图像识别 订阅
图像识别,是指利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对象的技术,是应用深度学习算法的一种实践应用。 [1]  现阶段图像识别技术一般分为人脸识别与商品识别,人脸识别主要运用在安全检查、身份核验与移动支付中;商品识别主要运用在商品流通过程中,特别是无人货架、智能零售柜等无人零售领域 [2]  。图像的传统识别流程分为四个步骤:图像采集→图像预处理→特征提取→图像识别。图像识别软件国外代表的有康耐视等,国内代表的有图智能、海深科技等。另外在地理学中指将遥感图像进行分类的技术。 展开全文
图像识别,是指利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对象的技术,是应用深度学习算法的一种实践应用。 [1]  现阶段图像识别技术一般分为人脸识别与商品识别,人脸识别主要运用在安全检查、身份核验与移动支付中;商品识别主要运用在商品流通过程中,特别是无人货架、智能零售柜等无人零售领域 [2]  。图像的传统识别流程分为四个步骤:图像采集→图像预处理→特征提取→图像识别。图像识别软件国外代表的有康耐视等,国内代表的有图智能、海深科技等。另外在地理学中指将遥感图像进行分类的技术。
信息
所属学科
计算机科学
外文名
image identification
中文名
图像识别
图像识别简介
图形刺激作用于感觉器官,人们辨认出它是经验过的某一图形的过程,也叫图像再认。在图像识别中,既要有当时进入感官的信息,也要有记忆中存储的信息。只有通过存储的信息与当前的信息进行比较的加工过程,才能实现对图像的再认。
收起全文
精华内容
下载资源
问答
  • 图像识别
    千次阅读
    2021-06-18 12:36:58

    图像识别,是指利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。图像识别是人工智能的一个重要领域。主要的图像识别方法有基于神经网络的图像识别方法、基于小波矩的图像识别方法等。

    中文名

    图像识别方法

    外文名

    image recognition method

    学    科领    域

    人工智能

    模    型

    模板匹配模型、原型匹配模型

    主要方法

    神经网络

    图像识别方法基本概念

    编辑

    语音

    图像识别,是指利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。一般工业使用中,采用工业相机拍摄图片,然后再利用软件根据图片灰阶差做进一步识别处理,图像识别软件国外代表的有康耐视等,国内代表的有图智能等。另外在地理学中指将遥感图像进行分类的技术。

    图形刺激作用于感觉器官,人们辨认出它是经验过的某一图形的过程,也叫图像再认。在图像识别中,既要有当时进入感官的信息,也要有记忆中存储的信息。只有通过存储的信息与当前的信息进行比较的加工过程,才能实现对图像的再认。

    图像识别是人工智能的一个重要领域。为了编制模拟人类图像识别活动的计算机程序,人们提出了不同的图像识别模型。例如模板匹配模型、原型匹配模型。

    图像识别方法识别基础

    编辑

    语音

    图像识别可能是以图像的主要特征为基础的。每个图像都有它的特征,如字母A有个尖,P有个圈、而Y的中心有个锐角等。对图像识别时眼动的研究表明,视线总是集中在图像的主要特征上,也就是集中在图像轮廓曲度最大或轮廓方向突然改变的地方,这些地方的信息量最大。而且眼睛的扫描路线也总是依次从一个特征转到另一个特征上。由此可见,在图像识别过程中,知觉机制必须排除输入的多余信息,抽出关键的信息。同时,在大脑里必定有一个负责整合信息的机制,它能把分阶段获得的信息整理成一个完整的知觉映象。

    在人类图像识别系统中,对复杂图像的识别往往要通过不同层次的信息加工才能实现。对于熟悉的图形,由于掌握了它的主要特征,就会把它当作一个单元来识别,而不再注意它的细节了。这种由孤立的单元材料组成的整体单位叫做组块,每一个组块是同时被感知的。在文字材料的识别中,人们不仅可以把一个汉字的笔划或偏旁等单元组成一个组块,而且能把经常在一起出现的字或词组成组块单位来加以识别。

    在计算机视觉识别系统中,图像内容通常用图像特征进行描述。事实上,基于计算机视觉的图像检索也可以分为类似文本搜索引擎的三个步骤:提取特征、建索引build以及查询。

    图像识别方法模型

    编辑

    语音

    图像识别是人工智能的一个重要领域。为了编制模拟人类图像识别活动的计算机程序,人们提出了不同的图像识别模型。

    (1)模板匹配模型

    这种模型认为,识别某个图像,必须在过去的经验中有这个图像的记忆模式,又叫模板。当前的刺激如果能与大脑中的模板相匹配,这个图像也就被识别了。例如有一个字母A,如果在脑中有个A模板,字母A的大小、方位、形状都与这个A模板完全一致,字母A就被识别了。这个模型简单明了,也容易得到实际应用。但这种模型强调图像必须与脑中的模板完全符合才能加以识别,而事实上人不仅能识别与脑中的模板完全一致的图像,也能识别与模板不完全一致的图像。例如,人们不仅能识别某一个具体的字母A,也能识别印刷体的、手写体的、方向不正、大小不同的各种字母A。同时,人能识别的图像是大量的,如果所识别的每一个图像在脑中都有一个相应的模板,也是不可能的。

    (2)原型匹配模型

    为了解决模板匹配模型存在的问题,格式塔心理学家又提出了一个原型匹配模型。这种模型认为,在长时记忆中存储的并不是所要识别的无数个模板,而是图像的某些“相似性”。从图像中抽象出来的“相似性”就可作为原型,拿它来检验所要识别的图像。如果能找到一个相似的原型,这个图像也就被识别了。这种模型从神经上和记忆探寻的过程上来看,都比模板匹配模型更适宜,而且还能说明对一些不规则的,但某些方面与原型相似的图像的识别。但是,这种模型没有说明人是怎样对相似的刺激进行辨别和加工的,它也难以在计算机程序中得到实现。因此又有人提出了一个更复杂的模型,即“泛魔”识别模型。

    一般工业使用中,采用工业相机拍摄图片,然后利用软件根据图片灰阶差做处理后识别出有用信息,图像识别软件国外代表的有康耐视等,国内代表的有图智能等。

    图像识别方法研究现状

    编辑

    语音

    图像识别的发展经历了三个阶段:文字识别、数字图像处理与识别、物体识别。文字识别的研究是从 1950年开始的,一般是识别字母、数字和符号,从印刷文字识别到手写文字识别, 应用非常广泛。

    数字图像处理和识别的研究开始于1965年。数字图像与模拟图像相比具有存储,传输方便可压缩、传输过程中不易失真、处理方便等巨大优势,这些都为图像识别技术的发展提供了强大的动力。物体的识别主要指的是对三维世界的客体及环境的感知和认识,属于高级的计算机视觉范畴。它是以数字图像处理与识别为基础的结合人工智能、系统学等学科的研究方向,其研究成果被广泛应用在各种工业及探测机器人上。现代图像识别技术的一个不足就是自适应性能差,一旦目标图像被较强的噪声污染或是目标图像有较大残缺往往就得不出理想的结果。

    图像识别问题的数学本质属于模式空间到类别空间的映射问题。在图像识别的发展中,主要有三种识别方法:统计模式识别、结构模式识别、模糊模式识别。图像分割是图像处理中的一项关键技术,自20世纪70年代,其研究已经有几十年的历史,一直都受到人们的高度重视,至今借助于各种理论提出了数以千计的分割算法,而且这方面的研究仍然在积极地进行着。

    现有的图像分割的方法有许多种,有阈值分割方法,边缘检测方法,区域提取方法,结合特定理论工具的分割方法等。从图像的类型来分有:灰度图像分割、彩色图像分割和纹理图像分割等。早在1965年就有人提出了检测边缘算子,使得边缘检测产生了不少经典算法。但在近二十年间,随着基于直方图和小波变换的图像分割方法的研究计算技术、VLSI技术的迅速发展,有关图像处理方面的研究取得了很大的进展。图像分割方法结合了一些特定理论、 方法和工具,如基于数学形态学的图像分割、基于小波变换的分割、基于遗传算法的分割等。

    图像识别方法主要方法

    编辑

    语音

    图像识别方法基于神经网络

    人工神经网络方法实现模式识别,可处理一些环境信息十分复杂,背景知识不清楚,推理规则不明确的问题,允许样品有较大的缺损、畸变,神经网络方法的缺点是其模型在不断丰富完善中,能识别的模式类还不够多,神经网络方法允许样品有较大的缺损和畸变,其运行速度快,自适应性能好,具有较高的分辨率。

    神经网络的图像识别系统是神经网络模式识别系统的一种,原理是一致的。一般神经网络图像识别系统由预处理,特征提取和神经网络分类器组成。预处理就是将原始数据中的无用信息删除,平滑,二值化和进行幅度归一化等。神经网络图像识别系统中的特征提取部分不一定存在,这样就分为两大类:

    ①有特征提取部分的:这一类系统实际上是传统方法与神经网络方法技术的结合,这种方法可以充分利用人的经验来获取模式特征以及神经网络分类能力来识别目标图像。特征提取必须能反应整个图像的特征。但它的抗干扰能力不如第2类。

    ②无特征提取部分的:省去特征抽取,整副图像直接作为神经网络的输入,这种方式下,系统的神经网络结构的复杂度大大增加了,输入模式维数的增加导致了网络规模的庞大。此外,神经网络结构需要完全自己消除模式变形的影响。但是网络的抗干扰性能好,识别率高。

    当BP网用于分类时,首先要选择各类的样本进行训练,每类样本的个数要近似相等。其原因在于一方面防止训练后网络对样本多的类别响应过于敏感,而对样本数少的类别不敏感。另一方面可以大幅度提高训练速度,避免网络陷入局部最小点[1]

    图像识别方法基于小波矩

    将输入二维二值图像的不变矩作为识别特征,运用BP网络进行识别,将输入图像经过归一化处理,极坐标化,旋转不变小波矩特征提取后,送入BP网络分类器进行识别,获得识别结果。

    基于小波矩的图像识别方法的特点如下:

    (1)小波矩特征对具有平移、缩放和旋转的样本具有良好的分辨能力,在未加噪声的情况下,小波矩特征都能正确分辨测试样本,识别率优于几何矩,差距达到30个百分点。

    (2)随着添加随机噪声,两种矩特征的识别率都有所下降,但由于小波矩具有较好的提取图像局部特征能力,所以小波矩的识别率下降相对缓慢.最高正确识别率达到98%。

    (3)小波矩特征较为稳定。几何矩的分辨能力有时不能随着特征数的增加而稳定,这样需要较多的分辨特征的情况下是不利的。而小波矩虽然也有一定波动,但波动幅度有限,其判别精度整体为稳定增加趋势[2]

    图像识别方法基于分形特征

    一般认为:自然纹理图像满足分形特性,可以提取其分形特征以供进一步的纹理分割、目标识别等,而人造目标图像是不满足分形特性的,不可以提取其分形特征。基于分形特征的红外图像识别方法步骤如下:

    (1)红外图像预处理

    由于探测器本身固有的特性,红外热图像普遍存在目标与背景对比度较差,图像边缘模糊,噪声较大等缺点,因此必须进行预处理,以增强其对比度。

    (2)红外图像分形特征提取

    分别提取提取基于分形维数的特征、基于Hurst指数的分形特征、基于缝隙(lacunarity)的分形特征。

    (3)基于神经网络的红外图像识别

    人工神经网络是进行目标识别(包括图像识别)的强有力工具。它通过对原始数据的训练,获得最佳的权系数,取得很好的识别结果[3]

    词条图册

    更多图册

    参考资料

    1.

    彭淑敏, 王军宁. 基于神经网络的图像识别方法[J]. 电子科技, 2005(1):39-42.

    2.

    张虹, 陈文楷. 一种基于小波矩的图像识别方法[J]. 北京工业大学学报, 2004, 30(4):427-431.

    3.

    李宏贵, 李国桢. 基于分形特征的红外图像识别方法[J]. 红外与激光工程, 1999, 28(1):20-24.

    更多相关内容
  • 主要介绍如何使用python搭建:一个基于深度残差网络(ResNet)的图像识别垃圾分类系统。完整代码使用方法可参考博文:https://blog.csdn.net/weixin_43486940/article/details/120267108
  • 图像识别图像识别图像识别图像识别图像识别图像识别图像识别图像识别图像识别图像识别图像识别图像识别图像识别图像识别图像识别图像识别图像识别图像识别图像识别图像识别,...
  • 基于卷积神经网络的图像识别 基于卷积神经网络的图像识别
  • 基于深度学习的图像识别,图像分割、图像特征提取、分类器识别这三步骤。而由于文本信息的特殊性,没有固定的形状和合理的目标分界线,传统的图像识别方式 要识别自然场景下的文本信息是相对比较困难的。
  • 卷积神经网络图像识别python代码
  • 图像识别

    千次阅读 2019-07-07 14:38:42
    图像识别主要用到了两个第三方的iOS框架:OpenCV和TesseractOCR,OpenCV用来做图像处理,定位到身份证号码的区域,TesseractOCR则是对定位到的区域内的内容进行识别。 OpenCV中的一些简单的处理图像的方法:灰度...

      图像识别主要用到了两个第三方的iOS框架:OpenCV和TesseractOCR,OpenCV用来做图像处理,定位到身份证号码的区域,TesseractOCR则是对定位到的区域内的内容进行识别。
      OpenCV中的一些简单的处理图像的方法:灰度处理、二值化、腐蚀、边缘检测等等。

    Tesseract Open Source OCR Engine (main repository)- https://github.com/tesseract-ocr/tesseract
    开源OCR识别彩票内容项目 LotteryHelper- https://github.com/MZCretin/LotteryHelper
      
      图像识别的发展经历了三个阶段:文字识别、数字图像处理与识别、物体识别。神经网络的图像识别技术和非线性降维的图像识别技术及图像识别技术的应用。
      模式识别是人工智能和信息科学的重要组成部分。模式识别是指对表示事物或现象的不同形式的信息做分析和处理从而得到一个对事物或现象做出描述、辨认和分类等的过程。
      计算机的图像识别技术就是模拟人类的图像识别过程。在图像识别的过程中进行模式识别是必不可少的。模式识别原本是人类的一项基本智能。模式识别主要分为三种统计模式识别、句法模式识别、模糊模式识别。图像识别问题的数学本质属于模式空间到类别空间的映射问题。
      图像识别,是指利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对象的技术,并对质量不佳的图像进行一系列的增强与重建技术手段,从而有效改善图像质量。

    -- 图像识别技术的过程分以下几步:信息的获取、预处理、特征抽取和选择、分类器设计和分类决策。
      1.信息的获取是指通过传感器,将光或声音等信息转化为电信息。也就是获取研究对象的基本信息并通过某种方法将其转变为机器能够认识的信息。
      2.预处理主要是指图像处理中的去噪、平滑、变换等的操作,从而加强图像的重要特征。
      3.特征抽取和选择是指在模式识别中,需要进行特征的抽取和选择。简单的理解就是我们所研究的图像是各式各样的,如果要利用某种方法将它们区分开,就要通过这些图像所具有的本身特征来识别,而获取这些特征的过程就是特征抽取。在特征抽取中所得到的特征也许对此次识别并不都是有用的,这个时候就要提取有用的特征,这就是特征的选择。特征抽取和选择在图像识别过程中是非常关键的技术之一,所以对这一步的理解是图像识别的重点。
      4.分类器设计是指通过训练而得到一种识别规则,通过此识别规则可以得到一种特征分类,使图像识别技术能够得到高识别率。分类决策是指在特征空间中对被识别对象进行分类,从而更好地识别所研究的对象具体属于哪一类。

    预处理算法:滤波;图像增强;图像分割;预处理算法结果:构成训练样本和测试样本;
    特征   提取:形状进行归一化处理;提取各阶矩特征值;特征值进行归一化处理;训练SVM得参数设计电气设备的分类器;

      神经网络图像识别技术是一种比较新型的图像识别技术,是在传统的图像识别方法和基础上融合神经网络算法的一种图像识别方法。
      在对车牌上的字符进行识别的过程中就用到了基于模板匹配算法和基于人工神经网络算法。想让计算机具有高效地识别能力,最直接有效的方法就是降维。降维分为线性降维和非线性降维。例如主成分分析(PCA)和线性奇异分析(LDA)等就是常见的线性降维方法,它们的特点是简单、易于理解。
      计算机的图像识别技术在公共安全、生物、工业、农业、交通、医疗等很多领域都有应用。例如交通方面的车牌识别系统;公共安全方面的人脸识别技术、指纹识别技术;农业方面的种子识别技术、食品品质检测技术;医学方面的心电图识别技术等。
      图像识别技术是立体视觉、运动分析、数据融合等实用技术的基础,在导航、地图与地形配准、自然资源分析、天气预报、环境监测、生理病变研究等许多领域可广泛应用。

     图像识别主要包括有对模板库图像样本的训练和对待测试图像样本的分类识别两部分。样本图像训练的基本思想是将样本图像的特征所属的类别构成模板库;图像识别的基本思想是按照训练过程中的特征提取方法,提取待测样本的特征与模板库中的训练样本进行匹配,匹配程度最高的即为识别结果。

     动态图像识别技术。
     图像识别,是指利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。图像识别是人工智能的一个重要领域。目前主要的图像识别方法有基于神经网络的图像识别方法、基于小波矩的图像识别方法等。

     作为图像识别技术的基础操作,通过对采集到的图像进行増强、恢复、边缘检测W及分割等预处理操作来提高图像的质量。
     图像的增强主要通过对采集图像进行灰度变换、滤波、锐化等一系列操作,提髙图像质量及其视觉效果的清晰度,使图像能够更加适用于计算机的进一步分析和处理。
     通常可将图像噪声大致分为高斯噪声、椒盐噪声和颗粒噪声H类U"。
     常用的图像锐化算法有;梯度算子法、Roberts算子法、Sobel算子法、Prewitt算子法以及拉普拉斯算子法等。

      图像分割的基本思想是将图像分割成若干个互不相关的具有相似或一致性特征的目标区域。分割方法的选取取决于图像中目标的特征,这些特征可以是目标的颜色、几何形状、灰度值或者空间纹理等。
      图像特征提取的基本思想是依据图像中目标的特性,将其分割为不同的子集后,提取出所需的图像目标特征,其目的在于求出对图像中目标的分类最为有效的特征,使识别的性能达到最佳。对于图像的识别来讲,提取出最能反映分类本质的图像特征以及如何提取这些特征是图像识别技术的关键。常见的特征提取法有基于颜色、纹理、形状以及空间关系等特征的提取方法。
      图像的分类识别是区分并分离各个目标的过程。对目标进行分类识别的关键不仅取决于提取图像中目标特征的结果,更取决于识别算法的选取。分类识别算法的选取对最终识别结果的准确程度有着决定性的作用。目前常见的分类识别方法主要有模板匹配法、人工神经网络法和支持向量机法等。

    -- 基于SVM的图像识别主要分三步:
    (1)构建训练样本集,利用SVM对样本的特征值进行训练,根据训练所得参数,构建基于SVM的识别分类器;
    (2)将测试样本的特征值输入分类器中,得到属于各个目标分类后的概率;
    (3)根据概率决定目标最终所属的类别,获得识别结果。

     图像的旋转和缩放容易引起图像的重采样和重量化。有两个最常见的大方向,一是2B的整体解决方案,二是2C的移动互联网应用。
     一般工业使用中,采用工业相机拍摄图片,然后再利用软件根据图片灰阶差做进一步识别处理,图像识别软件国外代表的有康耐视等,国内代表的有图智能等。

      机器视觉的应用领域也十分广泛,例如用于军事侦察、危险环境的自主机器人,邮政、医院和家庭服务的智能机器人。此外机器视觉还可用于工业生产中的工件识别和定位,太空机器人的自动操作等。机器的图像识别也是类似的,通过分类并提取重要特征而排除多余的信息来识别图像。
      在“先验知识库”的方法中,事物的形状、颜色、表面纹理等特征受到视角和观察环境所影响,在不同角度、不同光线、不同遮挡的情况下会产生变化。因此,研究者的新方法是,通过局部特征的识别来判断事物,对事物建立一个局部特征索引,即使视角或观察环境发生变化,也能比较准确地匹配上。

    -- 图像识别过程

    https://img-blog.csdnimg.cn/2019070722151521.jpg?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L1NoYXJlVXM=,size_16,color_FFFFFF,t_70

     

    展开全文
  • 人工智能中的图像识别技术

    千次阅读 2022-05-18 01:19:12
    点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达伴随着图像处理技术的飞速发展,推动了图像识别技术的产生和发展,并逐渐成为人工智能领域中重要的组成部分,并广泛地运用于面部识别、指纹...

    点击上方“小白学视觉”,选择加"星标"或“置顶

    
     
    重磅干货,第一时间送达

    8c548f0755b7626d667e6a4d2bd5e6d1.png

    伴随着图像处理技术的飞速发展,推动了图像识别技术的产生和发展,并逐渐成为人工智能领域中重要的组成部分,并广泛地运用于面部识别、指纹识别、医疗诊断等等领域中,发挥重要作用。

    89788a2dc9705f68e67caacd631a9e9b.png

    这也给学生思考课题给了更多的空间,今天小编就来浅谈热门课题方向中图像识别技术,希望给学生更多的启发!

    图像识别技术概述

    图像识别技术的含义

    图像识别是人工智能的一个重要领域,是指利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。一般工业使用中,采用工业相机拍摄图片,然后再利用软件根据图片灰阶差做进一步识别处理。

    e31b090df8f8c647a109b40b157dd5d1.png

    在具体应用实践中,特别识别除了要弄清识别的对象具有是什么样的物体外,还应该明确其所在的的位置和姿态。当前图像识别已经被广泛应用到各个领域中,例如交通领域中的车牌号识别、交通标志识别、军事领域中的飞行物识别、地形勘察、安全领域中的指纹识别、人脸识别等。

    ab8b4aa1eac76a863409c11bd417e9b3.gif

    图像识别技术的原理

    图像识别原理主要是需处理具有一定复杂性的信息,处理技术并不是随意出现在计算机中,主要是根据一些医学研究人员的实践,结合计算机程序对相关内容模拟并予以实现。该技术的计算机实现与人类对图像识别的基本原理基本类似,在人类感觉及视觉等方面只是计算机不会受到任何因素的影响。人类不只是结合储存在脑海中的图像记忆进行识别,而是利用图像特征对其分类,再利用各类别特征识别出图片。计算机也采用同样的图像识别原理,采用对图像重要特征的分类和提取,并有效排除无用的多余特征,进而使图像识别得以实现。有时计算机对上述特征的提取比较明显,有时就比较普通,这将对计算机图像识别的效率产生较大影响。

    4e04d660536650963c2cf07580f8da50.png

    图像识别技术的过程

    由于图像识别技术的产生是基于人工智能的基础上,所以计算机图像识别的过程与人脑识别图像的过程大体一致,归纳起来,该过程主要包括4个步骤:

    1是获取信息,主要是指将声音和光等信息通过传感器向电信号转换,也就是对识别对象的基本信息进行获取,并将其向计算机可识别的信息转换;

    2是信息预处理,主要是指采用去噪、变换及平滑等操作对图像进行处理,基于此使图像的重要特点提高;

    3是抽取及选择特征,主要是指在模式识别中,抽取及选择图像特征,概括而言就是识别图像具有种类多样的特点,如采用一定方式分离,就要识别图像的特征,获取特征也被称为特征抽取;

    4是设计分类器及分类决策,其中设计分类器就是根据训练对识别规则进行制定,基于此识别规则能够得到特征的主要种类,进而使图像识别的不断提高辨识率,此后再通过识别特殊特征,最终实现对图像的评价和确认。

    图像识别技术的常见形式

    首先图像识别的发展经历了三个阶段:文字识别、数字图像处理与识别、物体识别。

    文字识别的研究是从 1950年开始的,一般是识别字母、数字和符号,从印刷文字识别到手写文字识别,应用非常广泛。

    数字图像处理和识别的研究开始于1965年。数字图像与模拟图像相比具有存储,传输方便可压缩、传输过程中不易失真、处理方便等巨大优势,这些都为图像识别技术的发展提供了强大的动力。

    物体的识别主要指的是对三维世界的客体及环境的感知和认识,属于高级的计算机视觉范畴。它是以数字图像处理与识别为基础的结合人工智能、系统学等学科的研究方向,其研究成果被广泛应用在各种工业及探测机器人上。

    随着计算机及信息技术的迅速发展,图像识别技术的应用逐渐扩大到诸多领域,尤其是在面部及指纹识别、卫星云图识别及临床医疗诊断等多个领域日益发挥着重要作用。通常图像识别技术主要是指采用计算机按照既定目标对捕获的系统前端图片进行处理,在日常生活中图像识别技术的应用也十分普遍,比如车牌捕捉、商品条码识别及手写识别等。随着该技术的逐渐发展并不断完善,未来将具有更加广泛的应用领域。

    05c7844652f63f677cbcd5c839030ced.gif

    基于神经网络的图像识别技术

    目前,基于神经网络的图像识别是一种比较新型的技术,是以传统图像识别方式为基础,有效融合神经网络算法。在此,神经网络主要是指人工神经网络,换而言之就是本文中的神经网络不是动物体的神经网络,而主要是指人类采用人工模拟动物神经网络方式的一种神经网络。针对基于神经网络的图像识别技术,目前,在基于神经网络的图像识别技术中,遗传算法有效结合 BP 神经网络是最经典的一种模型,该模型可在诸多领域中进行应用。诸如智能汽车监控中采用的拍照识别技术,若有汽车从该位置经过时,检测设备将产生相应的反应,检测设备启动图像采集装置,获取汽车正反面的特征图像,在对车牌字符进行识别的过程中,就采用了基于神经网络和模糊匹配的两类算法。

    基于非线性降维的图像识别技术

    采用计算机识别图像是基于高维形式的一种识别技术,不管原始图片的分辨率如何,该图片产生的数据通常都具有多维性特征,这在一定程度上增大了计算机识别的难度。为使计算机的图像识别性能更为高效,采用随图像降维方法就是一种最直接而有效的方法。一般情况下,可对降维划分为非线性降维与线性降维两类,比如最普遍的线性降维方式就是主成分分与线性奇异分析等,该方式的特点是简单、理解更容易等,再对数据集合采用线性降维方式处理求解的投影图像使该数据集合的低维最优。

    在信息技术中作为近年来新兴的图像识别技术已广泛应用于众多应用领域,随着信息技术的日新月异,图像识别技术也得到十分迅猛的发展。在众多社会领域中,有效应用图像识别技术将使社会与经济价值得到充分发挥。

    2f1c343f1e74075a3c850c17028c4c68.gif

    小编相信,通过本次的科普,很多同学都对图像识别有了更深的理解,希望可以拓宽同学们的思路,利用人工智能的图像识别技术解决更多问题,造福社会,造福世界!

    下载1:OpenCV-Contrib扩展模块中文版教程
    
    在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。
    
    
    下载2:Python视觉实战项目52讲
    在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。
    
    
    下载3:OpenCV实战项目20讲
    在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。
    
    
    交流群
    
    欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~
    展开全文
  • 图像识别是计算机视觉和人工智能领域的重要组成部分,其终极目标是使计算机具有分析和理解图像内容的能力。图像识别是一个综合性的问题,涵盖图像匹配、图像分类、图像检索、人脸检测、行人检测等技术,并在互联网...

    图像识别是计算机视觉和人工智能领域的重要组成部分,其终极目标是使计算机具有分析和理解图像内容的能力。图像识别是一个综合性的问题,涵盖图像匹配、图像分类、图像检索、人脸检测、行人检测等技术,并在互联网搜索引擎、自动驾驶、医学分析、遥感分析等领域具有广泛的应用价值。为了让大家看完本文后对图像识别技术有个全面的了解,下面贤集网小编为大家讲解图像识别技术种类、技术原理、选型及应用。

    图像识别技术都有哪些?

    图像识别分为生物识别、物体与场景识别和视频识别。其中生物识别包括指纹、掌形、眼睛(视网膜和虹膜)、脸型等;物体与场景识别包括:签名、语音、行走的步态、击打键盘的力度等。

    bce1876ab8be031d01d291ab2fe32ae0.jpg

    图像识别技术可分为神经网络的图像识别技术与非线性降维的图像识别技术。

    神经网络的图像识别技术

    神经网络图像识别技术是一种比较新型的图像识别技术,是在传统的图像识别方法和基础上融合神经网络算法的一种图像识别方法。这里的神经网络是指人工神经网络,也就是说这种神经网络并不是动物本身所具有的真正的神经网络,而是人类模仿动物神经网络后人工生成的。

    在神经网络图像识别技术中,遗传算法与BP网络相融合的神经网络图像识别模型是非常经典的,在很多领域都有它的应用。在图像识别系统中利用神经网络系统,一般会先提取图像的特征,再利用图像所具有的特征映射到神经网络进行图像识别分类。

    以汽车拍照自动识别技术为例,当汽车通过的时候,汽车自身具有的检测设备会有所感应。此时检测设备就会启用图像采集装置来获取汽车正反面的图像。获取了图像后必须将图像上传到计算机进行保存以便识别。最后车牌定位模块就会提取车牌信息,对车牌上的字符进行识别并显示最终的结果。在对车牌上的字符进行识别的过程中就用到了基于模板匹配算法和基于人工神经网络算法。

    非线性降维的图像识别技术

    计算机的图像识别技术是一个异常高维的识别技术。不管图像本身的分辨率如何,其产生的数据经常是多维性的,这给计算机的识别带来了非常大的困难。想让计算机具有高效地识别能力,最直接有效的方法就是降维。降维分为线性降维和非线性降维。例如主成分分析(PCA)和线性奇异分析(LDA)等就是常见的线性降维方法,它们的特点是简单、易于理解。但是通过线性降维处理的是整体的数据集合,所求的是整个数据集合的最优低维投影。

    经过验证,这种线性的降维策略计算复杂度高而且占用相对较多的时间和空间,因此就产生了基于非线性降维的图像识别技术,它是一种极其有效的非线性特征提取方法。此技术可以发现图像的非线性结构而且可以在不破坏其本征结构的基础上对其进行降维,使计算机的图像识别在尽量低的维度上进行,这样就提高了识别速率。

    而在人脸图像识别系统所需的维数通常很高,其复杂度之高对计算机来说无疑是巨大的“灾难”。由于在高维度空间中人脸图像的不均匀分布,使得人类可以通过非线性降维技术来得到分布紧凑的人脸图像,从而提高人脸识别技术的高效性。

    图像识别技术原理

    计算机的图像识别技术和人类的图像识别在原理上并没有本质的区别,人类的图像识别都是依靠图像所具有的本身特征分类,然后通过各个类别所具有的特征将图像识别出来的,当看到一张图片时,我们的大脑会迅速感应到是否见过此图片或与其相似的图片。在这个过程中,我们的大脑会根据存储记忆中已经分好的类别进行识别,查看是否有与该图像具有相同或类似特征的存储记忆,从而识别出是否见过该图像。

    59f4228d393548e4b441d7eced31fcbd.jpg

    机器的图像识别技术也是如此,通过分类并提取重要特征而排除多余的信息来识别图像。机器所提取出的这些特征有时会非常明显,有时又是很普通,这在很大的程度上影响了机器识别的速率。总之,在计算机的视觉识别中,图像的内容通常是用图像特征进行描述。

    模式识别是人工智能和信息科学的重要组成部分。模式识别是指对表示事物或现象的不同形式的信息做分析和处理从而得到一个对事物或现象做出描述、辨认和分类等的过程。

    图像识别技术是以图像的主要特征为基础的。每个图像都有它的特征,对图像识别时眼动的研究表明,视线总是集中在图像的主要特征上,也就是集中在图像轮廓曲度最大或轮廓方向突然改变的地方,这些地方的信息量最大。而且眼睛的扫描路线也总是依次从一个特征转到另一个特征上。由此可见,在图像识别过程中,知觉机制必须排除输入的多余信息,抽出关键的信息。同时,在大脑里必定有一个负责整合信息的机制,它能把分阶段获得的信息整理成一个完整的知觉映象。

    f6c0bb1f031ad7d8b2cb68fc2d855066.jpg

    为了编制模拟人类图像识别活动的计算机程序,人们提出了不同的图像识别模型,例如模板匹配模型。这种模型认为识别某个图像,必须在过去的经验中有这个图像的记忆模式,又叫模板。当前的刺激如果能和大脑中的模板相匹配,这个图像也就被识别了。但这种模型强调图像必须与脑中的模板完全符合才能加以识别,有一定的局限性。格式塔心理学家又据此提出了一个原型匹配模型。这种模型认为在长时记忆中存储的并不是所要识别的无数个模板,而是图像的某些“相似性”。从图像中抽象出来的“相似性”就可作为原型,拿它来检验所要识别的图像。如果能找到一个相似的原型,这个图像也就被识别了。但是,这种模型没有说明人是怎样对相似的刺激进行辨别和加工的,它也难以在计算机程序中得到实现。因此又有人提出了一个更复杂的模型,即“泛魔”识别模型。

    简单地说,模式识别就是对数据进行分类,它是一门与数学紧密结合的科学,其中所用的思想大部分是概率与统计。模式识别主要分为三种:统计模式识别、句法模式识别、模糊模式识别。

    图像识别技术的过程

    既然计算机的图像识别技术与人类的图像识别原理相同,那它们的过程也是大同小异的。图像识别技术的过程分以下几步:信息的获取、预处理、特征抽取和选择、分类器设计和分类决策。

    信息的获取是指通过传感器,将光或声音等信息转化为电信息。也就是获取研究对象的基本信息并通过某种方法将其转变为机器能够认识的信息。

    预处理主要是指图像处理中的去噪、平滑、变换等的操作,从而加强图像的重要特征。

    特征抽取和选择是指在模式识别中,需要进行特征的抽取和选择。简单的理解就是我们所研究的图像是各式各样的,如果要利用某种方法将它们区分开,就要通过这些图像所具有的本身特征来识别,而获取这些特征的过程就是特征抽取。在特征抽取中所得到的特征也许对此次识别并不都是有用的,这个时候就要提取有用的特征,这就是特征的选择。特征抽取和选择在图像识别过程中是非常关键的技术之一,所以对这一步的理解是图像识别的重点。

    c7eb3df4541af778cfab3790e7c29408.jpg

    分类器设计是指通过训练而得到一种识别规则,通过此识别规则可以得到一种特征分类,使图像识别技术能够得到高识别率。分类决策是指在特征空间中对被识别对象进行分类,从而更好地识别所研究的对象具体属于哪一类。

    图像识别技术的应用实例

    计算机的图像识别技术在公共安全、生物、工业、农业、交通、医疗等很多领域都有应用。例如交通方面的车牌识别系统;公共安全方面的人脸识别技术、指纹识别技术;农业方面的种子识别技术、食品品质检测技术;医学方面的心电图识别技术等。

    图像识别技术应用于无人驾驶车辆

    基于机器视觉的道路识别与障碍物检测为研究对象,采用动态图像处理技术为行驶车辆提供环境状态信息及车辆行驶状态信息。综合利用车辆的当前行驶车道状态(弯道或者直道)和距离信息实现了障碍物的检测与跟踪。

    图像识别处理技术应用于农业工程

    本文研究一种基于图像识别处理的粮虫检测方法,将图像识别处理技术应用于农业工程。选取常见的玉米象、拟谷盗和锯谷盗三种粮虫为研究对象,对其图像进行处理识别。分别使用边缘检测算子、边缘检测算子、边缘检测算子和边缘检测算子对其图像进行边缘检测,并提取其图像的面積A、周长P、相对面积RA、延伸率S、复杂度C、占空比B、等效面积圆半径R和偏心率E这八个特征用于对三种粮虫的识别,使用基于RBF神经网络的识别模型对三种粮虫图像的几何形态特征进行识别。结果表明,在本文的研究条件下,使用边缘检测算子对粮虫图像边缘检测对于粮虫图像识别准确率是最有利的,而使用边缘检测算子后粮虫图像的识别率最低。

    图像识别处理技术应用于方便面调味包生产线

    本文设计了一套基于机器视觉的检测识别系统,用于识别三种调味包丢失的情况,并能控制相应装置做出处理。为了设计出有效的方便面调味包识别方法,仔细研究了识别对像的特性和现场生产工艺流程及设计要求,对机器视觉技术各个组成部分进行了设计论证,并重点从图像处理和图像识别方法两个方面展开研究。该检测识别系统在方便面生产流水线试运行,经过8个小时,包装8万袋方便面的现场测试,测试后,对测试结果进行了分析,结果表明,该系统实时性好,识别准确率达到99.7%,完全满足生产工艺要求,提高了整个生产流水线的生产速度,减轻了工人劳动量。并在进一步的测试分析后,不断探索新的识别方法,提出系统的不足和相应的改进方案。

    图像识别处理技术应用云计算平台

    应用图像处理技术、支持向量机(SVM)算法以及Hadoop处理技术,将云平台与SVM算法结合起来,研究基于云计算平台的图像识别技术。通过交通标志识别实例验证方法可行性与识别效率。研究结果表明:基于所提技术的识别精度要高于基于反向传播(BP)和云计算平台的图像识别技术以及单机运行的基于SVM分类器的图像识别技术。在节点数达到一定数量后,识别效率高于单机平台运行的图像识别技术。

    以上就是关于图像识别技术都有哪些?图像识别技术原理及应用实例的介绍,随着计算机技术的不断进步,未来图像识别技术将会更加强大,为人类社会的更多领域带来重大的应用。

    展开全文
  • 图像识别技术是人工智能的一个重要领域。它是指对图像进行对象识别,以识别各种不同模式的目标和对像的技术。图像识别的发展经历了三个阶段:文字识别、数字图像处理与识别、物体识别。图像识别,顾名思义,就是对...
  • 图像识别技术的应用及发展趋势

    千次阅读 2021-05-18 00:55:06
    点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达 本文转自|新机器视觉 图像识别技术的背景 移动互联网、智能手机以及社交网络的发展带来了海...
  • 谈谈如何使用 opencv 进行图像识别

    千次阅读 2022-04-25 19:01:03
    从18年开始,我接触了叉叉助手(平台已经被请喝茶了),通过图色识别,用来给常玩的游戏写挂机脚本,写了也有两三年.也算是我转行当游戏测试的理由. 去年11月,也是用了这身技术,混进了外包,薪资还不错,属于是混日子了,岗位...
  • 图像识别技术原理和神经网络的图像识别技术

    万次阅读 多人点赞 2019-03-03 19:44:58
    图像识别技术是信息时代的一门...简单分析了图像识别技术的引入、其技术原理以及模式识别等,之后介绍了神经网络的图像识别技术和非线性降维的图像识别技术及图像识别技术的应用。从中可以总结出图像处理技术的应用...
  • 文章目录图像处理图像识别模式识别图像识别的过程图像识别的应用分类与检测 图像处理 图像识别图像识别技术是信息时代的一门重要的技术,其产生目的是为了让计算机代替人类去处理大量的物理信息。随着计算机...
  • 其中很大一部分是图像图像可以把事物生动的呈现在我们面前,让我们更直观地接受信息。同时,计算机已经作为一种人们普遍使用的工具为人们的生产生活服务。如今我们也可以把这些技术应用在交通领域。作为智能交通...
  • MATLAB 图像识别

    千次阅读 2022-04-20 13:31:33
    图片例 代码: f=imread('D:\Users\41644\Downloads\jianbianseqiu-32753507_3.jpg'); f=f(:,:,3); f=histeq(f,256); %增强对比度 f=im2bw(f,0.386); % rowhigh=102+276-1; %提取有用部分 ...fo=imo
  • 浅谈图像识别技术原理与价值

    万次阅读 多人点赞 2020-04-01 09:33:08
    图像识别技术是人工智能的重要领域。它是指图像的对象识别技术,用于识别不同模式的目标和对象。本文从图像识别的技术原理、识别过程以及应用范围方面讲述对图片识别技术的整体认知。 目录 图像识别技术原理 ...
  • 图像识别的原理、过程、应用前景,精华篇!

    万次阅读 多人点赞 2018-09-28 07:53:49
    图像识别的原理、过程、应用前景,精华篇!   https://mp.weixin.qq.com/s/THE5B77C_AJa5y6sfOXpaA   图像识别技术是信息时代的一门重要的技术,其产生目的是为了让计算机代替人类去处理大量的物理信息。...
  • 基于MATLAB的图像识别

    千次阅读 2021-04-18 10:46:38
    图像的预处理与图像分割都是图像识别的基础。图像识别技术在不同领域的应用,对图像的预处理和图像分割有着不同的技术要求。在现有的实际应用中,数字图像处理技术往往所需处理的图像信息量巨大,同时图像采集装置在...
  • STM32F4图像识别

    千次阅读 2021-08-03 21:14:31
    1MB的FLASH(具体看芯片型号),采用分散内存架构128KB内部SRAM,64KB高速RAM,CPU可以直接访问此部分的内存(访问速度为CPU主频速度),因此通常采用内部SRAM图像采集和显示,采用CCM-RAM进行图像处理和识别,能...
  • 树莓派安装openCV做图像识别

    千次阅读 2021-07-03 00:51:37
    点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达 本文转自|新机器视觉 有时候我们会使用树莓派和摄像头去做图像识别,在树莓派和LINUX系统中最常用...
  • Python基础之图像识别

    万次阅读 多人点赞 2020-10-24 22:48:04
    Python基础之图像识别 文章目录Python基础之图像识别1. 获取屏幕截图2. 识别图像3. 自动点赞程序 1. 获取屏幕截图 我们控制鼠标的操作,不能盲目的进行,所以我们需要监控屏幕上的内容,从而决定要不要进行对应的...
  • 图像识别算法

    万次阅读 多人点赞 2019-08-15 17:36:40
    图像特征提取是图像分析与图像识别的前提,它是将高维的图像数据进行简化表达最有效的方式,从一幅图像的的数据矩阵中,我们看不出任何信息,所以我们必须根据这些数据提取出图像中的关键信息,一些基本元件以及它们...
  • MLKit 是 Google 提供的移动端机器学习库,可以在 Andorid 或 iOS 上低成本地实现各种 AI 能力,例如图像、文字、人脸识别等等,而且很多能力可以在手机端离线完成。 ... 下面通过代码示例展示 MLKit 的...图像识别
  • 不管如何,我们始终要承认时代在一步一步的发展,目前我们所在的时代科学技术发展跟我们的生活有这很大的影响,其中发展最为迅猛的就是图像识别,就好比如人脸识别,从当初的安防,到后来的手机解锁,再到支付,图像...
  • 图像识别的技术现状和发展趋势

    热门讨论 2011-07-08 10:44:37
    该文描述了图像识别技术的国内外研究现状,介绍了图像识别过程的相关基本工作,并探讨了图像识别的关键步骤,包括图象分 割、图像特征提取和分类和图像的匹配,分析和比较了各种算法的优缺点,并讨论了其中的关键...
  • 图像识别的工作原理是什么?商业上如何使用它?

    千次阅读 多人点赞 2020-01-09 17:02:36
    图像识别市场估计将从2016年的159.5亿美元增长到2021年的389.2亿美元,在2016年至2021年之间的复合年增长率为19.5%。机器学习和高带宽数据服务的使用进步推动了这项技术的发展。 。电子商务,汽车,医疗保健和游戏...
  • 基于图像识别的火灾检测系统设计

    千次阅读 多人点赞 2020-10-15 20:49:43
    以前做过的一个设计,简单记录下!! 【摘要】 火象征着人类文明,推动着人类文明的进步。...本文研究了火焰本身存在的物理特点,结合数字图像处理技术,完成了基于图像识别的火灾检测方法。详细考察了火焰产生的过程机
  • Opencv图像识别

    千次阅读 2022-04-01 21:46:25
    边缘检测偏向于图像中像素点的变化,轮廓检测更偏向于关注上层语义对象。 二,边缘检测 利用Canny算子做边缘检测: int main() { Mat img = imread("D:/1.png", 0); resize(img, img, Size(0, 0), 0.5, 0.5); ...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 429,440
精华内容 171,776
关键字:

图像识别

友情链接: LaguerreL.zip