样的卷积核中各权重值中只有一个为1,其余均为0,卷积核中为1的位置对应inputX被卷积核覆盖部分值最大的位置。卷积核在原图inputX上的滑动步长为2。最大值子采样的效果是把原图缩减至原来的1/4,并保留每个2*2区域的最强输入。

            至此,卷积神经网络的基本结构和原理已经阐述完毕。

     

    3.2.6 多卷积层

     

     

           在实际应用中,往往使用多层卷积,然后再使用全连接层进行训练,多层卷积的目的是一层卷积学到的特征往往是局部的,层数越高,学到的特征就越全局化。

    四、卷积神经网络的训练

          本文的主要目的是介绍CNN参数在使用bp算法时该怎么训练,毕竟CNN中有卷积层和下采样层,虽然和MLP的bp算法本质上相同,但形式上还是有些区别的,很显然在完成CNN反向传播前了解bp算法是必须的。

    4.1 Forward前向传播

     

           前向过程的卷积为典型valid的卷积过程,即卷积核kernalW覆盖在输入图inputX上,对应位置求积再求和得到一个值并赋给输出图OutputY对应的位置。每次卷积核在inputX上移动一个位置,从上到下从左到右交叠覆盖一遍之后得到输出矩阵outputY(如图4.1与图4.3所示)。如果卷积核的输入图inputX为Mx*Nx大小,卷积核为Mw*Nw大小,那么输出图Y为(Mx-Mw+1)*(Nx-Nw+1)大小。

     

    4.2 BackForward反向传播

           在错误信号反向传播过程中,先按照神经网络的错误反传方式得到尾部分类器中各神经元的错误信号,然后错误信号由分类器向前面的特征抽取器传播。错误信号从子采样层的特征图(subFeatureMap)往前面卷积层的特征图(featureMap)传播要通过一次full卷积过程来完成。这里的卷积和上一节卷积的略有区别。如果卷积核kernalW的长度为Mw*Mw的方阵,那么subFeatureMap的错误信号矩阵Q_err需要上下左右各拓展Mw-1行或列,与此同时卷积核自身旋转180度。subFeatureMap的错误信号矩阵P_err等于featureMap的误差矩阵Q_err卷积旋转180度的卷积核W_rot180。

           下图错误信号矩阵Q_err中的A,它的产生是P中左上2*2小方块导致的,该2*2的小方块的对A的责任正好可以用卷积核W表示,错误信号A通过卷积核将错误信号加权传递到与错误信号量为A的神经元所相连的神经元a、b、d、e中,所以在下图中的P_err左上角的2*2位置错误值包含A、2A、3A、4A。同理,我们可以论证错误信号B、C、D的反向传播过程。综上所述,错误信号反向传播过程可以用下图中的卷积过程表示。

     

    4.3 权值更新过程中的卷积

           卷积神经网络中卷积层的权重更新过程本质是卷积核的更新过程。由神经网络的权重修改策略我们知道一条连接权重的更新量为该条连接的前层神经元的兴奋输出乘以后层神经元的输入错误信号,卷积核的更新也是按照这个规律来进行。

     

           在前向卷积过程中,卷积核的每个元素(链接权重)被使用过四次,所以卷积核每个元素的产生四个更新量。把前向卷积过程当做切割小图进行多个神经网络训练过程,我们得到四个4*1的神经网络的前层兴奋输入和后层输入错误信号,如图所示。

     

            根据神经网络的权重修改策略,我们可以算出如图所示卷积核的更新量W_delta。权重更新量W_delta可由P_out和Q_err卷积得到,如图下图所示。

    五、常见网络结构

     

    5.1 ImageNet-2010网络结构

    ImageNet LSVRC是一个图片分类的比赛,其训练集包括127W+张图片,验证集有5W张图片,测试集有15W张图片。本文截取2010年Alex Krizhevsky的CNN结构进行说明,该结构在2010年取得冠军,top-5错误率为15.3%。值得一提的是,在今年的ImageNet LSVRC比赛中,取得冠军的GoogNet已经达到了top-5错误率6.67%。可见,深度学习的提升空间还很巨大。

    下图即为Alex的CNN结构图。需要注意的是,该模型采用了2-GPU并行结构,即第1、2、4、5卷积层都是将模型参数分为2部分进行训练的。在这里,更进一步,并行结构分为数据并行与模型并行。数据并行是指在不同的GPU上,模型结构相同,但将训练数据进行切分,分别训练得到不同的模型,然后再将模型进行融合。而模型并行则是,将若干层的模型参数进行切分,不同的GPU上使用相同的数据进行训练,得到的结果直接连接作为下一层的输入。

    equal

    上图模型的基本参数为:
    
    • 输入:224×224大小的图片,3通道
    • 第一层卷积:11×11大小的卷积核96个,每个GPU上48个。
    • 第一层max-pooling:2×2的核。
    • 第二层卷积:5×5卷积核256个,每个GPU上128个。
    • 第二层max-pooling:2×2的核。
    • 第三层卷积:与上一层是全连接,3*3的卷积核384个。分到两个GPU上个192个。
    • 第四层卷积:3×3的卷积核384个,两个GPU各192个。该层与上一层连接没有经过pooling层。
    • 第五层卷积:3×3的卷积核256个,两个GPU上个128个。
    • 第五层max-pooling:2×2的核。
    • 第一层全连接:4096维,将第五层max-pooling的输出连接成为一个一维向量,作为该层的输入。
    • 第二层全连接:4096维
    • Softmax层:输出为1000,输出的每一维都是图片属于该类别的概率。

    5.2 DeepID网络结构

            DeepID网络结构是香港中文大学的Sun Yi开发出来用来学习人脸特征的卷积神经网络。每张输入的人脸被表示为160维的向量,学习到的向量经过其他模型进行分类,在人脸验证试验上得到了97.45%的正确率,更进一步的,原作者改进了CNN,又得到了99.15%的正确率。

    如下图所示,该结构与ImageNet的具体参数类似,所以只解释一下不同的部分吧。

    equal

           上图中的结构,在最后只有一层全连接层,然后就是softmax层了。论文中就是以该全连接层作为图像的表示。在全连接层,以第四层卷积和第三层max-pooling的输出作为全连接层的输入,这样可以学习到局部的和全局的特征。

     

     

     

     

    参考资源

    • [1] http://deeplearning.stanford.edu/wiki/index.php/UFLDL%E6%95%99%E7%A8%8B 栀子花对Stanford深度学习研究团队的深度学习教程的翻译
    • [2] http://blog.csdn.net/zouxy09/article/details/14222605 csdn博主zouxy09深度学习教程系列
    • [3] http://deeplearning.net/tutorial/ theano实现deep learning
    • [4] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. 2012: 1097-1105.
    • [5] Sun Y, Wang X, Tang X. Deep learning face representation from predicting 10,000 classes[C]//Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on. IEEE, 2014: 1891-1898.
    • [6] http://blog.csdn.net/stdcoutzyx/article/details/41596663
     
     
    展开全文
  • 最容易理解的对卷积(convolution)的解释

    万次阅读 多人点赞 2017-01-25 15:14:49
    啰嗦开场白读本科期间,信号与系统里面经常讲到卷积(convolution),自动控制原理里面也会经常有提到卷积。硕士期间又学了线性系统理论与数字信号处理,里面也是各种大把大把卷积的概念。至于最近大火的深度学习,更...

    项目github地址:bitcarmanlee easy-algorithm-interview-and-practice
    欢迎大家star,留言,一起学习进步

    啰嗦开场白

    读本科期间,信号与系统里面经常讲到卷积(convolution),自动控制原理里面也会经常有提到卷积。硕士期间又学了线性系统理论与数字信号处理,里面也是各种大把大把卷积的概念。至于最近大火的深度学习,更有专门的卷积神经网络(Convolutional Neural Network, CNN),在图像领域取得了非常好的实际效果,已经把传统的图像处理的方法快干趴下了。啰啰嗦嗦说了这么多卷积,惭愧的是,好像一直以来对卷积的物理意义并不是那么清晰。一是上学时候只是简单考试,没有仔细思考过具体前后的来龙去脉。二是本身天资比较愚钝,理解能力没有到位。三则工作以后也没有做过强相关的工作,没有机会得以加深理解。趁着年前稍微有点时间,查阅了一些相关资料,力争将卷积的前世今生能搞明白。

    ##1.知乎上排名最高的解释
    首先选取知乎上对卷积物理意义解答排名最靠前的回答。
    不推荐用“反转/翻转/反褶/对称”等解释卷积。好好的信号为什么要翻转?导致学生难以理解卷积的物理意义。
    这个其实非常简单的概念,国内的大多数教材却没有讲透。

    直接看图,不信看不懂。以离散信号为例,连续信号同理。

    已知x[0] = a, x[1] = b, x[2]=c
    这里写图片描述

    已知y[0] = i, y[1] = j, y[2]=k
    这里写图片描述

    下面通过演示求x[n] * y[n]的过程,揭示卷积的物理意义。

    第一步,x[n]乘以y[0]并平移到位置0:
    这里写图片描述

    第二步,x[n]乘以y[1]并平移到位置1
    这里写图片描述

    第三步,x[n]乘以y[2]并平移到位置2:
    这里写图片描述

    最后,把上面三个图叠加,就得到了x[n] * y[n]:
    这里写图片描述

    简单吧?无非是平移(没有反褶!)、叠加。
    从这里,可以看到卷积的重要的物理意义是:一个函数(如:单位响应)在另一个函数(如:输入信号)上的加权叠加。

    重复一遍,这就是卷积的意义:加权叠加。

    对于线性时不变系统,如果知道该系统的单位响应,那么将单位响应和输入信号求卷积,就相当于把输入信号的各个时间点的单位响应 加权叠加,就直接得到了输出信号。

    通俗的说:
    在输入信号的每个位置,叠加一个单位响应,就得到了输出信号。
    这正是单位响应是如此重要的原因。

    在输入信号的每个位置,叠加一个单位响应,就得到了输出信号。
    这正是单位响应是如此重要的原因。

    在输入信号的每个位置,叠加一个单位响应,就得到了输出信号。
    这正是单位响应是如此重要的原因。

    以上是知乎上排名最高的回答。比较简单易懂。

    有个回复也可以参考:
    楼主这种做法和通常教材上的区别在于:书上先反褶再平移,把输入信号当作一个整体,一次算出一个时间点的响应值;而楼主把信号拆开,一次算出一个信号在所有时间的响应值,再把各个信号相加。两者本质上是相同的。

    ##2.卷积的另外解释
    卷积表示为y(n)=x(n)h(n)y(n) = x(n)*h(n)
    使用离散数列来理解卷积会更形象一点,我们把y(n)的序列表示成y(0),y(1),y(2),y(0),y(1),y(2),\cdots, 这是系统响应出来的信号。
    同理,x(n)x(n)的对应时刻的序列为x(0),x(1),x(2),x(0),x(1),x(2),\cdots
    其实我们如果没有学过信号与系统,就常识来讲,系统的响应不仅与当前时刻系统的输入有关,也跟之前若干时刻的输入有关,因为我们可以理解为这是之前时刻的输入信号经过一种过程(这种过程可以是递减,削弱,或其他)对现在时刻系统输出的影响,那么显然,我们计算系统输出时就必须考虑现在时刻的信号输入的响应以及之前若干时刻信号输入的响应之“残留”影响的一个叠加效果。
    假设0时刻系统响应为y(0)y(0),若其在1时刻时,此种响应未改变,则1时刻的响应就变成了y(0)+y(1)y(0)+y(1),叫序列的累加和(与序列的和不一样)。但常常系统中不是这样的,因为0时刻的响应不太可能在1时刻仍旧未变化,那么怎么表述这种变化呢,就通过h(t)这个响应函数与x(0)相乘来表述,表述为x(m)×h(mn)x(m)×h(m-n),具体表达式不用多管,只要记着有大概这种关系,引入这个函数就能够表述y(0)y(0)在1时刻究竟削弱了多少,然后削弱后的值才是y(0)y(0)在1时刻的真实值,再通过累加和运算,才得到真实的系统响应。
    再拓展点,某时刻的系统响应往往不一定是由当前时刻和前一时刻这两个响应决定的,也可能是再加上前前时刻,前前前时刻,前前前前时刻,等等,那么怎么约束这个范围呢,就是通过对h(n)h(n)这个函数在表达式中变化后的h(mn)h(m-n)中的m的范围来约束的。即说白了,就是当前时刻的系统响应与多少个之前时刻的响应的“残留影响”有关。
    当考虑这些因素后,就可以描述成一个系统响应了,而这些因素通过一个表达式(卷积)即描述出来不得不说是数学的巧妙和迷人之处了。

    ##3.卷积的数学定义
    前面讲了这么多,我们看看教科书上对卷积的数学定义。
    这里写图片描述

    ##4.卷积的应用
    用一个模板和一幅图像进行卷积,对于图像上的一个点,让模板的原点和该点重合,然后模板上的点和图像上对应的点相乘,然后各点的积相加,就得到了该点的卷积值。对图像上的每个点都这样处理。由于大多数模板都是对称的,所以模板不旋转。卷积是一种积分运算,用来求两个曲线重叠区域面积。可以看作加权求和,可以用来消除噪声、特征增强。
    把一个点的像素值用它周围的点的像素值的加权平均代替。
    卷积是一种线性运算,图像处理中常见的mask运算都是卷积,广泛应用于图像滤波。
    卷积关系最重要的一种情况,就是在信号与线性系统或数字信号处理中的卷积定理。利用该定理,可以将时间域或空间域中的卷积运算等价为频率域的相乘运算,从而利用FFT等快速算法,实现有效的计算,节省运算代价。

    ##5.补充
    另外在知乎上看到非常好也非常生动形象的解释,特意复制粘贴过来。(知乎马同学的解释)

    从数学上讲,卷积就是一种运算。
    某种运算,能被定义出来,至少有以下特征:
    1.首先是抽象的、符号化的
    2.其次,在生活、科研中,有着广泛的作用

    比如加法:
    1.a+b,是抽象的,本身只是一个数学符号
    2.在现实中,有非常多的意义,比如增加、合成、旋转等等

    卷积,是我们学习高等数学之后,新接触的一种运算,因为涉及到积分、级数,所以看起来觉得很复杂。

    这里写图片描述

    这两个式子有一个共同的特征:
    这里写图片描述

    这个特征有什么意义?

    只看数学符号,卷积是抽象的,不好理解的,但是,我们可以通过现实中的意义,来习惯卷积这种运算,正如我们小学的时候,学习加减乘除需要各种苹果、糖果来帮助我们习惯一样。

    我们来看看现实中,这样的定义有什么意义。

    2 离散卷积的例子:丢骰子

    我有两枚骰子:

    这里写图片描述

    把这两枚骰子都抛出去:
    这里写图片描述

    求:两枚骰子点数加起来为4的概率是多少?
    这里问题的关键是,两个骰子加起来要等于4,这正是卷积的应用场景。

    我们把骰子各个点数出现的概率表示出来:
    这里写图片描述

    那么,两枚骰子点数加起来为4的情况有:
    这里写图片描述

    这里写图片描述

    这里写图片描述

    因此,两枚骰子点数加起来为4的概率为:
    f(1)g(3)+f(2)g(2)+f(3)g(1)

    符合卷积的定义,把它写成标准的形式就是:

    (fg)(4)=m=13f(4m)g(m)\displaystyle (f*g)(4)=\sum _{m=1}^{3}f(4-m)g(m)

    3 连续卷积的例子:做馒头

    楼下早点铺子生意太好了,供不应求,就买了一台机器,不断的生产馒头。
    假设馒头的生产速度是 f(t) ,那么一天后生产出来的馒头总量为:
    024f(t)dt\int _{0}^{24}f(t)dt
    馒头生产出来之后,就会慢慢腐败,假设腐败函数为 g(t) ,比如,10个馒头,24小时会腐败:
    10g(t)10*g(t)
    想想就知道,第一个小时生产出来的馒头,一天后会经历24小时的腐败,第二个小时生产出来的馒头,一天后会经历23小时的腐败。
    如此,我们可以知道,一天后,馒头总共腐败了:
    024f(t)g(24t)dt\int _{0}^{24}f(t)g(24-t)dt
    这就是连续的卷积。

    4 图像处理
    4.1 原理

    有这么一副图像,可以看到,图像上有很多噪点:
    这里写图片描述

    高频信号,就好像平地耸立的山峰:
    这里写图片描述

    看起来很显眼。

    平滑这座山峰的办法之一就是,把山峰刨掉一些土,填到山峰周围去。用数学的话来说,就是把山峰周围的高度平均一下。

    平滑后得到:
    这里写图片描述

    4.2 计算

    卷积可以帮助实现这个平滑算法。

    有噪点的原图,可以把它转为一个矩阵:
    这里写图片描述

    然后用下面这个平均矩阵(说明下,原图的处理实际上用的是正态分布矩阵,这里为了简单,就用了算术平均矩阵)来平滑图像:

    g=[191919191919191919]g=\begin{bmatrix} \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \end{bmatrix}

    记得刚才说过的算法,把高频信号与周围的数值平均一下就可以平滑山峰。

    比如我要平滑$ a_{1,1}$ 点,就在矩阵中,取出$ a_{1,1} $点附近的点组成矩阵 f ,和 g 进行卷积计算后,再填回去
    这里写图片描述

    要注意一点,为了运用卷积, g 虽然和 f 同维度,但下标有点不一样:
    这里写图片描述

    这里写图片描述

    写成卷积公式就是:

    (fg)(1,1)=k=02h=02f(h,k)g(1h,1k)\displaystyle (f*g)(1,1)=\sum _{k=0}^{2}\sum _{h=0}^{2}f(h,k)g(1-h,1-k)

    要求$ c_{4,5} $,一样可以套用上面的卷积公式。

    这样相当于实现了 g 这个矩阵在原来图像上的划动(准确来说,下面这幅图把 g 矩阵旋转了180180^\circ ):

    ##6.另外一个关于卷积的有意思的解释
    看了好多关于卷积的答案,看到这个例子才彻底地理解了这个过程~
    关于卷积的一个血腥的讲解
    比如说你的老板命令你干活,你却到楼下打台球去了,后来被老板发现,他非常气愤,扇了你一巴掌(注意,这就是输入信号,脉冲),于是你的脸上会渐渐地(贱贱地)鼓起来一个包,你的脸就是一个系统,而鼓起来的包就是你的脸对巴掌的响应,好,这样就和信号系统建立起来意义对应的联系。下面还需要一些假设来保证论证的严谨:假定你的脸是线性时不变系统,也就是说,无论什么时候老板打你一巴掌,打在你脸的同一位置(这似乎要求你的脸足够光滑,如果你说你长了很多青春痘,甚至整个脸皮处处连续处处不可导,那难度太大了,我就无话可说了哈哈),你的脸上总是会在相同的时间间隔内鼓起来一个相同高度的包来,并且假定以鼓起来的包的大小作为系统输出。好了,那么,下面可以进入核心内容——卷积了!
    如果你每天都到地下去打台球,那么老板每天都要扇你一巴掌,不过当老板打你一巴掌后,你5分钟就消肿了,所以时间长了,你甚至就适应这种生活了……如果有一天,老板忍无可忍,以0.5秒的间隔开始不间断的扇你的过程,这样问题就来了,第一次扇你鼓起来的包还没消肿,第二个巴掌就来了,你脸上的包就可能鼓起来两倍高,老板不断扇你,脉冲不断作用在你脸上,效果不断叠加了,这样这些效果就可以求和了,结果就是你脸上的包的高度随时间变化的一个函数了(注意理解);如果老板再狠一点,频率越来越高,以至于你都辨别不清时间间隔了,那么,求和就变成积分了。可以这样理解,在这个过程中的某一固定的时刻,你的脸上的包的鼓起程度和什么有关呢?和之前每次打你都有关!但是各次的贡献是不一样的,越早打的巴掌,贡献越小,所以这就是说,某一时刻的输出是之前很多次输入乘以各自的衰减系数之后的叠加而形成某一点的输出,然后再把不同时刻的输出点放在一起,形成一个函数,这就是卷积,卷积之后的函数就是你脸上的包的大小随时间变化的函数。本来你的包几分钟就可以消肿,可是如果连续打,几个小时也消不了肿了,这难道不是一种平滑过程么?反映到剑桥大学的公式上,f(a)就是第a个巴掌,g(x-a)就是第a个巴掌在x时刻的作用程度,乘起来再叠加就ok了,大家说是不是这个道理呢?我想这个例子已经非常形象了,你对卷积有了更加具体深刻的了解了吗?

    参考资料:
    1.https://www.zhihu.com/question/22298352
    2.http://blog.csdn.net/yeeman/article/details/6325693
    3.http://muchong.com/html/201001/1773707.html
    4.https://www.zhihu.com/question/39753115
    5.https://zh.wikipedia.org/wiki/%E5%8D%B7%E7%A7%AF%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C
    6.http://blog.csdn.net/tiandijun/article/details/40080823
    7.https://zh.wikipedia.org/wiki/%E5%8D%B7%E7%A7%AF%E5%AE%9A%E7%90%86
    8.https://www.zhihu.com/question/19714540/answer/14738630 如何理解傅里叶变换公式?

    展开全文
  • Depthwise卷积与Pointwise卷积

    万次阅读 多人点赞 2018-08-12 16:37:40
    Depthwise(DW)卷积与Pointwise(PW)卷积,合起来被称作Depthwise Separable Convolution(参见Google的Xception),该结构和常规卷积操作类似,可用来提取特征,但相比于常规卷积操作,其参数量和运算成本较低。...
  • 别怕,"卷积"其实很简单

    万次阅读 多人点赞 2018-01-17 13:15:52
    我的机器学习教程「美团」算法工程师带你入门机器学习 已经开始更新了,欢迎大家订阅~ 任何关于算法、编程、AI行业知识或博客内容的问题,可以随时扫码关注公众号「图灵的猫」,加入”学习小组“,沙雕博主在线答疑...
  •  传统的CNN网络只能给出图像的LABLE,但是在很多情况下需要对识别的物体进行分割实现end to end,然后FCN出现了,给物体分割提供了一个非常重要的解决思路,其核心就是卷积与反卷积,所以这里就详细解释卷积与反...
  • 一文搞懂反卷积,转置卷积

    万次阅读 多人点赞 2018-07-18 15:06:59
    一文搞懂反卷积,转置卷积 前言 本文翻译自《Up-sampling with Transposed Convolution》,这篇文章对转置卷积和反卷积有着很好的解释,这里将其翻译为中文,以飨国人。 如有谬误,请联系指正。转载请注明出处...
  • 深度卷积对抗生成网络(DCGAN)

    万次阅读 多人点赞 2016-12-25 20:31:35
    卷积神经网络在有监督学习中的各项任务上都有很好的表现,但在无监督学习领域,却比较少。本文介绍的算法将有监督学习中的CNN和无监督学习中的GAN结合到了一起。
  • 深度学习 CNN卷积神经网络 LeNet-5详解

    万次阅读 多人点赞 2017-10-18 16:04:35
    卷积神经网络( Convolutional Neural Network, CNN): 是一种常见的深度学习架构,受生物自然视觉认知机制(动物视觉皮层细胞负责检测光学信号)启发而来,是一种特殊的多层前馈神经网络。它的人工神经元可以响应...
  • 一文让你彻底了解卷积神经网络

    万次阅读 多人点赞 2018-08-03 09:27:11
    卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。 它包括卷积层(convolutional layer)和池化层(pooling ...
  • 彻底搞懂CNN中的卷积和反卷积

    万次阅读 多人点赞 2019-01-05 22:37:25
    卷积和反卷积在CNN中经常被用到,想要彻底搞懂并不是那么容易。本文主要分三个部分来讲解卷积和反卷积,分别包括概念、工作过程、代码示例,其中代码实践部分主结合TensorFlow框架来进行实践。给大家介绍一个卷积...
  • feature map、卷积核、卷积核个数、filter、channel的概念解释 feather map的理解 在cnn的每个卷积层,数据都是以三维形式存在的。你可以把它看成许多个二维图片叠在一起(像豆腐皮一样),其中每一个称为一个...
  • TensorFlow已经实现了卷积(tf.nn.conv2d卷积函数),反卷积(tf.nn.conv2d_transpose反卷积函数)以及空洞卷积(tf.nn.atrous_conv2d空洞卷积(dilated convolution)),这三个函数的参数理解,可参考网上。...
  • 理解图像卷积操作的意义

    万次阅读 多人点赞 2017-05-16 22:40:04
    数字信号处理中卷积 卷积一词最开始出现在信号与线性系统中,信号与线性系统中讨论的就是信号经过一个线性系统以后发生的变化。由于现实情况中常常是一个信号前一时刻的输出影响着这一时刻的输出,所在一般利用系统...
  • 1. 二维卷积 图中的输入的数据维度为14×1414×14,过滤器大小为5×55×5,二者做卷积,输出的数据维度为10...如果你对卷积维度的计算不清楚,可以参考我之前的博客吴恩达深度学习笔记(deeplearning.ai)之...
  • 矩阵卷积运算的具体过程,很简单

    万次阅读 多人点赞 2019-04-24 18:45:14
    最近在看图像处理,卷积运算这一块也查了很多,但是感觉都写的太复杂,我这里简单的写一下卷积到底是一个什么计算过程。 假设有一个卷积核h,就一般为3*3的矩阵: 有一个待处理矩阵x: h*x的计算过程分为三步...
  • 线性卷积、周期卷积和循环卷积

    千次阅读 2020-07-22 12:59:44
    线性卷积、周期卷积和循环卷积 例题:已知序列x1(n)=[0,2,2,1] (n=0,1,2,3); x2(n)=[1,2,-1,1] (n=0,1,2,3).求解 (1)计算线性卷积y1(n)=x1(n)✳x2(n); (2)计算周期卷积y2(n)=x1(n)⊛x2(n);(N=5) (3)计算循环卷积y3(n...
  • 传统的CNN网络只能给出图像的LABLE,但是在很多情况下需要对识别的物体进行分割实现end to end,然后FCN出现了,给物体分割提供了一个非常重要的解决思路,其核心就是卷积与反卷积,所以这里就详细解释卷积与反卷积...
  • 卷积,反卷积,空洞卷积

    千次阅读 2019-04-18 09:56:41
    卷积神经网络中卷积核的作用在于特征的抽取,越是大的卷积核尺寸就意味着更大的感受野,当然随之而来的是更多的参数。早在1998年,LeCun大神发布的LetNet-5模型中就会出,图像空域内具有局部相关性,卷积的过程是对...
  • 三种卷积:线性卷积,周期卷积,圆周卷积(即循环卷积,即circular convolution) 线性卷积,记不住就把它想成多项式乘法 周期卷积,就是线性卷积左右周期延拓后再加起来 圆周卷积,就是周期卷积取主值序列 直接放图片...
  • 本文主要是实现了一个简单的卷积神经网络,并对卷积过程中的提取特征进行了可视化. 卷积神经网络最早是为了解决图像识别的问题,现在也用在时间序列数据和文本数据处理当中,卷积神经网络对于数据特征的提取不用额外...
  • 参考文章: 1.卷积、反卷积、空洞卷积动图
  • 最近在研究卷积网络的改性,有必要对各种卷积层的结构深入熟悉一下。为此写下这篇学习笔记。 文章大部分内容来自于网络的各种博客总结,本博文仅仅作为本人学习笔记,不做商业用途。 目录 2D卷积 3D卷积 1*1...
  • 周期卷积 对象:用以建立周期序列与DFS系数之间的桥梁。 定义式: 周期序列的周期卷积对应于与之相应的傅里叶级数系数序列的乘积。 循环卷积 对象:用以建立有限长序列与DFT系数之间的桥梁。 定义式: 循环卷积...
  • DL之CNN:卷积神经网络算法简介之卷积矩阵、转置卷积(反卷积Transpose)、膨胀卷积(扩张卷积Dilated/带孔卷积atrous)之详细攻略 目录 卷积矩阵的简介 卷积、转置卷积——Transpose convolution 0、各种卷积...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 71,010
精华内容 28,404
关键字:

卷积