精华内容
下载资源
问答
  • 本文参考java 泛型详解、Java中的泛型方法、 java泛型详解 1. 概述泛型在java中有很重要的地位,在面向对象编程及各种设计模式中有非常广泛的应用。什么是泛型?为什么要使用泛型? 泛型,即“参数化类型”。一...

    对java的泛型特性的了解仅限于表面的浅浅一层,直到在学习设计模式时发现有不了解的用法,才想起详细的记录一下。

    本文参考java 泛型详解Java中的泛型方法、 java泛型详解

    1. 概述

    泛型在java中有很重要的地位,在面向对象编程及各种设计模式中有非常广泛的应用。

    什么是泛型?为什么要使用泛型?

    泛型,即“参数化类型”。一提到参数,最熟悉的就是定义方法时有形参,然后调用此方法时传递实参。那么参数化类型怎么理解呢?顾名思义,就是将类型由原来的具体的类型参数化,类似于方法中的变量参数,此时类型也定义成参数形式(可以称之为类型形参),然后在使用/调用时传入具体的类型(类型实参)。

    泛型的本质是为了参数化类型(在不创建新的类型的情况下,通过泛型指定的不同类型来控制形参具体限制的类型)。也就是说在泛型使用过程中,操作的数据类型被指定为一个参数,这种参数类型可以用在类、接口和方法中,分别被称为泛型类、泛型接口、泛型方法。

    2. 一个栗子

    一个被举了无数次的例子:

    List arrayList = new ArrayList();
    arrayList.add("aaaa");
    arrayList.add(100);
    
    for(int i = 0; i< arrayList.size();i++){
        String item = (String)arrayList.get(i);
        Log.d("泛型测试","item = " + item);
    }

    毫无疑问,程序的运行结果会以崩溃结束:

    java.lang.ClassCastException: java.lang.Integer cannot be cast to java.lang.String

    ArrayList可以存放任意类型,例子中添加了一个String类型,添加了一个Integer类型,再使用时都以String的方式使用,因此程序崩溃了。为了解决类似这样的问题(在编译阶段就可以解决),泛型应运而生。

    我们将第一行声明初始化list的代码更改一下,编译器会在编译阶段就能够帮我们发现类似这样的问题。

    List<String> arrayList = new ArrayList<String>();
    ...
    //arrayList.add(100); 在编译阶段,编译器就会报错

    3. 特性

    泛型只在编译阶段有效。看下面的代码:

    List<String> stringArrayList = new ArrayList<String>();
    List<Integer> integerArrayList = new ArrayList<Integer>();
    
    Class classStringArrayList = stringArrayList.getClass();
    Class classIntegerArrayList = integerArrayList.getClass();
    
    if(classStringArrayList.equals(classIntegerArrayList)){
        Log.d("泛型测试","类型相同");
    }

    输出结果:D/泛型测试: 类型相同

    通过上面的例子可以证明,在编译之后程序会采取去泛型化的措施。也就是说Java中的泛型,只在编译阶段有效。在编译过程中,正确检验泛型结果后,会将泛型的相关信息擦出,并且在对象进入和离开方法的边界处添加类型检查和类型转换的方法。也就是说,泛型信息不会进入到运行时阶段。

    对此总结成一句话:泛型类型在逻辑上看以看成是多个不同的类型,实际上都是相同的基本类型。

    4. 泛型的使用

    泛型有三种使用方式,分别为:泛型类、泛型接口、泛型方法

    4.3 泛型类

    泛型类型用于类的定义中,被称为泛型类。通过泛型可以完成对一组类的操作对外开放相同的接口。最典型的就是各种容器类,如:List、Set、Map。

    泛型类的最基本写法(这么看可能会有点晕,会在下面的例子中详解):

    class 类名称 <泛型标识:可以随便写任意标识号,标识指定的泛型的类型>{
      private 泛型标识 /*(成员变量类型)*/ var; 
      .....
    
      }
    }

    一个最普通的泛型类:

    //此处T可以随便写为任意标识,常见的如T、E、K、V等形式的参数常用于表示泛型
    //在实例化泛型类时,必须指定T的具体类型
    public class Generic<T>{ 
        //key这个成员变量的类型为T,T的类型由外部指定  
        private T key;
    
        public Generic(T key) { //泛型构造方法形参key的类型也为T,T的类型由外部指定
            this.key = key;
        }
    
        public T getKey(){ //泛型方法getKey的返回值类型为T,T的类型由外部指定
            return key;
        }
    }
    //泛型的类型参数只能是类类型(包括自定义类),不能是简单类型
    //传入的实参类型需与泛型的类型参数类型相同,即为Integer.
    Generic<Integer> genericInteger = new Generic<Integer>(123456);
    
    //传入的实参类型需与泛型的类型参数类型相同,即为String.
    Generic<String> genericString = new Generic<String>("key_vlaue");
    Log.d("泛型测试","key is " + genericInteger.getKey());
    Log.d("泛型测试","key is " + genericString.getKey());
    12-27 09:20:04.432 13063-13063/? D/泛型测试: key is 123456
    12-27 09:20:04.432 13063-13063/? D/泛型测试: key is key_vlaue

    定义的泛型类,就一定要传入泛型类型实参么?并不是这样,在使用泛型的时候如果传入泛型实参,则会根据传入的泛型实参做相应的限制,此时泛型才会起到本应起到的限制作用。如果不传入泛型类型实参的话,在泛型类中使用泛型的方法或成员变量定义的类型可以为任何的类型。

    看一个例子:

    Generic generic = new Generic("111111");
    Generic generic1 = new Generic(4444);
    Generic generic2 = new Generic(55.55);
    Generic generic3 = new Generic(false);
    
    Log.d("泛型测试","key is " + generic.getKey());
    Log.d("泛型测试","key is " + generic1.getKey());
    Log.d("泛型测试","key is " + generic2.getKey());
    Log.d("泛型测试","key is " + generic3.getKey());
    D/泛型测试: key is 111111
    D/泛型测试: key is 4444
    D/泛型测试: key is 55.55
    D/泛型测试: key is false

    注意:

      1. 泛型的类型参数只能是类类型,不能是简单类型。
      1. 不能对确切的泛型类型使用instanceof操作。如下面的操作是非法的,编译时会出错。

        if(ex_num instanceof Generic<Number>){   
        } 

    4.4 泛型接口

    泛型接口与泛型类的定义及使用基本相同。泛型接口常被用在各种类的生产器中,可以看一个例子:

    //定义一个泛型接口
    public interface Generator<T> {
        public T next();
    }

    当实现泛型接口的类,未传入泛型实参时:

    /**
     * 未传入泛型实参时,与泛型类的定义相同,在声明类的时候,需将泛型的声明也一起加到类中
     * 即:class FruitGenerator<T> implements Generator<T>{
     * 如果不声明泛型,如:class FruitGenerator implements Generator<T>,编译器会报错:"Unknown class"
     */
    class FruitGenerator<T> implements Generator<T>{
        @Override
        public T next() {
            return null;
        }
    }

    当实现泛型接口的类,传入泛型实参时:

    /**
     * 传入泛型实参时:
     * 定义一个生产器实现这个接口,虽然我们只创建了一个泛型接口Generator<T>
     * 但是我们可以为T传入无数个实参,形成无数种类型的Generator接口。
     * 在实现类实现泛型接口时,如已将泛型类型传入实参类型,则所有使用泛型的地方都要替换成传入的实参类型
     * 即:Generator<T>,public T next();中的的T都要替换成传入的String类型。
     */
    public class FruitGenerator implements Generator<String> {
    
        private String[] fruits = new String[]{"Apple", "Banana", "Pear"};
    
        @Override
        public String next() {
            Random rand = new Random();
            return fruits[rand.nextInt(3)];
        }
    }

    4.5 泛型通配符

    我们知道IngeterNumber的一个子类,同时在特性章节中我们也验证过Generic<Ingeter>Generic<Number>实际上是相同的一种基本类型。那么问题来了,在使用Generic<Number>作为形参的方法中,能否使用Generic<Ingeter>的实例传入呢?在逻辑上类似于Generic<Number>Generic<Ingeter>是否可以看成具有父子关系的泛型类型呢?

    为了弄清楚这个问题,我们使用Generic<T>这个泛型类继续看下面的例子:

    public void showKeyValue1(Generic<Number> obj){
        Log.d("泛型测试","key value is " + obj.getKey());
    }
    Generic<Integer> gInteger = new Generic<Integer>(123);
    Generic<Number> gNumber = new Generic<Number>(456);
    
    showKeyValue(gNumber);
    
    // showKeyValue这个方法编译器会为我们报错:Generic<java.lang.Integer> 
    // cannot be applied to Generic<java.lang.Number>
    // showKeyValue(gInteger);

    通过提示信息我们可以看到Generic<Integer>不能被看作为`Generic<Number>的子类。由此可以看出:同一种泛型可以对应多个版本(因为参数类型是不确定的),不同版本的泛型类实例是不兼容的

    回到上面的例子,如何解决上面的问题?总不能为了定义一个新的方法来处理Generic<Integer>类型的类,这显然与java中的多台理念相违背。因此我们需要一个在逻辑上可以表示同时Generic<Integer>Generic<Number>父类的引用类型。由此类型通配符应运而生。

    我们可以将上面的方法改一下:

    public void showKeyValue1(Generic<?> obj){
        Log.d("泛型测试","key value is " + obj.getKey());
    }

    类型通配符一般是使用?代替具体的类型实参,注意了,此处’?’是类型实参,而不是类型形参 。重要说三遍!此处’?’是类型实参,而不是类型形参此处’?’是类型实参,而不是类型形参 !再直白点的意思就是,此处的?和Number、String、Integer一样都是一种实际的类型,可以把?看成所有类型的父类。是一种真实的类型。

    可以解决当具体类型不确定的时候,这个通配符就是 ?  ;当操作类型时,不需要使用类型的具体功能时,只使用Object类中的功能。那么可以用 ? 通配符来表未知类型。

    4.6 泛型方法

    在java中,泛型类的定义非常简单,但是泛型方法就比较复杂了。

    尤其是我们见到的大多数泛型类中的成员方法也都使用了泛型,有的甚至泛型类中也包含着泛型方法,这样在初学者中非常容易将泛型方法理解错了。

    泛型类,是在实例化类的时候指明泛型的具体类型;泛型方法,是在调用方法的时候指明泛型的具体类型

    /**
     * 泛型方法的基本介绍
     * @param tClass 传入的泛型实参
     * @return T 返回值为T类型
     * 说明:
     *     1)public 与 返回值中间<T>非常重要,可以理解为声明此方法为泛型方法。
     *     2)只有声明了<T>的方法才是泛型方法,泛型类中的使用了泛型的成员方法并不是泛型方法。
     *     3)<T>表明该方法将使用泛型类型T,此时才可以在方法中使用泛型类型T。
     *     4)与泛型类的定义一样,此处T可以随便写为任意标识,常见的如T、E、K、V等形式的参数常用于表示泛型。
     */
    public <T> T genericMethod(Class<T> tClass)throws InstantiationException ,
      IllegalAccessException{
            T instance = tClass.newInstance();
            return instance;
    }
    Object obj = genericMethod(Class.forName("com.test.test"));

    4.6.1 泛型方法的基本用法

    光看上面的例子有的同学可能依然会非常迷糊,我们再通过一个例子,把我泛型方法再总结一下。

    public class GenericTest {
       //这个类是个泛型类,在上面已经介绍过
       public class Generic<T>{     
            private T key;
    
            public Generic(T key) {
                this.key = key;
            }
    
            //我想说的其实是这个,虽然在方法中使用了泛型,但是这并不是一个泛型方法。
            //这只是类中一个普通的成员方法,只不过他的返回值是在声明泛型类已经声明过的泛型。
            //所以在这个方法中才可以继续使用 T 这个泛型。
            public T getKey(){
                return key;
            }
    
            /**
             * 这个方法显然是有问题的,在编译器会给我们提示这样的错误信息"cannot reslove symbol E"
             * 因为在类的声明中并未声明泛型E,所以在使用E做形参和返回值类型时,编译器会无法识别。
            public E setKey(E key){
                 this.key = keu
            }
            */
        }
    
        /** 
         * 这才是一个真正的泛型方法。
         * 首先在public与返回值之间的<T>必不可少,这表明这是一个泛型方法,并且声明了一个泛型T
         * 这个T可以出现在这个泛型方法的任意位置.
         * 泛型的数量也可以为任意多个 
         *    如:public <T,K> K showKeyName(Generic<T> container){
         *        ...
         *        }
         */
        public <T> T showKeyName(Generic<T> container){
            System.out.println("container key :" + container.getKey());
            //当然这个例子举的不太合适,只是为了说明泛型方法的特性。
            T test = container.getKey();
            return test;
        }
    
        //这也不是一个泛型方法,这就是一个普通的方法,只是使用了Generic<Number>这个泛型类做形参而已。
        public void showKeyValue1(Generic<Number> obj){
            Log.d("泛型测试","key value is " + obj.getKey());
        }
    
        //这也不是一个泛型方法,这也是一个普通的方法,只不过使用了泛型通配符?
        //同时这也印证了泛型通配符章节所描述的,?是一种类型实参,可以看做为Number等所有类的父类
        public void showKeyValue2(Generic<?> obj){
            Log.d("泛型测试","key value is " + obj.getKey());
        }
    
         /**
         * 这个方法是有问题的,编译器会为我们提示错误信息:"UnKnown class 'E' "
         * 虽然我们声明了<T>,也表明了这是一个可以处理泛型的类型的泛型方法。
         * 但是只声明了泛型类型T,并未声明泛型类型E,因此编译器并不知道该如何处理E这个类型。
        public <T> T showKeyName(Generic<E> container){
            ...
        }  
        */
    
        /**
         * 这个方法也是有问题的,编译器会为我们提示错误信息:"UnKnown class 'T' "
         * 对于编译器来说T这个类型并未项目中声明过,因此编译也不知道该如何编译这个类。
         * 所以这也不是一个正确的泛型方法声明。
        public void showkey(T genericObj){
    
        }
        */
    
        public static void main(String[] args) {
    
    
        }
    }

    4.6.2 类中的泛型方法

    当然这并不是泛型方法的全部,泛型方法可以出现杂任何地方和任何场景中使用。但是有一种情况是非常特殊的,当泛型方法出现在泛型类中时,我们再通过一个例子看一下

    public class GenericFruit {
        class Fruit{
            @Override
            public String toString() {
                return "fruit";
            }
        }
    
        class Apple extends Fruit{
            @Override
            public String toString() {
                return "apple";
            }
        }
    
        class Person{
            @Override
            public String toString() {
                return "Person";
            }
        }
    
        class GenerateTest<T>{
            public void show_1(T t){
                System.out.println(t.toString());
            }
    
            //在泛型类中声明了一个泛型方法,使用泛型E,这种泛型E可以为任意类型。可以类型与T相同,也可以不同。
            //由于泛型方法在声明的时候会声明泛型<E>,因此即使在泛型类中并未声明泛型,编译器也能够正确识别泛型方法中识别的泛型。
            public <E> void show_3(E t){
                System.out.println(t.toString());
            }
    
            //在泛型类中声明了一个泛型方法,使用泛型T,注意这个T是一种全新的类型,可以与泛型类中声明的T不是同一种类型。
            public <T> void show_2(T t){
                System.out.println(t.toString());
            }
        }
    
        public static void main(String[] args) {
            Apple apple = new Apple();
            Person person = new Person();
    
            GenerateTest<Fruit> generateTest = new GenerateTest<Fruit>();
            //apple是Fruit的子类,所以这里可以
            generateTest.show_1(apple);
            //编译器会报错,因为泛型类型实参指定的是Fruit,而传入的实参类是Person
            //generateTest.show_1(person);
    
            //使用这两个方法都可以成功
            generateTest.show_2(apple);
            generateTest.show_2(person);
    
            //使用这两个方法也都可以成功
            generateTest.show_3(apple);
            generateTest.show_3(person);
        }
    }

    4.6.3 泛型方法与可变参数

    再看一个泛型方法和可变参数的例子:

    public <T> void printMsg( T... args){
        for(T t : args){
            Log.d("泛型测试","t is " + t);
        }
    }
    printMsg("111",222,"aaaa","2323.4",55.55);

    4.6.4 静态方法与泛型

    静态方法有一种情况需要注意一下,那就是在类中的静态方法使用泛型:静态方法无法访问类上定义的泛型;如果静态方法操作的引用数据类型不确定的时候,必须要将泛型定义在方法上。

    即:如果静态方法要使用泛型的话,必须将静态方法也定义成泛型方法

    public class StaticGenerator<T> {
        ....
        ....
        /**
         * 如果在类中定义使用泛型的静态方法,需要添加额外的泛型声明(将这个方法定义成泛型方法)
         * 即使静态方法要使用泛型类中已经声明过的泛型也不可以。
         * 如:public static void show(T t){..},此时编译器会提示错误信息:
              "StaticGenerator cannot be refrenced from static context"
         */
        public static <T> void show(T t){
    
        }
    }

    4.6.5 泛型方法总结

    泛型方法能使方法独立于类而产生变化,以下是一个基本的指导原则:

    无论何时,如果你能做到,你就该尽量使用泛型方法。也就是说,如果使用泛型方法将整个类泛型化,那么就应该使用泛型方法。另外对于一个static的方法而已,无法访问泛型类型的参数。所以如果static方法要使用泛型能力,就必须使其成为泛型方法。

    4.6 泛型上下边界

    在使用泛型的时候,我们还可以为传入的泛型类型实参进行上下边界的限制,如:类型实参只准传入某种类型的父类或某种类型的子类。

    • 为泛型添加上边界,即传入的类型实参必须是指定类型的子类型

    public void showKeyValue1(Generic<? extends Number> obj){
        Log.d("泛型测试","key value is " + obj.getKey());
    }
    Generic<String> generic1 = new Generic<String>("11111");
    Generic<Integer> generic2 = new Generic<Integer>(2222);
    Generic<Float> generic3 = new Generic<Float>(2.4f);
    Generic<Double> generic4 = new Generic<Double>(2.56);
    
    //这一行代码编译器会提示错误,因为String类型并不是Number类型的子类
    //showKeyValue1(generic1);
    
    showKeyValue1(generic2);
    showKeyValue1(generic3);
    showKeyValue1(generic4);

    如果我们把泛型类的定义也改一下:

    public class Generic<T extends Number>{
        private T key;
    
        public Generic(T key) {
            this.key = key;
        }
    
        public T getKey(){
            return key;
        }
    }
    //这一行代码也会报错,因为String不是Number的子类
    Generic<String> generic1 = new Generic<String>("11111");

    再来一个泛型方法的例子:

    //在泛型方法中添加上下边界限制的时候,必须在权限声明与返回值之间的<T>上添加上下边界,即在泛型声明的时候添加
    //public <T> T showKeyName(Generic<T extends Number> container),编译器会报错:"Unexpected bound"
    public <T extends Number> T showKeyName(Generic<T> container){
        System.out.println("container key :" + container.getKey());
        T test = container.getKey();
        return test;
    }

    通过上面的两个例子可以看出:泛型的上下边界添加,必须与泛型的声明在一起

    4.7 关于泛型数组要提一下

    看到了很多文章中都会提起泛型数组,经过查看sun的说明文档,在java中是”不能创建一个确切的泛型类型的数组”的。

    也就是说下面的这个例子是不可以的:

    List<String>[] ls = new ArrayList<String>[10];  

    而使用通配符创建泛型数组是可以的,如下面这个例子:

    List<?>[] ls = new ArrayList<?>[10];  

    这样也是可以的:

    List<String>[] ls = new ArrayList[10];

    下面使用Sun的一篇文档的一个例子来说明这个问题:

    List<String>[] lsa = new List<String>[10]; // Not really allowed.    
    Object o = lsa;    
    Object[] oa = (Object[]) o;    
    List<Integer> li = new ArrayList<Integer>();    
    li.add(new Integer(3));    
    oa[1] = li; // Unsound, but passes run time store check    
    String s = lsa[1].get(0); // Run-time error: ClassCastException.

    这种情况下,由于JVM泛型的擦除机制,在运行时JVM是不知道泛型信息的,所以可以给oa[1]赋上一个ArrayList而不会出现异常,但是在取出数据的时候却要做一次类型转换,所以就会出现ClassCastException,如果可以进行泛型数组的声明,上面说的这种情况在编译期将不会出现任何的警告和错误,只有在运行时才会出错。

    而对泛型数组的声明进行限制,对于这样的情况,可以在编译期提示代码有类型安全问题,比没有任何提示要强很多。

    下面采用通配符的方式是被允许的:数组的类型不可以是类型变量,除非是采用通配符的方式,因为对于通配符的方式,最后取出数据是要做显式的类型转换的。

    List<?>[] lsa = new List<?>[10]; // OK, array of unbounded wildcard type.    
    Object o = lsa;    
    Object[] oa = (Object[]) o;    
    List<Integer> li = new ArrayList<Integer>();    
    li.add(new Integer(3));    
    oa[1] = li; // Correct.    
    Integer i = (Integer) lsa[1].get(0); // OK 

    5. 最后

    本文中的例子主要是为了阐述泛型中的一些思想而简单举出的,并不一定有着实际的可用性。另外,一提到泛型,相信大家用到最多的就是在集合中,其实,在实际的编程过程中,自己可以使用泛型去简化开发,且能很好的保证代码质量。

    展开全文
  • 泛型方法

    2019-11-27 00:31:07
    文章目录一 、泛型方法二 、定义泛型方法三 、通过泛型方法返回泛型类实例四 、使用泛型统一传入的参数类型 一 、泛型方法 泛型方法的定义与其所在的类是否是泛型类是没有任何关系的,所在的类可以是泛型类,也...



    一 、泛型方法

    泛型方法的定义与其所在的类是否是泛型类是没有任何关系的,所在的类可以是泛型类,也可以不是泛型类


    二 、定义泛型方法

    class Demo{
        public <T> T fun(T t){  //可以接收任意类型的数据
            return t;
        }
    }
    
    public class GenericsDemo26 {
        public static void main(String[] args) {
            Demo d = new Demo();
            String str = d.fun("张三");
            int i = d.fun(20);
            System.out.println(str);
            System.out.println(i);
        }
    }
    

    程序运行结果:
    在这里插入图片描述

    三 、通过泛型方法返回泛型类实例

    class Info<T extends Number>{
        private T var;
    
        public T getVar() {
            return var;
        }
    
        public void setVar(T var) {
            this.var = var;
        }
    
        @Override
        public String toString() {
            return "Info{" +
                    "var=" + var +
                    '}';
        }
    }
    
    public class GenericsDemo27 {
        public static void main(String[] args) {
           Info<Integer> i = fun(30);
           System.out.println(i.getVar());
        }
        public static <T extends Number> Info<T> fun(T param){
            Info<T> temp = new Info<T>();
            temp.setVar(param);
            return temp;
        }
    }
    

    程序运行结果:
    在这里插入图片描述

    四 、使用泛型统一传入的参数类型

    class Info<T>{
        private T var;
    
        public T getVar() {
            return var;
        }
    
        public void setVar(T var) {
            this.var = var;
        }
    
        @Override
        public String toString() {
            return "Info{" +
                    "var=" + var +
                    '}';
        }
    }
    
    public class GenericsDemo28 {
        public static void main(String[] args) {
           Info<String> i1 = new Info<String>();
           Info<String> i2 = new Info<String>();
           i1.setVar("张三");
           i2.setVar("李四");
           add(i1,i2);
        }
        public static <T> void add(Info<T> i1,Info<T> i2){
            System.out.println(i1.getVar() + " " + i2.getVar());
        }
    }
    

    程序运行结果:
    在这里插入图片描述
    以上程序add方法假如传入的两个Info对象类型不一致,则编译错误:

    class Info<T>{
        private T var;
    
        public T getVar() {
            return var;
        }
    
        public void setVar(T var) {
            this.var = var;
        }
    
        @Override
        public String toString() {
            return "Info{" +
                    "var=" + var +
                    '}';
        }
    }
    
    public class GenericsDemo28 {
        public static void main(String[] args) {
           Info<String> i1 = new Info<String>();
           Info<Integer> i2 = new Info<Integer>();
           i1.setVar("张三");
           i2.setVar(20);
           add(i1,i2);
        }
        public static <T> void add(Info<T> i1,Info<T> i2){
            System.out.println(i1.getVar() + " " + i2.getVar());
        }
    }
    

    在这里插入图片描述
    故使用泛型统一传入的参数类型可以为程序操作的安全性提供保障

    展开全文
  • 一、泛型方法如果在调用方法的时候方法的参数类型不确定,或者是方法的返回值类型不确定,那么我们可以将这个方法定义为泛型方法,一般在一些工具类中会经常使用到,现在只是给你作为语法提出来,你要明白,深入的体会...

    一、泛型方法

    如果在调用方法的时候方法的参数类型不确定,或者是方法的返回值类型不确定,那么我们可以将这个方法定义为泛型方法,一般在一些工具类中会经常使用到,现在只是给你作为语法提出来,你要明白,深入的体会是需要后面在你自己设计工具类的时候你才能体会其真正的意义。

    DEMO:定义泛型方法

    fbe1c546506057785009ffdf44174134.png

    以上的泛型方法没有返回值,如果返回值也不确定呢?那么我们要定义返回值也是泛型的方法。

    DEMO:定义泛型方法(返回值也是泛型)

    649f232829d36f7ad6c5900c1de07849.png

    DEMO:工具类中使用泛型

    630b2c4b795fcb1276bc53842668e583.png

    93b68847f66814d94013f5088c9cc652.png

    31c731b9e320adde902704715312618a.png

    7c9146291cdf71cb105628195528452e.png

    总结:

    1、泛型方法的定义方式你要掌握

    2、泛型方法的返回值也可以定义为泛型(占位符)

    3、泛型方法一般在工具类中使用

    泛型作业

    1. Java中的泛型是什么?使用泛型的好处是什么?

    2.什么是泛型中的限定通配符和非限定通配符?

    3. List extends T>和List super T>之间有什么区别?

    4.如何编写一个泛型方法,让它能接受泛型参数并返回泛型类型?

    有完整的Java初级,高级对应的学习路线和资料!专注于java开发。分享java基础、原理性知识、JavaWeb实战、spring全家桶、设计模式、分布式及面试资料、开源项目,助力开发者成长!

    欢迎关注微信公众号:码邦主

    展开全文
  • c#泛型类、泛型方法、泛型接口、泛型委托
  • 泛型集合和ArrayList的装箱拆箱、常见的泛型类型、泛型类和泛型方法、泛型约束、 泛型委托泛型很难理解?不然在接触的一个新的概念的时候,总会感觉难以理解,当你掌握并能熟练地使用的时候,发现这个概念其实简单...

    前文传送门,dotNET开发基础汇总系列
    StackOverflow 20万阅读的问题:如何实现异步Task超时的处理
    Func和Action委托简单用法
    C#异步编程基础入门总结
    C#泛型入门学习泛型类、泛型集合、泛型方法、泛型约束、泛型委托
    C#异常处理总结

    ###本章阅读列表###

    • 泛型很难理解?不然
    • 泛型集合和ArrayList的装箱拆箱
    • 常见的泛型类型
    • 泛型类和泛型方法
    • 泛型约束
    • 泛型委托

    ###泛型很难理解?不然 ###
    在接触的一个新的概念的时候,总会感觉难以理解,当你掌握并能熟练地使用的时候,发现这个概念其实简单的,我相信大多数码农都会有这种似曾相识的感觉。可能大多数人刚学习泛型的时候觉得很难理解,当然我也是这样的,所以便写下这篇文章加深一下对泛型的印象。
    第一次接触泛型那还是在大二上学期的时候,那会是学c#面向对象的时候接触过泛型集合,但尴尬的是那会还没有“泛型”这个概念,仅仅只停留在泛型集合的使用。关于泛型入门的文章csdn和博客园有很多,这里我也写一篇关于我对泛型学习的一个总结,如果出现错误表达不当的地方,还希望评论指出。
    ###泛型优点###
    官方文档:https://docs.microsoft.com/zh-cn/dotnet/csharp/programming-guide/generics/introduction-to-generics
    简介:
    泛型是.NET Framework2.0新增的一个特性,在命名空间System.Collections.Generic,包含了几个新的基于泛型的集合类,官方建议.net 2.0 及更高版本的应用程序使用心得泛型集合类,而不使用非泛型集合类,例如ArrayList。
    官方解释:
    泛型是程序设计语言的一种特性。允许程序员在强类型程序设计语言中编写代码时定义一些可变部分,那些部分在使用前必须作出指明。各种程序设计语言和其编译器、运行环境对泛型的支持均不一样。将类型参数化以达到代码复用提高软件开发工作效率的一种数据类型。泛型类是引用类型,是堆对象,主要是引入了类型参数这个概念。
    泛型的定义主要有以下两种:
    1.在程序编码中一些包含类型参数的类型,也就是说泛型的参数只可以代表类,不能代表个别对象。(这是当今较常见的定义)
    2.在程序编码中一些包含参数的类。其参数可以代表类或对象等等。(人们大多把这称作模板)不论使用哪个定义,泛型的参数在真正使用泛型时都必须作出指明
    官方的解释虽然很难理解,用我的话来解释那就是,声明类和方法时一般都需要定义是什么类,class Brid ,Class Food… 声明泛型类和方法时只需要传入类型的地方用 ,有点类似于占位符的作用,用的时候传入具体的类型。当针对不同类型具有相同行为的时候,也就是泛型发挥作用的时候。
    优点:
    1.使用泛型类、方法,我们可以极大提高代码的重用性,不需要对类型不同代码相同(仅类型参数不同)的代码写多次。
    2.创建泛型类,可在编译时创建类型安全的集合
    3.避免装箱和拆箱操作降低性能,在大型集合中装箱和拆箱的影响非常大.

    泛型集合和ArrayList的装箱拆箱###

    装箱:是指从值类型转换成引用类型
    拆箱:是指从引用类型转换成值类型
    下面的例子是借鉴官方的一段代码:

        System.Collections.ArrayList list1 = new System.Collections.ArrayList();
                list1.Add(3);
                list1.Add(105);
    
                System.Collections.ArrayList list2 = new System.Collections.ArrayList();
                list2.Add("科比");
                list2.Add("詹姆斯");
    

    ArrayList是一个极为方便的集合类,可以用于存储任何引用或值类型。但是缺点也很明显,第一个缺点是编译的时候不会检查类型,例如

      System.Collections.ArrayList list1 = new System.Collections.ArrayList();
                list1.Add(3);
                list1.Add(105);
                list1.Add("sd");
                foreach (int item in list1)
                {
                    Console.WriteLine(item.ToString());
                }
    

    编译正常,运行的时候会出现转换类型错误。
    至于ArrayList第二个缺点就是装箱拆箱的时候回造成性能的损失。我们看看ArrayList的Add方法的定义。
    这里写图片描述
    参数是一个object类型,也就是说ArrayList添加任何引用类型或值类型都会隐士转换成Object,这个时候便发生装箱操作,在遍历检索它们时必须从object 类型转换成指定的类型,这个时候便发生拆箱操作。这两种操作会大大降低性能。所以.net 2.0的程序时应该放弃使用ArrayList,推荐使用使用List《T》 泛型集合。这也是我们为什么要使用泛型的原因之一。

    ###常见的泛型类型###
    在泛型类型的定义中,出现的每个T(一个展位变量而已叫别的名字也行)在运行时都会被替换成实际的类型参数。下面是一些基础的泛型类型
    1.泛型类

               class MyGenericClass<T>
            {
              //......
            }
    

    2.泛型接口

            interface  GenericInterface<T>
            {
               void  GenericMethod(T t);
            }
    

    3.泛型方法

            public void MyGenericMethod<T>()
            {
              //......
            }
    

    4.泛型数组

    public T[] GenericArray;
    

    5.泛型委托

     public delegate TOutput GenericDelagete<TInput, TOutput>(TInput input);
    

    6.泛型结构

       struct MyGenericStruct<T>
            {
    
            }
    

    在使用时所有的T的都要替换成具体的类型。
    类型参数命名指南,参见官方文档
    这里写图片描述
    ###泛型类和泛型方法###
    我们先来看看泛型方法,这个方法的用途是来交换两个变量的

            static void Main(string[] args)
            {
                int a = 1;
                int b = 2;
                SwapInt(ref a,ref b);
                Console.WriteLine($"a={a}b={b}");
            }
            public static void SwapInt(ref int a, ref int b)
            {
                int temp;
                temp = a;
                a = b;
                b = temp;
            }
    

    结果是a=2,b=1,但是我们现在要换成string类型呢,是不是得再写一个string参数的方法呢,如果是char、double…,这每个不同类型的参数都要写一个参数,的确太麻烦并且没有这个必要,Object ?当然可以

            static void Main(string[] args)
            {
                object a = 1;
                object b = 2;
                SwapObject(ref a,ref b);
                Console.WriteLine($"a={a}b={b}");
            }
            public static void SwapObject(ref object a, ref object b)
            {
                object temp;
                temp = a;
                a = b;
                b = temp;
            }
    

    这确实能解决代码复用的需求,但是上面我们已经知道使用Object类型会发生装箱拆箱的操作,会降低性能。所以我们可以使用泛型方法解决这个缺点。

        static void Main(string[] args)
            {
                int a = 1;
                int b = 2;
                SwapGeneric(ref a,ref b);
                Console.WriteLine($"a={a}b={b}");
            }
            //交换两个变量的方法
            public static void SwapGeneric<T>(ref T a, ref T b)
            {
                T temp;
                temp = a;
                a = b;
                b = temp;
            }
    

    泛型类:这个泛型类常用api通用接口的泛型类。

        class Program
        {
            static void Main(string[] args)
            {
                List<Product> data = new List<Client.Product>() {
                                  new Client.Product() { Id=12,Name="土豆"},
                                  new Client.Product() { Id=12,Name="茄子"},
                                  new Client.Product() { Id=12,Name="黄瓜"}
               };
               var resultProduct = Result<Product>.Success(data);
                var resultUser = Result<User>.Error("没有数据");
                foreach (var item in resultProduct.Data)
                {
                    Console.WriteLine(item.Id+","+item.Name);
                }
                Console.WriteLine(resultUser.IsSuccess+resultUser.Message);
            }
    
        }
        public class Result<T> { //泛型类,声明T变量类型
            public bool IsSuccess { get; set; }
            public List<T> Data { get; set;}//未定义具体类型的泛型集合
            public string Message { get; set; }
            public static Result<T> Error(string message) 
            {
                return new Client.Result<T> { IsSuccess = false, Message = message };
            }
            //泛型方法,初始化数据
            public static Result<T> Success(List<T> data)
            {
                return new Client.Result<T> { IsSuccess =true,Data =data}; //成功就没有提示消息的原则
            }
        }
        public class Product {
            public int Id { get; set; }
            public string Name { get; set; }
        }
        public class User {
            public int Age { get; set; }
            public string Name { get; set; }
        }
    

    使用该通用的泛型类的好处在于,获取不同的对象集合不需要写多个方法,获取Product数据集合、获取User数据集…。只需要调用Success方法既可,使代码变得可复用。
    ###泛型类型参数约束###
    为什么要使用类型参数的约束呢,简单点说就是筛选类型参数,在使用泛型的代码中如果违反了某个约束不允许的类型来实例化则会产生编译错误,类型参数的约束是使用关键字where。 下面列出了6中类型的约束

    1. where T: struct
      类型参数必须是值类型。可以指定除 Nullable 以外的任何值类型。有关更多信息,请参见使用可以为 null 的类型(C# 编程指南)。
    2. where T : class
      类型参数必须是引用类型;这一点也适用于任何类、接口、委托或数组类型。
    3. where T:new()
      类型参数必须具有无参数的公共构造函数。当与其他约束一起使用时,new() 约束必须最后指定。
    4. where T:<基类名>
      类型参数必须是指定的基类或派生自指定的基类。
    5. where T:<接口名称>
      类型参数必须是指定的接口或实现指定的接口。可以指定多个接口约束。约束接口也可以是泛型的。
    6. where T:U
      为 T 提供的类型参数必须是为 U 提供的参数或派生自为 U 提供的参数。
      我们在看看上面那个交换两个变量的方法SwapGeneric,加上必须是值类型的约束
      public static void SwapGeneric<T>(ref T a,ref T b) where T :struct 
            {
                T temp;
                temp = a;
                a = b;
                b = a;
            }
            //实例化
                Product p = new Product() { Id=1,Name="土豆"};
                Product p1 = new Product() { Id=2,Name ="茄子"};
                SwapGeneric<Product>(ref p,ref p1);
    

    我们在使用的时候编译给我们提示了以下的错误:
    这里写图片描述
    “类型Product必须是不可以为NUll值得类型”,引用类型的默认值就是NULL,所以该房型方法的类型参数不能是引用类型,这就是使用类型参数约束的好处。
    约束多个参数

        class List<TLive,U> where TLive:User where U:struct
        {
    
        }
    

    ###泛型委托###
    泛型委托可以自己定义自己的类型参数,声明的时候还是和泛型类、泛型方法一样加个<坑> 站个坑,其实泛型委托使用的时候不是很多,要慎用。,如以下事例

    public delegate T DelegateGeneric<T>(T item);
    DelegateGeneric<string> test = StringMethod;
            public static string StringMethod(string name)
            {
                return "你好" + name;
            }
    

    将上面的交换两个变量的方法改成委托是这样的

            public delegate void DelegateGenericSwap<T>(ref T a,ref T b);
                string a = "张林";
                string b = "科比";
                DelegateGenericSwap<string> swap = GenericSwap;
                Console.WriteLine($"a:{a}b:{b}");
               public static void GenericSwap<T>(ref T a,ref T b)
            {
                T temp;
                temp = a;
                a = b;
                b = a;
            }
    

    作者信息
    【文章信息】:作者-张林:原文链接-https://blog.csdn.net/kebi007/article/details/77800954
    【原创公众号】:dotNet全栈开发。好文目录
    版权声明:本文为CSDN博主「dotNet全栈开发」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。

    展开全文
  • 1. 泛型方法 在方法中出现了泛型的结构,泛型参数与类的泛型参数没有任何关系,换句话说,泛型方法所属的类是不是泛型类都没关系 泛型方法在调用时指明泛型参数的类型,并非在实例化类时确定, arr给E指挥的类型是...
  • Java 泛型方法

    万次阅读 2019-06-09 20:18:33
    定义泛型方法 泛型方法和类型通配符的区别 Java 7 的“菱形”语法与泛型构造器 设定通配符·下限 泛型方法与方法重载 Java 8 改进的类型推断 1. 定义泛型方法 假设需要实现这样一个方法:该方法负责将一个 Object ...
  • 泛型方法,是在调用方法的时候指明泛型的具体类型定义泛型方法语法格式如下:调用泛型方法语法格式如下:说明一下,定义泛型方法时,必须在返回值前边加一个,来声明这是一个泛型方法,持有一个泛型T,然后才可以用...
  • 泛型类、泛型方法、泛型接口、泛型委托 泛型类、泛型方法、泛型接口、泛型委托
  • Java 泛型 泛型方法

    2019-09-24 07:44:40
    Java 泛型 泛型方法 @author ixenos 泛型方法可以定义在普通类中,也可以定义在泛型类中 类型变量放在修饰符(如public static)后面,返回类型的前面 一个static方法无法访问泛型类的类型参数,所以...
  • 在学习java的过程中,我们常常会遇到泛型方法泛型方法使得该方法能独立于类而产生变化。下面,我们可以写一个泛型方法,使其方法在调用时可以接收不同类型的参数。根据传递给泛型方法的参数类型,编译器适当地处理...
  • java 泛型方法:泛型是什么意思在这就不多说了,而Java中泛型类的定义也比较简单,例如:public class Test{}。这样就定义了一个泛型类Test,在实例化该类时,必须指明泛型T的具体类型,例如:Test t = new Test();...
  • 1. 泛型方法的概念方法的参数类型是泛型,而不是具体的参数。注意:是方法的参数是泛型,而不是方法的返回值。2. 泛型方法的定义格式[访问权限] 返回值类型 方法名([泛型标识 参数名称]){方法体;}3. 泛型方法实例...
  • 泛型是什么意思在这就不多说了,而Java中泛型类的定义也比较简单,例如...但是Java中的泛型方法就比较复杂了。泛型类,是在实例化类的时候指明泛型的具体类型;泛型方法,是在调用方法的时候指明泛型的具体类型。定...
  • java泛型-泛型方法

    2020-12-06 13:58:10
    java泛型-泛型方法 泛型方法 泛型类,是在实例化类的时候指明泛型的具体类型 泛型方法,是在调用方法的时候指明泛型的具体类型 语法 修饰符 <T, E, ...> 返回值类型 方法名(形参列表) { 方法体...... } 1...
  • 跟汤老师学Java笔记:泛型方法 完成:第一遍 1.什么是泛型方法? 泛型方法表示方法中有一个未知的类型 定义方式: public 修饰符 <T> 返回值类型 方法名(){} 可以在方法内部使用T,表示一个对象的类型 在调用...
  • 您可以编写一个可以用不同类型的参数调用的泛型方法声明。根据传递给泛型方法的参数类型,编译器会适当地处理每个方法调用。以下是定义泛型方法的规则-所有泛型方法声明都有一个类型参数部分,该类型参数部分由方...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 30,489
精华内容 12,195
关键字:

泛型方法