归一化 订阅
归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为标量。 在多种计算中都经常用到这种方法。 展开全文
归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为标量。 在多种计算中都经常用到这种方法。
信息
外文名
normalization
定    义
简化计算的方式
研究领域
物理学
中文名
归一化
性    质
标量
归一条件
粒子量子态的波函数满足归一条件
归一化简单介绍
归一化是一种无量纲处理手段,使物理系统数值的绝对值变成某种相对值关系。简化计算,缩小量值的有效办法。 [1]  例如,滤波器中各个频率值以截止频率作归一化后,频率都是截止频率的相对值,没有了量纲。阻抗以电源内阻作归一化后,各个阻抗都成了一种相对阻抗值,“欧姆”这个量纲也没有了。等各种运算都结束后,反归一化一切都复原了。信号处理工具箱中经常使用的是nyquist频率,它被定义为采样频率的二分之一,在滤波器的阶数选择和设计中的截止频率均使用nyquist频率进行归一化处理。例如对于一个采样频率为500hz的系统,400hz的归一化频率就为400/500=0.8,归一化频率范围在[0,1]之间。如果将归一化频率转换为角频率,则将归一化频率乘以2*pi,如果将归一化频率转换为hz,则将归一化频率乘以采样频率的一半。在量子力学里,表达粒子的量子态的波函数必须满足归一条件,也就是说,在空间内找到粒子的概率必须等于1。这性质称为归一性。一般而言,波函数是一个复函数。可是,概率密度是一个实函数,空间内积分和为1,称为概率密度函数。所以在区域内,找到粒子的概率是1。因为粒子存在于空间,因此在空间内找到粒子概率是1,所以积分于整个空间将得到1。假若,从解析薛定谔方程而得到的波函数,其概率是有限的,但不等于1,则可以将波函数乘以一个常数,使概率等于1。或者假若波函数内,已经有一个任意常数,可以设定这任意常数的值,使概率等于1。 [2] 
收起全文
精华内容
下载资源
问答
  • 数据标准化/归一化normalization

    万次阅读 多人点赞 2016-08-19 09:42:40
    这里主要讲连续型特征归一化的常用方法。 连续型特征还有一种处理方式是,先分桶/分箱(如等频/等距的分)[待写]进行离散化后再使用离散数据的处理方法。 离散数据处理参考[数据预处理:独热编码(One-Hot ...

    http://blog.csdn.net/pipisorry/article/details/52247379

    这里主要讲连续型特征归一化的常用方法。

    连续型特征还有一种处理方式是,先分桶/分箱(如等频/等距的分)[待写]进行离散化后再使用离散数据的处理方法。

    离散数据处理参考[数据预处理:独热编码(One-Hot Encoding)]。

    基础知识参考:

    [均值、方差与协方差矩阵]

    [矩阵论:向量范数和矩阵范数]

    数据的标准化(normalization)和归一化

        数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间。在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。

        目前数据标准化方法有多种,归结起来可以分为直线型方法(如极值法、标准差法)、折线型方法(如三折线法)、曲线型方法(如半正态性分布)。不同的标准化方法,对系统的评价结果会产生不同的影响,然而不幸的是,在数据标准化方法的选择上,还没有通用的法则可以遵循。

    其中最典型的就是数据的归一化处理,即将数据统一映射到[0,1]区间上。

    归一化的目标

    1 把数变为(0,1)之间的小数
            主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速,应该归到数字信号处理范畴之内。
    2 把有量纲表达式变为无量纲表达式
            归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量。 比如,复数阻抗可以归一化书写:Z = R + jωL = R(1 + jωL/R) ,复数部分变成了纯数量了,没有量纲。
    另外,微波之中也就是电路分析、信号系统、电磁波传输等,有很多运算都可以如此处理,既保证了运算的便捷,又能凸现出物理量的本质含义。

    归一化后有两个好处

    1. 提升模型的收敛速度

    如下图,x1的取值为0-2000,而x2的取值为1-5,假如只有这两个特征,对其进行优化时,会得到一个窄长的椭圆形,导致在梯度下降时,梯度的方向为垂直等高线的方向而走之字形路线,这样会使迭代很慢,相比之下,右图的迭代就会很快(理解:也就是步长走多走少方向总是对的,不会走偏)


    2.提升模型的精度

    归一化的另一好处是提高精度,这在涉及到一些距离计算的算法时效果显著,比如算法要计算欧氏距离,上图中x2的取值范围比较小,涉及到距离计算时其对结果的影响远比x1带来的小,所以这就会造成精度的损失。所以归一化很有必要,他可以让各个特征对结果做出的贡献相同。

        在多指标评价体系中,由于各评价指标的性质不同,通常具有不同的量纲和数量级。当各指标间的水平相差很大时,如果直接用原始指标值进行分析,就会突出数值较高的指标在综合分析中的作用,相对削弱数值水平较低指标的作用。因此,为了保证结果的可靠性,需要对原始指标数据进行标准化处理。

        在数据分析之前,我们通常需要先将数据标准化(normalization),利用标准化后的数据进行数据分析。数据标准化也就是统计数据的指数化。数据标准化处理主要包括数据同趋化处理和无量纲化处理两个方面。数据同趋化处理主要解决不同性质数据问题,对不同性质指标直接加总不能正确反映不同作用力的综合结果,须先考虑改变逆指标数据性质,使所有指标对测评方案的作用力同趋化,再加总才能得出正确结果。数据无量纲化处理主要解决数据的可比性。经过上述标准化处理,原始数据均转换为无量纲化指标测评值,即各指标值都处于同一个数量级别上,可以进行综合测评分析。

    从经验上说,归一化是让不同维度之间的特征在数值上有一定比较性,可以大大提高分类器的准确性。

    3. 深度学习中数据归一化可以防止模型梯度爆炸。

    数据需要归一化的机器学习算法

    需要归一化的模型:

            有些模型在各个维度进行不均匀伸缩后,最优解与原来不等价,例如SVM(距离分界面远的也拉近了,支持向量变多?)。对于这样的模型,除非本来各维数据的分布范围就比较接近,否则必须进行标准化,以免模型参数被分布范围较大或较小的数据dominate。
            有些模型在各个维度进行不均匀伸缩后,最优解与原来等价,例如logistic regression(因为θ的大小本来就自学习出不同的feature的重要性吧?)。对于这样的模型,是否标准化理论上不会改变最优解。但是,由于实际求解往往使用迭代算法,如果目标函数的形状太“扁”,迭代算法可能收敛得很慢甚至不收敛(模型结果不精确)。所以对于具有伸缩不变性的模型,最好也进行数据标准化。

            有些模型/优化方法的效果会强烈地依赖于特征是否归一化,如LogisticReg,SVM,NeuralNetwork,SGD,PCA降维[PCA将原来高维的数据投影到某个低维的空间上并使得其方差尽量大。如果数据其中某一特征数值特别大,那么它在整个误差计算的比重上就很大,那么可以想象在投影到低维空间之后,为了使低秩分解逼近原数据,整个投影会去努力逼近最大的那一个特征,而忽略数值比较小的特征,这很可能导致了大量的信息缺失。此外,从计算的角度讲,因为PCA通常是数值近似分解,而非求特征值、奇异值得到解析解,所以当我们使用梯度下降等算法进行PCA的时候,归一化有利于梯度下降收敛]等。

    不需要归一化的模型:

        (0/1取值的特征通常不需要归一化,归一化会破坏它的稀疏性。)

        有些模型则不受归一化影响,如DecisionTree。

        ICA好像不需要归一化(因为独立成分如果归一化了就不独立了?)。

        基于平方损失的最小二乘法OLS不需要归一化。

    [线性回归与特征归一化(feature scaling)]

    皮皮blog

     

     

    常见的数据归一化方法

    最常用的是 min-max标准化 和 z-score 标准化。

    min-max标准化(Min-max normalization)/0-1标准化(0-1 normalization)/线性函数归一化/离差标准化

    是对原始数据的线性变换,使结果落到[0,1]区间,转换函数如下:

    其中max为样本数据的最大值,min为样本数据的最小值。

    def Normalization(x):
        return [(float(i)-min(x))/float(max(x)-min(x)) for i in x]

    如果想要将数据映射到[-1,1],则将公式换成:

    x* = x* * 2 -1

    或者进行一个近似

    x* = (x - x_mean)/(x_max - x_min), x_mean表示数据的均值。

    def Normalization2(x):
        return [(float(i)-np.mean(x))/(max(x)-min(x)) for i in x]

    这种方法有一个缺陷就是当有新数据加入时,可能导致max和min的变化,需要重新定义。

    ps: 将数据归一化到[a,b]区间范围的方法:

    (1)首先找到原本样本数据X的最小值Min及最大值Max
    (2)计算系数:k=(b-a)/(Max-Min)
    (3)得到归一化到[a,b]区间的数据:Y=a+k(X-Min)  或者 Y=b+k(X-Max)

    即一个线性变换,在坐标上就是求直线方程,先求出系数,代入一个点对应的值(x的最大/最小就对应y的最大/最小)就ok了。

    z-score 标准化(zero-mean normalization)

    最常见的标准化方法就是Z标准化,也是SPSS中最为常用的标准化方法,spss默认的标准化方法就是z-score标准化。

    也叫标准差标准化,这种方法给予原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。

    经过处理的数据符合标准正态分布,即均值为0,标准差为1,注意,一般来说z-score不是归一化,而是标准化,归一化只是标准化的一种[lz]。

    其转化函数为:

    x* = (x - μ ) / σ

    其中μ为所有样本数据的均值,σ为所有样本数据的标准差。

    z-score标准化方法适用于属性A的最大值和最小值未知的情况,或有超出取值范围的离群数据的情况。该种标准化方式要求原始数据的分布可以近似为高斯分布,否则效果会变得很糟糕。

    标准化的公式很简单,步骤如下

      1.求出各变量(指标)的算术平均值(数学期望)xi和标准差si ;
      2.进行标准化处理:
      zij=(xij-xi)/si
      其中:zij为标准化后的变量值;xij为实际变量值。
      3.将逆指标前的正负号对调。
      标准化后的变量值围绕0上下波动,大于0说明高于平均水平,小于0说明低于平均水平。

    def z_score(x, axis):
        x = np.array(x).astype(float)
        xr = np.rollaxis(x, axis=axis)
        xr -= np.mean(x, axis=axis)
        xr /= np.std(x, axis=axis)
        # print(x)
        return x

    为什么z-score 标准化后的数据标准差为1?

    x-μ只改变均值,标准差不变,所以均值变为0

    (x-μ)/σ只会使标准差除以σ倍,所以标准差变为1

    这两种最常用方法使用场景:

    1、在分类、聚类算法中,需要使用距离来度量相似性的时候、或者使用PCA技术进行降维的时候,第二种方法(Z-score standardization)表现更好。

    2、在不涉及距离度量、协方差计算、数据不符合正太分布的时候,可以使用第一种方法或其他归一化方法。比如图像处理中,将RGB图像转换为灰度图像后将其值限定在[0 255]的范围。
    原因是使用第一种方法(线性变换后),其协方差产生了倍数值的缩放,因此这种方式无法消除量纲对方差、协方差的影响,对PCA分析影响巨大;同时,由于量纲的存在,使用不同的量纲、距离的计算结果会不同。而在第二种归一化方式中,新的数据由于对方差进行了归一化,这时候每个维度的量纲其实已经等价了,每个维度都服从均值为0、方差1的正态分布,在计算距离的时候,每个维度都是去量纲化的,避免了不同量纲的选取对距离计算产生的巨大影响。
    [再谈机器学习中的归一化方法(Normalization Method) ]

    皮皮blog

    log函数转换

    通过以10为底的log函数转换的方法同样可以实现归一下,具体方法如下:

    看了下网上很多介绍都是x*=log10(x),其实是有问题的,这个结果并非一定落到[0,1]区间上,应该还要除以log10(max),max为样本数据最大值,并且所有的数据都要大于等于1。

    atan函数转换

    用反正切函数也可以实现数据的归一化。

    使用这个方法需要注意的是如果想映射的区间为[0,1],则数据都应该大于等于0,小于0的数据将被映射到[-1,0]区间上,而并非所有数据标准化的结果都映射到[0,1]区间上。

    Decimal scaling小数定标标准化

    这种方法通过移动数据的小数点位置来进行标准化。小数点移动多少位取决于属性A的取值中的最大绝对值。

    将属性A的原始值x使用decimal scaling标准化到x'的计算方法是:
    x'=x/(10^j)
    其中,j是满足条件的最小整数。
    例如 假定A的值由-986到917,A的最大绝对值为986,为使用小数定标标准化,我们用每个值除以1000(即,j=3),这样,-986被规范化为-0.986。
    注意,标准化会对原始数据做出改变,因此需要保存所使用的标准化方法的参数,以便对后续的数据进行统一的标准化。

    Logistic/Softmax变换

    [Sigmod/Softmax变换 ]

    模糊量化模式

    新数据=1/2+1/2sin[派3.1415/(极大值-极小值)*(X-(极大值-极小值)/2) ] X为原数据

    皮皮blog

     

    数据标准化/归一化的编程实现

    1 python库实现和调用

    [Scikit-learn:数据预处理Preprocessing data ]

    2 pandas dataframe实现标准化

    [pandas小记:pandas数据规整化-正则化、分组合并及重塑]

    两者的区别在于:df_norm = (df - df.mean()) / (df.std())会保留nan值,而preprocessing.scale(X)会直接报错:ValueError: Input contains NaN, infinity or a value too large for dtype('float64')。

    对于dense数据,建议先填充再标准化,否则需要标准化后再通过最小值来填充。

    from: http://blog.csdn.net/pipisorry/article/details/52247379

    ref:

     

    展开全文
  • 归一化

    千次阅读 2017-07-13 17:59:47
    归一化

    1 MATLAB 归一化 函数用法以及实例

       在MATLAB主窗口中输入[A1,PS]=mapminmax(A),这里PS是一种对应关系,里面包括一些相应的特征值。

    2 几种归一化方法(Normalization Method)python实现


    3 处理数据时不进行归一化会有什么影响?归一化的作用是什么?什么时候需要归一化?有哪些归一化的方法?

     

    4


    5














    展开全文
  • 数据归一化和两种常用的归一化方法 数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据...

    数据归一化和两种常用的归一化方法

          数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性。原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价。以下是两种常用的归一化方法:

    min-max标准化(Min-Max Normalization)

          也称为离差标准化,是对原始数据的线性变换,使结果值映射到[0 - 1]之间。转换函数如下:

           

          其中max为样本数据的最大值,min为样本数据的最小值。这种方法有个缺陷就是当有新数据加入时,可能导致max和min的变化,需要重新定义。

    Z-score标准化方法

          这种方法给予原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。经过处理的数据符合标准正态分布,即均值为0,标准差为1,转化函数为:

           

          其中为所有样本数据的均值,为所有样本数据的标准差。

    附 数据归一化-标准差归一化

    美文美图

    展开全文
  • PyTorch 数据归一化与反归一化

    万次阅读 热门讨论 2019-04-11 11:12:47
    文章目录数据归一化除最大值法MinMaxScaler均值和标准差反归一化 数据归一化 除最大值法 def read_and_normalize_train_data(): train_data, train_label = load_train() print('Convert to numpy...') train_...

    数据归一化

    除最大值法

    def read_and_normalize_train_data():
        train_data, train_label = load_train()
     
        print('Convert to numpy...')
        train_data = np.array(train_data, dtype=np.uint8) # now np.amax(train_data)=255
        
        print('Convert to float...')
        train_data = train_data.astype('float32')
        train_data = train_data / 255
        train_target = np_utils.to_categorical(train_target, N_CLASSES)
     
        print('Train shape:', train_data.shape)
        print(train_data.shape[0], 'train samples')
        return train_data, train_label
    

    MinMaxScaler

    将特征缩放至特定区间 将特征缩放到给定的最小值和最大值之间,或者也可以将每个特征的最大绝对值转换至单位大小。这种方法是对原始数据的线性变换,将数据归一到[0,1]中间。转换函数为:

    x=xminmaxminx = \frac{x-\min}{\max-\min}

      这种方法有个缺陷就是当有新数据加入时,可能导致max和min的变化,需要重新定义。对于outlier非常敏感,因为outlier影响了max或min值,所以这种方法只适用于数据在一个范围内分布的情况。

     无法消除量纲对方差、协方差的影响。

    def minmaxscaler(data):
        min = np.amin(data)
        max = np.amax(data)    
        return (data - min)/(max-min)
    

    均值和标准差

    在分类、聚类算法中,需要使用距离来度量相似性的时候、或者使用PCA技术进行降维的时候,新的数据由于对方差进行了归一化,这时候每个维度的量纲其实已经等价了,每个维度都服从均值为0、方差1的正态分布,在计算距离的时候,每个维度都是去量纲化的,避免了不同量纲的选取对距离计算产生的巨大影响。

    def feature_normalize(data):
        mu = np.mean(data,axis=0)
        std = np.std(data,axis=0)
        return (data - mu)/std
    

    pytorch框架下的函数 :

    import torch
    import torchvision
    import torchvision.transforms as transforms
     
     
    transform = transforms.Compose(
        [transforms.ToTensor(),  # 函数接受PIL Image或numpy.ndarray,将其先由HWC转置为CHW格式,再转为float后每个像素除以255.
         transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
     
    trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                            download=True, transform=transform)
    trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                              shuffle=True, num_workers=2)
     
     
    # get some random training images
    dataiter = iter(trainloader)
    images, labels = dataiter.next()
    

    上例均值和标准差都是0.5

    注意:torchvision.transforms.ToTensor() 函数接受PIL Image或numpy.ndarray,将其先由HWC转置为CHW格式,再转为float后每个像素除以255.

    反归一化

    def unnormalized_show(img):
        img = img * std + mu     # unnormalize
        npimg = img.numpy()
        plt.figure()
        plt.imshow(np.transpose(npimg, (1, 2, 0)))
    
    展开全文
  • 今天小编就为大家分享一篇pytorch 归一化与反归一化实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
  • 本篇谈一谈数据归一化,谈谈什么时候要使用数据归一化和数据归一化的作用,介绍数据归一化的方法(最值归一化和均值方差归一化) 1 数据归一化 机器学习算法中要求样本间的距离就要使用数据归一化,把数据映射到同一...
  • 归一化与反归一化

    2020-09-28 10:28:13
    一、归一化 归一化的具体作用是归纳统一样本的统计分布性。归一化在0-1之间是统计的概率分布,归一化在-1–+1之间是统计的坐标分布。归一化有同一、统一和合一的意思。无论是为了建模还是为了计算,首先基本度量单位...
  • 数据归一化及三种方法(python)

    万次阅读 多人点赞 2018-05-03 08:54:09
    数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的...
  • 资源中包括归一化程序及对应的反归一化程序,test程序是对上述两种程序的测试样例。 资源为个人编写,尊重知识产权
  • python归一化和反归一化

    万次阅读 热门讨论 2019-07-17 21:19:17
    from sklearn.preprocessing import MinMaxScaler ...# 归一化 train_label = mm.fit_transform(train_data) # 反归一化 predict_value = mm.inverse_transform(predict_value) 此外,也可以用 from sklearn...
  • 常用归一化方法 1). 线性归一化,线性归一化会把输入数据都转换到[0 1]的范围,公式如下 该方法实现对原始数据的等比例缩放,其中Xnorm为归一化后的数据,X为原始数据,Xmax、Xmin分别为原始数据集的最大值和...
  • 在训练神经网络模型的时候,对数据进行预处理是必不可少的操作,而对数据进行归一化是预处理最常用的操作。 最常用的归一化方法有两种,Min-Max归一化和Z-score归一化。 Min-Max归一化 原理网上很多,直接上程序...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 17,250
精华内容 6,900
关键字:

归一化