
- 提出者
- dozer
- 定 义
- 程序执行流的最小单元
- 多线程中
- CPU的基本单位
- 应用学科
- 计算机
- 中文名
- 线程
- 外文名
- thread
- 别 称
- 执行绪;轻量进程
-
多线程(一):创建线程和线程的常用方法
2018-09-01 19:14:23一:为什么要学多线程 应付面试 :多线程几乎是面试中必问的题,所以掌握一定的基础知识是必须的。 了解并发编程:实际工作中很少写多线程的代码,这部分代码一般都被人封装起来了,在业务中使用多线程的机会也...分享一个朋友的人工智能教程(请以“右键”->"在新标签页中打开连接”的方式访问)。比较通俗易懂,风趣幽默,感兴趣的朋友可以去看看。
一:为什么要学多线程
- 应付面试 :多线程几乎是面试中必问的题,所以掌握一定的基础知识是必须的。
- 了解并发编程:实际工作中很少写多线程的代码,这部分代码一般都被人封装起来了,在业务中使用多线程的机会也不是很多(看具体项目),虽然代码中很少会自己去创建线程,但是实际环境中每行代码却都是并行执行的,同一时刻大量请求同一个接口,并发可能会产生一些问题,所以也需要掌握一定的并发知识
二:进程与线程
1. 进程
进程是资源(CPU、内存等)分配的基本单位,它是程序执行时的一个实例。程序运行时系统就会创建一个进程,并为它分配资源,然后把该进程放入进程就绪队列,进程调度器选中它的时候就会为它分配CPU时间,程序开始真正运行。
2. 线程
线程是一条执行路径,是程序执行时的最小单位,它是进程的一个执行流,是CPU调度和分派的基本单位,一个进程可以由很多个线程组成,线程间共享进程的所有资源,每个线程有自己的堆栈和局部变量。线程由CPU独立调度执行,在多CPU环境下就允许多个线程同时运行。同样多线程也可以实现并发操作,每个请求分配一个线程来处理。
一个正在运行的软件(如迅雷)就是一个进程,一个进程可以同时运行多个任务( 迅雷软件可以同时下载多个文件,每个下载任务就是一个线程), 可以简单的认为进程是线程的集合。
线程是一条可以执行的路径。多线程就是同时有多条执行路径在同时(并行)执行。
3. 进程与线程的关系
一个程序就是一个进程,而一个程序中的多个任务则被称为线程。进程是表示资源分配的基本单位,又是调度运行的基本单位。,亦即执行处理机调度的基本单位。 进程和线程的关系:
-
一个线程只能属于一个进程,而一个进程可以有多个线程,但至少有一个线程。线程是操作系统可识别的最小执行和调度单位。
-
资源分配给进程,同一进程的所有线程共享该进程的所有资源。同一进程中的多个线程共享代码段(代码和常量),数据段(全局变量和静态变量),扩展段(堆存储)。但是每个线程拥有自己的栈段,栈段又叫运行时段,用来存放所有局部变量和临时变量,即每个线程都有自己的堆栈和局部变量。
-
处理机分给线程,即真正在处理机上运行的是线程。
-
线程在执行过程中,需要协作同步。不同进程的线程间要利用消息通信的办法实现同步。
如果把上课的过程比作进程,把老师比作CPU,那么可以把每个学生比作每个线程,所有学生共享这个教室(也就是所有线程共享进程的资源),上课时学生A向老师提出问题,老师对A进行解答,此时可能会有学生B对老师的解答不懂会提出B的疑问(注意:此时可能老师还没有对A同学的问题解答完毕),此时老师又向学生B解惑,解释完之后又继续回答学生A的问题,同一时刻老师只能向一个学生回答问题(即:当多个线程在运行时,同一个CPU在某一个时刻只能服务于一个线程,可能一个线程分配一点时间,时间到了就轮到其它线程执行了,这样多个线程在来回的切换)
4. 为什么要使用多线程
多线程可以提高程序的效率。
实际生活案例:村长要求喜洋洋在一个小时内打100桶水,可以喜洋洋一个小时只能打25桶水,如果这样就需要4个小时才能完成任务,为了在一个小时能够完成,喜洋洋就请美洋洋、懒洋洋、沸洋洋,来帮忙,这样4只羊同时干活,在一小时内完成了任务。原本用4个小时完成的任务现在只需要1个小时就完成了,如果把每只羊看做一个线程,多只羊即多线程可以提高程序的效率。
5. 多线程应用场景
- 一般线程之间比较独立,互不影响
- 一个线程发生问题,一般不影响其它线程
三:多线程的实现方式
1. 顺序编程
顺序编程:程序从上往下的同步执行,即如果第一行代码执行没有结束,第二行代码就只能等待第一行执行结束后才能结束。
public class Main { // 顺序编程 吃喝示例:当吃饭吃不完的时候,是不能喝酒的,只能吃完晚才能喝酒 public static void main(String[] args) throws Exception { // 先吃饭再喝酒 eat(); drink(); } private static void eat() throws Exception { System.out.println("开始吃饭?...\t" + new Date()); Thread.sleep(5000); System.out.println("结束吃饭?...\t" + new Date()); } private static void drink() throws Exception { System.out.println("开始喝酒?️...\t" + new Date()); Thread.sleep(5000); System.out.println("结束喝酒?...\t" + new Date()); } }
2. 并发编程
并发编程:多个任务可以同时做,常用与任务之间比较独立,互不影响。
线程上下文切换:
同一个时刻一个CPU只能做一件事情,即同一时刻只能一个线程中的部分代码,假如有两个线程,Thread-0和Thread-1,刚开始CPU说Thread-0你先执行,给你3毫秒时间,Thread-0执行了3毫秒时间,但是没有执行完,此时CPU会暂停Thread-0执行并记录Thread-0执行到哪行代码了,当时的变量的值是多少,然后CPU说Thread-1你可以执行了,给你2毫秒的时间,Thread-1执行了2毫秒也没执行完,此时CPU会暂停Thread-1执行并记录Thread-1执行到哪行代码了,当时的变量的值是多少,此时CPU又说Thread-0又该你,这次我给你5毫秒时间,去执行吧,此时CPU就找出上次Thread-0线程执行到哪行代码了,当时的变量值是多少,然后接着上次继续执行,结果用了2毫秒就Thread-0就执行完了,就终止了,然后CPU说Thread-1又轮到你,这次给你4毫秒,同样CPU也会先找出上次Thread-1线程执行到哪行代码了,当时的变量值是多少,然后接着上次继续开始执行,结果Thread-1在4毫秒内也执行结束了,Thread-1也结束了终止了。CPU在来回改变线程的执行机会称之为线程上下文切换。
public class Main { public static void main(String[] args) { // 一边吃饭一边喝酒 new EatThread().start(); new DrinkThread().start(); } } class EatThread extends Thread{ @Override public void run() { System.out.println("开始吃饭?...\t" + new Date()); try { Thread.sleep(5000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("结束吃饭?...\t" + new Date()); } } class DrinkThread extends Thread { @Override public void run() { System.out.println("开始喝酒?️...\t" + new Date()); try { Thread.sleep(5000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("结束喝酒?...\t" + new Date()); } }
并发编程,一边吃饭一边喝酒总共用时5秒,比顺序编程更快,因为并发编程可以同时运行,而不必等前面的代码运行完之后才允许后面的代码
本示例主要启动3个线程,一个主线程main thread、一个吃饭线程(Thread-0)和一个喝酒线程(Thread-1),共三个线程, 三个线程并发切换着执行。main线程很快执行完,吃饭线程和喝酒线程会继续执行,直到所有线程(非守护线程)执行完毕,整个程序才会结束,main线程结束并不意味着整个程序结束。
-
顺序:代码从上而下按照固定的顺序执行,只有上一件事情执行完毕,才能执行下一件事。就像物理电路中的串行,假如有十件事情,一个人来完成,这个人必须先做第一件事情,然后再做第二件事情,最后做第十件事情,按照顺序做。
-
并行:多个操作同时处理,他们之间是并行的。假如十件事情,两个人来完成,每个人在某个时间点各自做各自的事情,互不影响
-
并发:将一个操作分割成多个部分执行并且允许无序处理,假如有十件事情,如果有一个人在做,这个人可能做一会这个不想做了,再去做别的,做着做着可能也不想做了,又去干其它事情了,看他心情想干哪个就干哪个,最终把十件事情都做完。如果有两个人在做,他们俩先分一下,比如张三做4件,李四做6件,他们各做自己的,在做自己的事情过程中可以随意的切换到别的事情,不一定要把某件事情干完再去干其它事情,有可能一件事做了N次才做完。
通常一台电脑只有一个cpu,多个线程属于并发执行,如果有多个cpu,多线程并发执行有可能变成并行执行。
3. 多线程创建方式
- 继承 Thread
- 实现 Runable
- 实现 Callable
①:继成java.lang.Thread, 重写run()方法
public class Main { public static void main(String[] args) { new MyThread().start(); } } class MyThread extends Thread { @Override public void run() { System.out.println(Thread.currentThread().getName() + "\t" + Thread.currentThread().getId()); } }
Thread 类
package java.lang; public class Thread implements Runnable { // 构造方法 public Thread(Runnable target); public Thread(Runnable target, String name); public synchronized void start(); }
Runnable 接口
package java.lang; @FunctionalInterface public interface Runnable { pubic abstract void run(); }
②:实现java.lang.Runnable接口,重写run()方法,然后使用Thread类来包装
public class Main { public static void main(String[] args) { // 将Runnable实现类作为Thread的构造参数传递到Thread类中,然后启动Thread类 MyRunnable runnable = new MyRunnable(); new Thread(runnable).start(); } } class MyRunnable implements Runnable { @Override public void run() { System.out.println(Thread.currentThread().getName() + "\t" + Thread.currentThread().getId()); } }
可以看到两种方式都是围绕着Thread和Runnable,继承Thread类把run()写到类中,实现Runnable接口是把run()方法写到接口中然后再用Thread类来包装, 两种方式最终都是调用Thread类的start()方法来启动线程的。
两种方式在本质上没有明显的区别,在外观上有很大的区别,第一种方式是继承Thread类,因Java是单继承,如果一个类继承了Thread类,那么就没办法继承其它的类了,在继承上有一点受制,有一点不灵活,第二种方式就是为了解决第一种方式的单继承不灵活的问题,所以平常使用就使用第二种方式其它变体写法:
public class Main { public static void main(String[] args) { // 匿名内部类 new Thread(new Runnable() { @Override public void run() { System.out.println(Thread.currentThread().getName() + "\t" + Thread.currentThread().getId()); } }).start(); // 尾部代码块, 是对匿名内部类形式的语法糖 new Thread() { @Override public void run() { System.out.println(Thread.currentThread().getName() + "\t" + Thread.currentThread().getId()); } }.start(); // Runnable是函数式接口,所以可以使用Lamda表达式形式 Runnable runnable = () -> {System.out.println(Thread.currentThread().getName() + "\t" + Thread.currentThread().getId());}; new Thread(runnable).start(); } }
③:实现Callable接口,重写call()方法,然后包装成java.util.concurrent.FutureTask, 再然后包装成Thread
Callable:有返回值的线程,能取消线程,可以判断线程是否执行完毕
public class Main { public static void main(String[] args) throws Exception { // 将Callable包装成FutureTask,FutureTask也是一种Runnable MyCallable callable = new MyCallable(); FutureTask<Integer> futureTask = new FutureTask<>(callable); new Thread(futureTask).start(); // get方法会阻塞调用的线程 Integer sum = futureTask.get(); System.out.println(Thread.currentThread().getName() + Thread.currentThread().getId() + "=" + sum); } } class MyCallable implements Callable<Integer> { @Override public Integer call() throws Exception { System.out.println(Thread.currentThread().getName() + "\t" + Thread.currentThread().getId() + "\t" + new Date() + " \tstarting..."); int sum = 0; for (int i = 0; i <= 100000; i++) { sum += i; } Thread.sleep(5000); System.out.println(Thread.currentThread().getName() + "\t" + Thread.currentThread().getId() + "\t" + new Date() + " \tover..."); return sum; } }
Callable 也是一种函数式接口
@FunctionalInterface public interface Callable<V> { V call() throws Exception; }
FutureTask
public class FutureTask<V> implements RunnableFuture<V> { // 构造函数 public FutureTask(Callable<V> callable); // 取消线程 public boolean cancel(boolean mayInterruptIfRunning); // 判断线程 public boolean isDone(); // 获取线程执行结果 public V get() throws InterruptedException, ExecutionException; }
RunnableFuture
public interface RunnableFuture<V> extends Runnable, Future<V> { void run(); }
三种方式比较:
- Thread: 继承方式, 不建议使用, 因为Java是单继承的,继承了Thread就没办法继承其它类了,不够灵活
- Runnable: 实现接口,比Thread类更加灵活,没有单继承的限制
- Callable: Thread和Runnable都是重写的run()方法并且没有返回值,Callable是重写的call()方法并且有返回值并可以借助FutureTask类来判断线程是否已经执行完毕或者取消线程执行
- 当线程不需要返回值时使用Runnable,需要返回值时就使用Callable,一般情况下不直接把线程体代码放到Thread类中,一般通过Thread类来启动线程
- Thread类是实现Runnable,Callable封装成FutureTask,FutureTask实现RunnableFuture,RunnableFuture继承Runnable,所以Callable也算是一种Runnable,所以三种实现方式本质上都是Runnable实现
四:线程的状态
- 创建(new)状态: 准备好了一个多线程的对象,即执行了new Thread(); 创建完成后就需要为线程分配内存
- 就绪(runnable)状态: 调用了start()方法, 等待C