精华内容
下载资源
问答
  • 什么是数据分析方法

    万次阅读 2018-09-04 09:26:21
    数据分析方法论 确定分析思路需要以营销、管理等理论为指导。这些 跟数据分析相 关的营销、管理等理论统称为数据分析方法论。可以把方法论理解为指南针,在分析方法论的指导下我们才去开展数据分析,这样分析的结果...

    数据分析方法论


    确定分析思路需要以营销、管理等理论为指导。这些 跟数据分析相 关的营销、管理等理论统称为数据分析方法论。可以把方法论理解为指南针,在分析方法论的指导下我们才去开展数据分析,这样分析的结果才具有指导意义,而不会出现南辕北辙的情况。

    常用的数据几种数据分析方法:PEST分析法、5W2H分析法、逻辑树分析法、4P营销理论、用户行为理论。

     

    数据分析方法论的重要性


    很多人在做数据分析时,经常遇到这几个问题:不知从哪方面入手开展分析;分析的内容和指标常常被质疑是否合理、完整,而自己也说不出个所以然来。对这些问题常常感到困扰。

    数据分析方法论主要有以下几个作用:

    • 理顺分析思路,确保数据分析结构体系化。
    • 把问题分解成相关联的部分,并显示它们之间的关系。
    • 为后续数据分析的开展指引方向。
    • 确保分析结果的有效性生及正确性。

    如果没有数据分析方法论的指导,整个数据分析报告虽然各方面都涵盖到,但会给人感觉还缺点什么。其实就是报告主线不明,各部分的分析逻辑不清。

     

    常用的数据分析方法论


     

    【PEST  分析法】


    PEST分析法用于对宏观环境的分析。 宏观环境又称一般环境,是指影响一切行业和企业的各种宏观力量。对宏观环境因素作分析时。由于不同行业和企业有其自身特点和经营需要,分析的具体内容会有差异,但一般都应对 政治(Political )、经济(Economic)、 技术(Technological)和 社会(Social)这四大类影响企业的主要外部环境因素进行分析,这种方法简称为 PEST  分析法。

    PEST  分析法

    政治环境:构成政治环境的关键指标有:政治体制、经济体制、财政政策、税收政策、产业政策、投资政策、专利数量、国防开支水平、政府补贴水平、民众对政治的参与度等。

    社会环境:构成社会文化环境的关键指标有:人口规模、性别比例、年龄结构、出生率、死亡率、种族结构、妇女生育率、生活力式、购买习惯、教育状况、城市特点、宗教信仰状况等因素。

    技术环境:构成技术环境的关键指标有:新技木的发明和进展、折旧和报废速度、技术更新速度、技术传播速度、技术商品化速度、国家重点支持项目、国家投入的研发费用、专利个数、专利保护情况等因素。

    经济环境:构成经济环境的关键指标有:GDP 及增长率、进出口总额及增长率、利率、汇率、通货膨胀率、消费价格指数、居民可支配收入、失业率、劳动生产率等。

     

    【5W2H  分析法】


    5w2H 分析法是以五个 w 开头的英语单词和两个 H 开头的英语单词进行提问,从回答中发现解决问题的线索,即 何因 (Why) ) 、何事(What) 、何人(Who) 、何时(When) 、何地(Where ) 、如何做(How) 、何价(How much),这就构成了 5W2分析法的总框架。

    该方法简单、方便,易于理解和使用,富有启发意义,广泛用于企业营销、管理活动,对于决策和执行性的活动措施非常有帮助,也有助于弥补考虑问题的疏漏。其实对任何事情都可以从这七大方面去思考,对于不善分析句题的人,只要多练习即可上手,所以同样它也适用于指导建立数据分析框架。

    现在以用户购买行为分析为例,来学习 5W2H 分析法。

    5W2H 分析法

     

    【逻辑树分析法】


    逻辑树又称问题树、演绎树或分解树等。它是 将问题的所有了问题分层罗列,从最高层开始,并逐步向下扩展。

    把一个已知问题当成树干,然后开始考虑这个问题和哪些相关问题有关。每想到一点,就给这个问题所在的树干加一个“树枝”,并标明这个“树枝”代表什么问题。

    逻辑树能保证解决问题的过程的完整性,它能将工作细分为便于操作的任务,确定各部分的优先顺序,明确地把责任落实到个人。

    逻辑树的使用必须遵循以下三个原则。

    • 要素化:把相同的问题总结归纳成要素。
    • 框架化:将各个要素组织成框架。遵守不重不漏的原则。
    • 关联化:框架内的各要素保持必要的相互关系,简单而不独立。

    在使用逻辑树的时候,尽量把涉及的问题或要素考虑周全。

    逻辑树分析法在利润分析中的应用

     

    【4P  营销理论】


    4P  营销理论产生于 20 世纪 60 年代的美国,它是随着营销组合理论的提出而出现的。营销组合实际上有几十个要素,这些要素可以概括为 4 类: 产品(Product) 、价格(Price) 、 渠道(Place ) 、促销(Promotion )。

    产品:从市场营销的角度来看,产品是指能够提供给市场,被入们使用和消费并满足人们某种需要的任何东西,包括有形产品、服务、人员、组织、观念或它们的组合。

    价格:是指顾客购买产品时的价格,包括基本价格、折扣价格、支付期限等。影响定价的主要因素有三个:需求、成本与竞争。

    渠道:是指产品从生产企业流转到用户手上全过程中所经历的各个环节。

    促销:是指企业通过销售行为的改变来刺激用户消费,以短期的行为(比如让利、买一送一,营销现场气氛等等)促成消费的增长,吸引其他品牌的用户或导致提前消费来促进销售的增长。广告、宣传推广、人员推销、销售促进是一个机构促销组合的四大要素。

    接下来,我们就用 4P 营销理论对公司业务运营的整体情况做分析。在大家, 实际工作中, 需要根据实际业务情况进行调整,灵活运月,切忌生搬硬套。只有深刻理解公司业务的同时才能较好地进行业务方面的数据分析,否则将脱离业务实际,得出无指导意义的结论,犹如纸上谈兵,甚至贻笑大方。

    4P 营销理论

     

    【用户行为理论】


    网站分析的发展已经较为成熟,有一套成熟的分析指标。比如 IP、PV、页面停留时间、跳出率、回访者、新访问者、回访次数、回访相隔天数、流失率、关键字搜索、转化率、登录率,等等。遇到这么多指标,所有的指标都要采用吗?什么指标该采用?什么指标又不该采用,各指标之间有何联系,哪个指标先分析?哪个指标后分析?

    这么多指标,对于我们来说下手还是懵的,所以需要我们梳理它们之间的逻辑关系,比如利用用户使用行为理论进行梳理。

    用户使用行为是指用户为获取、使用物品或服务所采取的各种行动,用户对产品首先需要有一个认知、熟悉的过程,然后试用,再决定是否继续消费使用,最后成为忠诚用户。

    现在我们可利用用户使用行为理论,梳理网站分析的各关键指标之间的逻辑关系,构建符合公司实际业务的网站分析指标体系:

    用户使用行为理论在网站分析中的应用

     

    展开全文
  • 9种常用的数据分析方法

    千次阅读 2020-08-17 11:09:23
    对比法就是用两组或两组以上的数据进行比较,是最通用的方法。 我们知道孤立的数据没有意义,有对比才有差异。比如在时间维度上的同比和环比、增长率、定基比,与竞争对手的对比、类别之间的对比、特征和属性对比等...

    一、公式拆解

    所谓公式拆解法就是针对某个指标,用公式层层分解该指标的影响因素。
    举例:分析某产品的销售额较低的原因,用公式法分解

     

    图片.png

    二、对比分析

    对比法就是用两组或两组以上的数据进行比较,是最通用的方法。

    我们知道孤立的数据没有意义,有对比才有差异。比如在时间维度上的同比和环比、增长率、定基比,与竞争对手的对比、类别之间的对比、特征和属性对比等。对比法可以发现数据变化规律,使用频繁,经常和其他方法搭配使用。

    下图的AB公司销售额对比,虽然A公司销售额总体上涨且高于B公司,但是B公司的增速迅猛,高于A公司,即使后期增速下降了,最后的销售额还是赶超。

     

    图片.png

    三、A/Btest

    A/Btest,是将Web或App界面或流程的两个或多个版本,在同一时间维度,分别让类似访客群组来访问,收集各群组的用户体验数据和业务数据,最后分析评估出最好版本正式采用。A/Btest的流程如下:

    (1)现状分析并建立假设:分析业务数据,确定当前最关键的改进点,作出优化改进的假设,提出优化建议;比如说我们发现用户的转化率不高,我们假设是因为推广的着陆页面带来的转化率太低,下面就要想办法来进行改进了

    (2)设定目标,制定方案:设置主要目标,用来衡量各优化版本的优劣;设置辅助目标,用来评估优化版本对其他方面的影响。

    (3)设计与开发:制作2个或多个优化版本的设计原型并完成技术实现。

    (4)分配流量:确定每个线上测试版本的分流比例,初始阶段,优化方案的流量设置可以较小,根据情况逐渐增加流量。

    (5)采集并分析数据:收集实验数据,进行有效性和效果判断:统计显著性达到95%或以上并且维持一段时间,实验可以结束;如果在95%以下,则可能需要延长测试时间;如果很长时间统计显著性不能达到95%甚至90%,则需要决定是否中止试验。

    (6)最后:根据试验结果确定发布新版本、调整分流比例继续测试或者在试验效果未达成的情况下继续优化迭代方案重新开发上线试验。
    流程图如下:

     

    image.png

    四、象限分析

    通过对两种及以上维度的划分,运用坐标的方式表达出想要的价值。由价值直接转变为策略,从而进行一些落地的推动。象限法是一种策略驱动的思维,常与产品分析、市场分析、客户管理、商品管理等。比如,下图是一个广告点击的四象限分布,X轴从左到右表示从低到高,Y轴从下到上表示从低到高。

     

    image.png

     

    高点击率高转化的广告,说明人群相对精准,是一个高效率的广告。高点击率低转化的广告,说明点击进来的人大多被广告吸引了,转化低说明广告内容针对的人群和产品实际受众有些不符。高转化低点击的广告,说明广告内容针对的人群和产品实际受众符合程度较高,但需要优化广告内容,吸引更多人点击。低点击率低转化的广告,可以放弃了。还有经典的RFM模型,把客户按最近一次消费(Recency)、消费频率(Frequency)、消费金额 (Monetary)三个维度分成八个象限。

     

    image.png


    象限法的优势:
    (1)找到问题的共性原因

    通过象限分析法,将有相同特征的事件进行归因分析,总结其中的共性原因。例如上面广告的案例中,第一象限的事件可以提炼出有效的推广渠道与推广策略,第三和第四象限可以排除一些无效的推广渠道;

    (2)建立分组优化策略
    针对投放的象限分析法可以针对不同象限建立优化策略,例如RFM客户管理模型中按照象限将客户分为重点发展客户、重点保持客户、一般发展客户、一般保持客户等不同类型。给重点发展客户倾斜更多的资源,比如VIP服务、个性化服务、附加销售等。给潜力客户销售价值更高的产品,或一些优惠措施来吸引他们回归。

    五、帕累托分析

    帕累托法则,源于经典的二八法则。比如在个人财富上可以说世界上20%的人掌握着80%的财富。而在数据分析中,则可以理解为20%的数据产生了80%的效果需要围绕这20%的数据进行挖掘。往往在使用二八法则的时候和排名有关系,排在前20%的才算是有效数据。二八法是抓重点分析,适用于任何行业。找到重点,发现其特征,然后可以思考如何让其余的80%向这20%转化,提高效果。

    一般地,会用在产品分类上,去测量并构建ABC模型。比如某零售企业有500个SKU以及这些SKU对应的销售额,那么哪些SKU是重要的呢,这就是在业务运营中分清主次的问题。

    常见的做法是将产品SKU作为维度,并将对应的销售额作为基础度量指标,将这些销售额指标从大到小排列,并计算截止当前产品SKU的销售额累计合计占总销售额的百分比。

    百分比在 70%(含)以内,划分为 A 类。百分比在 70~90%(含)以内,划分为 B 类。百分比在 90~100%(含)以内,划分为 C 类。以上百分比也可以根据自己的实际情况调整。

    ABC分析模型,不光可以用来划分产品和销售额,还可以划分客户及客户交易额等。比如给企业贡献80%利润的客户是哪些,占比多少。假设有20%,那么在资源有限的情况下,就知道要重点维护这20%类客户。

    image.png

    六、漏斗分析

    漏斗法即是漏斗图,有点像倒金字塔,是一个流程化的思考方式,常用于像新用户的开发、购物转化率这些有变化和一定流程的分析中。

     

    image.png

    上图是经典的营销漏斗,形象展示了从获取用户到最终转化成购买这整个流程中的一个个子环节。相邻环节的转化率则就是指用数据指标来量化每一个步骤的表现。所以整个漏斗模型就是先将整个购买流程拆分成一个个步骤,然后用转化率来衡量每一个步骤的表现,最后通过异常的数据指标找出有问题的环节,从而解决问题,优化该步骤,最终达到提升整体购买转化率的目的。

    整体漏斗模型的核心思想其实可以归为分解和量化。比如分析电商的转化,我们要做的就是监控每个层级上的用户转化,寻找每个层级的可优化点。对于没有按照流程操作的用户,专门绘制他们的转化模型,缩短路径提升用户体验。

    还有经典的黑客增长模型,AARRR模型,指Acquisition、Activation、Retention、Revenue、Referral,即用户获取、用户激活、用户留存、用户收益以及用户传播。这是产品运营中比较常见的一个模型,结合产品本身的特点以及产品的生命周期位置,来关注不同的数据指标,最终制定不同的运营策略。

    从下面这幅AARRR模型图中,能够比较明显的看出来整个用户的生命周期是呈现逐渐递减趋势的。通过拆解和量化整个用户生命周期各环节,可以进行数据的横向和纵向对比,从而发现对应的问题,最终进行不断的优化迭代。

     

    image.png

    七、路径分析

    用户路径分析追踪用户从某个开始事件直到结束事件的行为路径,即对用户流向进行监测,可以用来衡量网站优化的效果或营销推广的效果,以及了解用户行为偏好,其最终目的是达成业务目标,引导用户更高效地完成产品的最优路径,最终促使用户付费。如何进行用户行为路径分析?

    (1)计算用户使用网站或APP时的每个第一步,然后依次计算每一步的流向和转化,通过数据,真实地再现用户从打开APP到离开的整个过程。
    (2)查看用户在使用产品时的路径分布情况。例如:在访问了某个电商产品首页的用户后,有多大比例的用户进行了搜索,有多大比例的用户访问了分类页,有多大比例的用户直接访问的商品详情页。
    (3)进行路径优化分析。例如:哪条路径是用户最多访问的;走到哪一步时,用户最容易流失。
    (4)通过路径识别用户行为特征。例如:分析用户是用完即走的目标导向型,还是无目的浏览型。
    (5)对用户进行细分。通常按照APP的使用目的来对用户进行分类。如汽车APP的用户可以细分为关注型、意向型、购买型用户,并对每类用户进行不同访问任务的路径分析,比如意向型的用户,他进行不同车型的比较都有哪些路径,存在什么问题。还有一种方法是利用算法,基于用户所有访问路径进行聚类分析,依据访问路径的相似性对用户进行分类,再对每类用户进行分析。

    以电商为例,买家从登录网站/APP到支付成功要经过首页浏览、搜索商品、加入购物车、提交订单、支付订单等过程。而在用户真实的选购过程是一个交缠反复的过程,例如提交订单后,用户可能会返回首页继续搜索商品,也可能去取消订单,每一个路径背后都有不同的动机。与其他分析模型配合进行深入分析后,能为找到快速用户动机,从而引领用户走向最优路径或者期望中的路径。
    用户行为路径图示例:

     

    image.png

    八、留存分析

    用户留存指的是新会员/用户在经过一定时间之后,仍然具有访问、登录、使用或转化等特定属性和行为,留存用户占当时新用户的比例就是留存率。留存率按照不同的周期分为三类,以登录行为认定的留存为例:
    第一种 日留存,日留存又可以细分为以下几种:
    (1)次日留存率:(当天新增的用户中,第2天还登录的用户数)/第一天新增总用户数
    (2)第3日留存率:(第一天新增用户中,第3天还有登录的用户数)/第一天新增总用户数
    (3)第7日留存率:(第一天新增用户中,第7天还有登录的用户数)/第一天新增总用户数
    (4)第14日留存率:(第一天新增用户中,第14天还有登录的用户数)/第一天新增总用户数
    (5)第30日留存率:(第一天新增用户中,第30天还有登录的用户数)/第一天新增总用户数

    第二种 周留存,以周度为单位的留存率,指的是每个周相对于第一个周的新增用户中,仍然还有登录的用户数。

    第三种 月留存,以月度为单位的留存率,指的是每个月相对于第一个周的新增用户中,仍然还有登录的用户数。留存率是针对新用户的,其结果是一个矩阵式半面报告(只有一半有数据),每个数据记录行是日期、列为对应的不同时间周期下的留存率。正常情况下,留存率会随着时间周期的推移而逐渐降低。下面以月留存为例生成的月用户留存曲线:

     

    image.png

    九、聚类分析

    聚类分析属于探索性的数据分析方法。通常,我们利用聚类分析将看似无序的对象进行分组、归类,以达到更好地理解研究对象的目的。聚类结果要求组内对象相似性较高,组间对象相似性较低。在用户研究中,很多问题可以借助聚类分析来解决,比如,网站的信息分类问题、网页的点击行为关联性问题以及用户分类问题等等。其中,用户分类是最常见的情况。

    常见的聚类方法有不少,比如K均值(K-Means),谱聚类(Spectral Clustering),层次聚类(Hierarchical Clustering)。以最为常见的K-means为例,如下图:

    image.png

    可以看到,数据可以被分到红蓝绿三个不同的簇(cluster)中,每个簇应有其特有的性质。显然,聚类分析是一种无监督学习,是在缺乏标签的前提下的一种分类模型。当我们对数据进行聚类后并得到簇后,一般会单独对每个簇进行深入分析,从而得到更加细致的结果。



    作者:数据蝉
    链接:https://www.jianshu.com/p/d27563e492a0
    来源:简书
    著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

    展开全文
  • 提到数据分析,肯定要提到数据分析模型,在进行数据分析之前,先搭建数据分析模型,根据模型中的内容,具体细分到不同的数据指标进行细化分析,最终得到想要的分析结果或结论。 一:数据分析模型 要进行一次完整的...

    在这个数据为王的时代,作为一个产品经理或者增长黑客,数据分析是必修课之一。

    提到数据分析,肯定要提到数据分析模型,在进行数据分析之前,先搭建数据分析模型,根据模型中的内容,具体细分到不同的数据指标进行细化分析,最终得到想要的分析结果或结论。

    一:数据分析模型

    要进行一次完整的数据分析,首先要明确数据分析思路,如从那几个方面开展数据分析,各方面都包含什么内容或指标。是分析框架,给出分析工作的宏观框架,根据框架中包含的内容,再运用具体的分析方法进行分析。

    数据分析方法论的作用:

    ·理顺分析思路,确保数据分析结构体系化

    ·把问题分解成相关联的部分,并显示他们的关系

    ·为后续数据分析的开展指引方向

    ·确保分析结果的有效性和正确性

    二:五大数据分析模型

    1、PEST分析模型

    政治环境:

    包括一个国家的社会制度,执政党性质,政府的方针、政策、法令等。不同的政治环境对行业发展有不同的影响。

    关键指标

    政治体制,经济体制,财政政策,税收政策,产业政策,投资政策,专利数量,国防开支水平,政府补贴水平,民众对政治的参与度。

    经济环境:

    宏观和微观两个方面。

    宏观:一个国家国民收入,国民生产总值以及变化情况,以通过这些指标反应国民经济发展水平和发展速度。

    微观:企业所在地区的消费者收入水平、消费偏好、储蓄情况、就业程度等因素,这些因素决定着企业目前以及未来的市场大小。

    关键指标

    GDP及增长率、进出口总额及增长率、利率、汇率、通货膨胀率、消费价格指数、居民可支配收入、失业率、劳动生产率等。

    社会环境:

    包括一个国家或地区的居民受教育程度和文化水平、宗教信仰、风俗习惯、审美观点、价值观等。文化水平营销居民的需求层次,宗教信仰和风俗习惯会禁止或抵制某些活动的进行,价值观会影响居民对组织目标和组织活动存在本身的认可,审美观点则会影响人们对组织活动内容、活动方式以及活动成果的态度。

    关键指标

    人口规模、性别比例、年龄结构、出生率、死亡率、种族结构、妇女生育率、生活方式、购买习惯、教育状况、城市特点、宗教信仰状况等因素。

    技术环境:

    企业所处领域直接相关的技术手段发展变化,国家队科技开发的投资和支持重点,该领域技术发展动态和研究开发费用总额,技术转移和技术商品化速度,专利及其保护情况。

    关键指标

    新技术的发明和进展、折旧和报废速度、技术更新速度、技术传播速度、技术商品化速度、国家重点支持项目、国家投入的研发费用、专利个数、专利保护情况。

    2、5W2H分析模型

    5W2H分析法主要针对5个W以及2个H提出的7个关键词进行数据指标的选取,根据选取的数据进行分析。

    3、逻辑树分析模型

    将问题的所有子问题分层罗列,从最高层开始,并逐步向下扩展。

    把一个已知问题当作树干,考虑这个问题和哪些问题有关,将相关的问题作为树枝加入到树干,一次类推,就会将问题扩展成一个问题树。

    逻辑树能保证解决问题的过程完整性,将工作细化成便于操作的具体任务,确定各部分优先顺序,明确责任到个人。

    逻辑树分析法三原则:

    ·要素化:把相同问题总结归纳成要素

    ·框架化:将各个要素组成框架,遵守不重不漏原则

    ·关联化:框架内的各要素保持必要的相互关系,简单而不孤立

    4、4P营销理论模型

    产品:

    能提供给市场,被人们使用和消费并满足人们某种需求的任何东西,包括有形产品、服务、人员、组织、观念和它们的组合。

    价格:

    购买产品时的价格,包括基本价格、折扣价格、支付期限等。影响价格的主要因素有需求、成本和竞争。

    渠道:

    产品从生产企业流转到用户手上全过程所经历的各个环节。

    促销:

    企业通过销售行为的改变来激励用户消费,以短期的行为促进消费的增长,吸引其他品牌用户或导致提钱消费来促进销售增长。

    5、用户行为模型

    用户行为指用户为获取、使用产品或服务才去的各种行动,首先要认知熟悉,然后试用,再决定是否继续消费使用,最后成为产品或服务的忠实用户。

    行为轨迹:认知->熟悉->试用->使用->忠诚

    三:总结

    五大数据分析模型的应用场景根据数据分析所选取的指标不同也有所区别。

    PEST分析模型主要针对宏观市场环境进行分析,从政治、经济、社会以及技术四个维度对产品或服务是否适合进入市场进行数据化的分析,最终得到结论,辅助判断产品或服务是否满足大环境。

    5W2H分析模型的应用场景较广,可用于对用户行为进行分析以及产品业务分析。

    逻辑树分析模型主要针对已知问题进行分析,通过对已知问题的细化分析,通过分析结论找到问题的最优解决方案。

    4P营销理论模型主要用于公司或其中某一个产品线的整体运营情况分析,通过分析结论,辅助决策近期运营计划与方案。

    用户行为分析模型应用场景比较单一,完全针对用户的行为进行研究分析。

    当然,最后还是要说,模型只是前人总结出的方式方法,对于我们实际工作中解决问题有引导作用,但是不可否认,具体问题还要具体分析,针对不同的情况需要进行不同的改进,希望成为一个数据专家,最重要的一点还是多实践!实践才是真理!
       人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,多智时代专注于人工智能和大数据的入门和科谱,在此为你推荐几篇优质好文:
    1.大数据分析,主要有哪些核心技术?
    http://www.duozhishidai.com/article-1938-1.html
    2.构建一个企业的大数据分析平台 ,主要分为哪几步?
    http://www.duozhishidai.com/article-8017-1.html
    3.数据科学,数据分析和机器学习之间,有什么本质区别?
    http://www.duozhishidai.com/article-7892-1.html
    4.数据分析是什么,如何完善数据分析知识体系
    http://www.duozhishidai.com/article-7743-1.html
    5.数据分析是什么?如何从零开始学习数据分析?
    http://www.duozhishidai.com/article-7653-1.html


    多智时代-人工智能大数据学习入门网站|人工智能、大数据、物联网云计算的学习交流网站

    多智时代-人工智能大数据学习入门网站|人工智能、大数据、云计算、物联网的学习服务的好平台
    展开全文
  • 数据分析方法论(6种方法,8个思路)

    万次阅读 多人点赞 2020-02-26 17:23:05
    在介绍数据分析方法论和思路之前,我们还是先不厌其烦地看一下数据分析的流程,简单来说分为以下六个步骤: 1、明确分析的目的,提出问题。只有弄清楚了分析的目的是什么,才能准确定位分析因子,提出有价值的问题...

    数据分析的流程

    在介绍数据分析方法论和思路之前,我们还是先不厌其烦地看一下数据分析的流程,简单来说分为以下六个步骤:

    1、明确分析的目的,提出问题。只有弄清楚了分析的目的是什么,才能准确定位分析因子,提出有价值的问题,提供清晰的指引方向。

    2、数据采集。收集原始数据,数据来源可能是丰富多样的,一般有数据库、互联网、市场调查等。具体办法可以通过加入“埋点”代码或者使用第三方的数据统计工具。

    3、数据清洗。对收集到的原始数据进行数据加工,主要包括数据清洗、数据分组、数据检索、数据抽取等处理方法。

    4、数据转换。通过探索式分析检验假设值的形成方式,在数据之中发现新的特征,对整个数据集有个全面认识,以便后续选择何种分析策略。

    5、数据分析。数据整理完毕,就要对数据进行综合分析和相关分析,需要对产品、业务、技术等了如指掌才行,常常用到分类、聚合等数据挖掘算法。Excel是最简单的数据分析工具,专业数据分析工具有FineBI、Python等。

    6、数据可视化。借助可视化数据,能有效直观地表述想要呈现的信息、观点和建议,比如金字塔图、矩阵图、漏斗图、帕累托图等,同时也可以使用报告等形式与他人交流。

    7、撰写分析报告。通过分析得出结论,并给出明确意见。

    数据分析方法论

    数据分析的方法论很多,其中六种比较常见的理论。

    1、PEST分析法

    PEST,也就是政治(Politics)、经济(Economy)、社会(Society)、技术(Technology),能从各个方面把握宏观环境的现状及变化趋势,主要用户行业分析。

    宏观环境又称一般环境,是指影响一切行业和企业的各种宏观力量。

    对宏观环境因素作分析时,由于不同行业和企业有其自身特点和经营需要,分析的具体内容会有差异,但一般都应对政治、经济、技术、社会,这四大类影响企业的主要外部环境因素进行分析。

    政治环境:政治体制、经济体制、财政政策、税收政策、产业政策、投资政策等。

    社会环境:人口规模、性别比例、年龄结构、生活力式、购买习惯、城市特点等。

    技术环境:折旧和报废速度、技术更新速度、技术传播速度、技术商品化速度等。

    经济环境:GDP 及增长率、进出口总额及增长率、利率、汇率、通货膨胀率、消费价格指数、居民可支配收入、失业率、劳动生产率等。

    2、5W2H分析法

    5W2H,即为什么(Why)、什么事(What)、谁(Who)、什么时候(When)、什么地方(Where)、如何做(How)、什么价格(How much),主要用于用户行为分析、业务问题专题分析、营销活动等。

    该分析方法又称为七何分析法,是一个非常简单、方便又实用的工具,以用户购买行为为例:

    Why:用户为什么要买?产品的吸引点在哪里?

    What:产品提供的功能是什么?

    Who:用户群体是什么?这个群体的特点是什么?

    When:购买频次是多少?

    Where:产品在哪里最受欢迎?在哪里卖出去?

    How:用户怎么购买?购买方式什么?

    How much:用户购买的成本是多少?时间成本是多少?

    3、SWOT分析法

    SWOT分析法也叫态势分析法,S (strengths)是优势、W (weaknesses)是劣势,O (opportunities)是机会、T (threats)是威胁或风险。

    SWOT分析法是用来确定企业自身的内部优势、劣势和外部的机会和威胁等,通过调查列举出来,并依照矩阵形式排列,然后用系统分析的思想,把各种因素相互匹配起来加以分析。

    运用这种方法,可以对研究对象所处的情景进行全面、系统、准确的研究,从而将公司的战略与公司内部资源、外部环境有机地结合起来。

    4、4P营销理论

    4P即产品(Product)、价格(Price)、渠道(Place)、推广(Promotion),在营销领域,这种以市场为导向的营销组合理论,被企业应用最普遍。

    可以说企业的一切营销动作都是在围绕着4P理论进行,也就是将:产品、价格、渠道、推广。通过将四者的结合、协调发展,从而提高企业的市场份额,达到最终获利的目的。

    产品:从市场营销的角度来看,产品是指能够提供给市场,被入们使用和消费并满足人们某种需要的任何东西,包括有形产品、服务、人员、组织、观念或它们的组合。

    价格:是指顾客购买产品时的价格,包括基本价格、折扣价格、支付期限等。影响定价的主要因素有三个:需求、成本与竞争。

    渠道:是指产品从生产企业流转到用户手上全过程中所经历的各个环节。

    促销:是指企业通过销售行为的改变来刺激用户消费,以短期的行为(比如让利、买一送一,营销现场气氛等等)促成消费的增长,吸引其他品牌的用户或导致提前消费来促进销售的增长。广告、宣传推广、人员推销、销售促进是一个机构促销组合的四大要素。

    5、逻辑树法

    逻辑树又称问题树、演绎树或分解树等。它是把一个已知问题当成“主干”,然后开始考虑这个问题和哪些相关问题有关,也就是“分支”。逻辑树能保证解决问题的过程的完整性,它能将工作细分为便于操作的任务,确定各部分的优先顺序,明确地把责任落实到个人。

    逻辑树的使用必须遵循以下三个原则:

    要素化:把相同的问题总结归纳成要素。

    框架化:将各个要素组织成框架。遵守不重不漏的原则。

    关联化:框架内的各要素保持必要的相互关系,简单而不独立。

    6、AARRR模型

    AARRR模型是所有运营人员都要了解的一个数据模型,从整个用户生命周期入手,包括获取(Acquisition)、激活(Activition)、留存(Retention)、变现(Revenue)和传播(Refer)。

    每个环节分别对应生命周期的5个重要过程,即从获取用户,到提升活跃度,提升留存率,并获取收入,直至最后形成病毒式传播。

    数据分析思路

    数据分析方法论主要是从宏观角度介绍如何进行数据分析,它就像是一个数据分析的前期规划,搭建一个清晰的数据分析框架。那么对于具体的业务场景问题,就要靠具体的分析方法来支撑了,下面小编就介绍几种常用的数据分析思路。

    1、趋势分析

    最简单、最常见的数据分析方法,一般用于核心指标的长期跟踪,比如点击率、GMV、活跃用户数。可以看出数据有那些趋势上的变化,有没有周期性,有没有拐点等,继而分析原因。

    2、多维分解

    也就是通过不同的维度对于数据进行分解,以获取更加精细的数据洞察。举个例子,对网站维护进行数据分析,可以拆分出地区、访问来源、设备、浏览器等等维度。

    3、用户分群

    针对符合某种特定行为或背景信息的用户,进行特定的优化和分析,将多维度和多指标作为分群条件,有针对性地优化供应链,提升供应链稳定性。

    4、漏斗分析

    按照已知的转化路径,借助漏斗模型分析总体和每一步的转化情况。例如将漏斗图用于网站关键路径的转化率分析,不仅能显示用户的最终转化率,同时还可以展示每一节点的转化率。

    5、留存分析

    留存分析是一种用来分析用户参与情况/活跃程度的分析模型,考察进行初始行为的用户中,有多少人会进行后续行为。衡量留存的常见指标有次日留存率、7日留存率、30日留存率等。

    6、A/B 测试

    A/B测试是为了达到一个目标,采取了两套方案,通过实验观察两组方案的数据效果,判断两组方案的好坏,需要选择合理的分组样本、监测数据指标、事后数据分析和不同方案评估。

    7、对比分析

    分为横向对比(跟自己比)和纵向对比(跟别人比),常见的对比应用有A/B test,A/B test的关键就是保证两组中只有一个单一变量,其他条件保持一致。

    8、交叉分析

    交叉分析法就是将对比分析从多个维度进行交叉展现,进行多角度的结合分析,从中发现最为相关的维度来探索数据变化的原因。

    展开全文
  • 【数据分析】最常用的数据分析方法(干货)

    万次阅读 多人点赞 2018-09-25 11:51:54
    数据分析方法论 1、PEST分析法 2、SWOT分析法 3、5W2H分析法 4、4P理论 5、AARRR 数据分析的七个方法 1、趋势分析 2、多维分解 3、用户分群 4、用户细查 5、漏斗分析 6、留存分析 7、A/B测试与A/A测试 ...
  • 定性和定量大数据分析方法指南

    千次阅读 2020-09-17 17:10:52
    定性和定量大数据分析方法?我们看到数据时想到的第一件事是什么?第一个本能是找到模式,联系和关系。我们查看数据以发现其中的含义。  同样,在研究中,一旦收集了数据,下一步就是从中获取见解。例如,如果服装...
  • 常用大数据分析方法

    千次阅读 2019-01-09 09:25:03
    是最常见的数据分析方法。在业务中,这种方法向数据分析师提供了重要指标和业务的衡量方法。 例如:每月的营收和损失账单。数据分析师可以通过这些账单,获得大量的客户数据。 了解客户的地理信息,就是“描述型分析...
  • 精心整理了7种常用数据分析方法(建议收藏)

    万次阅读 多人点赞 2019-11-08 08:30:00
    有一位朋友最近吐槽,他...今天DataHunter数猎哥就来给大家分享7种最常用的数据分析方法,让你轻松运用数据分析解决实际工作问题,提升核心竞争力。一、漏斗分析法漏斗分析法能够科学反映用户行为状态,以及从起点...
  • 常用的5种数据分析方法有哪些?

    千次阅读 2021-01-06 08:07:43
    常用的数据分析方法有5种。 1.对比分析法 对比分析法指通过指标的对比来反映事物数量上的变化,属于统计分析中常用的方法。常见的对比有横向对比和纵向对比。 横向对比指的是不同事物在固定时间上的对比...
  • 10种常用数据分析方法

    万次阅读 2018-12-07 16:15:57
    “器”是指物品或工具,在数据分析领域指的就是数据分析的产品或工具,“工欲善其事,必先利其器”;   “术”是指操作技术,是技能的高低、效率的高下,如对分析工具使用的技术(比如用Excel进行数据分析的水平...
  • 16种常用的数据分析方法-相关分析

    千次阅读 2020-05-26 21:13:17
    相关分析是一种简单易行的测量定量数据之间的关系情况的分析方法。可以分析包括变量间的关系情况以及关系强弱程度等。 如:身高和体重的相关性;降水量与河流水位的相关性;工作压力与心理健康的相关性等。 ...
  • 常见的9种大数据分析方法

    万次阅读 2019-01-23 16:01:30
    数据分析是从数据中提取有价值信息的过程,过程中需要对数据进行各种处理和归类,只有掌握了正确的数据分类方法和数据处理模式,才能起到事半功倍的效果...回归是一种运用广泛的统计分析方法,可以通过规定因变量和...
  • 最常用的四种大数据分析方法

    万次阅读 多人点赞 2017-09-19 09:32:13
    本文主要讲述数据挖掘分析领域中,最常用的四种数据分析方法:描述型分析、诊断型分析、预测型分析和指令型分析。
  • 数据分析方法有哪几种?

    万次阅读 2018-11-13 18:02:43
    科学技术的更新与互联网...那么数据分析有哪几种方法?今天小编就为大家整理一下: 1、可视化分析 大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分...
  • 电商数据分析方法和指标整理

    万次阅读 多人点赞 2018-11-25 12:06:14
    对于电商行业来说,数据分析的核心公式是:销售额 = 流量*转化率*客单价。因此,分析可以从流量、转化率和客单价这三个维度进行: 1、流量 流量分析,可以从中发现用户访问网站的规律,并根据这些规律改进网站设计...
  • 16种常用的数据分析方法汇总

    万次阅读 多人点赞 2017-04-04 16:16:33
    经常会有朋友问到一个朋友,数据分析常用的分析方法有哪些,我需要学习哪个等等之类的问题,今天数据分析精选给大家整理了十六种常用的数据分析方法,供大家参考学习。 一、描述统计 描述性统计是指运用制表和...
  • 房地产大数据分析方法

    万次阅读 2018-05-04 07:11:43
    房地产大数据分析方法 李万鸿2018 采用大数据辅助房地产分析是大势所趋,提通过对海量数据的分析研究,可以精准地了解政策、城市、市场、土地、住房、价格、用户等各方面因素,并给出智能决策辅助,从而做到...
  • SPSS数据分析方法不知道如何选择

    千次阅读 多人点赞 2018-06-21 15:07:10
    一提到数学,高等数学,线性代数,...有用的,当做数据分析的时候,使用到SPSS,在线SPSS分析的时候就知道用处了,在写论文的时候会用到SPSS数据分析,工作的时候也会用到SPSS数据分析。此时才知道原来数学很重要...
  • 1. 常用的多元统计分析方法有哪些? (1)多元正太分布检验 (2)多元方差-协方差分析 (3)聚类分析 (4)判别分析 (5)主成分分析 (6)对应分析 (7)因子分析 (8)典型相关性分析 (9)定性数据模型分析 (10...
  • SPSS常见数据分析方法比较汇总

    万次阅读 多人点赞 2017-04-09 00:54:22
    SPSS作为一款成熟的数据分析工具,其主要特点就是将各种各样的统计分析方法流程化模块化。 一、SPSS常用多变量分析技术比较汇总表 注: 卡方分析:定量两个定性变量的关联程度 简单相关分析:计量两个计量...
  • 常用的4种大数据分析方法

    万次阅读 2017-09-21 16:55:35
    本文主要讲述数据挖掘分析领域中,最常用的四种数据分析方法:描述型分析、诊断型分析、预测型分析和指令型分析。 当刚涉足数据挖掘分析领域的分析师被问及,数据挖掘分析人员最重要的能力是什么时,他们给出了...
  • 作者:阿平@zhihu来源:知乎一、描述统计描述统计是通过图表或数学方法,对数据资料进行整理、分析,并对数据的分布状态、数字特征和随机变量之间关系进行估计和描述的方法。描...
  • 常用的四种大数据分析方法

    千次阅读 2017-12-18 20:50:05
    本文主要讲述数据挖掘分析领域中,最常用的四种数据分析方法:描述型分析、诊断型分析、预测型分析和指令型分析。 当刚涉足数据挖掘分析领域的分析师被问及,数据挖掘分析人员最重要的能力是什么时,他们给出了...
  • Python金融数据分析入门到实战

    万人学习 2019-09-26 17:08:33
    会用Python分析金融数据 or 金融行业会用Python 职场竞争力更高 Python金融数据分析入门到实战 Get√金融行业数据分析必备技能 以股票量化交易为应用场景 完成技术指标实现的全过程 课程选取股票量化交易为应用场景...
  • 多维数据分析方法

    千次阅读 2016-06-14 10:38:03
    多维分析可以对以多维形式组织起来的数据进行上卷、下钻、切片、切块、旋转等各种分析操作...多维数据分析通常包括以下几种分析方法。 1.切片 在给定的数据立方体的一个维上进行的选择操作就是切片(slice),切片...
  • Python数据分析实战-Pandas

    千人学习 2019-12-02 10:54:20
    本课程通过讲解Pandas基础知识、DataFrame核心分析方法,以一系列实操案例使你快速掌握数据获取,数据清洗与整理,数据分析         pandas是在python最直接最流行的数据处理框架。可以这么说,...
  • 数据分析方法

    万次阅读 2018-01-29 23:29:32
    数据分析方法论 确定分析思路需要以营销、管理等理论为指导。这些 跟数据分析相 关的营销、管理等理论统称为数据分析方法论。可以把方法论理解为指南针,在分析方法论的指导下我们才去开展数据分析,这样分析的结果...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 2,108,058
精华内容 843,223
关键字:

数据分析方法