精华内容
下载资源
问答
  • TCP UDP 的区别

    万次阅读 多人点赞 2018-08-04 21:57:42
    前言 ...前端的面试中经常问的 TCP UDP 的区别,网上也有好多内容,比如 TCP UDP 的区别 TCP 是面向连接的,UDP 是面向无连接的 UDP程序结构较简单 TCP 是面向字节流的,UDP 是基于...

    前言

    前端的面试中经常问的 TCP 和 UDP 的区别,网上也有好多内容,比如

    TCP 和 UDP 的区别

    • TCP 是面向连接的,UDP 是面向无连接的
    • UDP程序结构较简单
    • TCP 是面向字节流的,UDP 是基于数据报的
    • TCP 保证数据正确性,UDP 可能丢包
    • TCP 保证数据顺序,UDP 不保证

    之前也因为面试的原因了解过一下,但是面试官又问了为什么 TCP 是可靠传输,一下就露馅了,说不出来了,然后这两天就仔细了解了一下这方面的内容,还专门订阅了极客时间的趣谈网络协议,因此,这篇文章主要基于趣谈网络协议和自己的理解。

    1. UDP

    要想理解 TCP 和 UDP 的区别,首先要明白什么是 TCP,什么是 UDP

    TCP 和 UDP 是传输层的两个协议

    我们来看一下 UDP 的包头
    UDP 包头
    由上图可以看出,UDP 除了端口号,基本啥都没有了。如果没有这两个端口号,数据就不知道该发给哪个应用。

    所以 UDP 就像一个小孩子,特别简单,有如下三个特点

    UDP 的特点

    • 沟通简单,不需要大量的数据结构,处理逻辑和包头字段
    • 轻信他人。它不会建立连接,但是会监听这个地方,谁都可以传给它数据,它也可以传给任何人数据,甚至可以同时传给多个人数据。
    • 愣头青,做事不懂变通。不会根据网络的情况进行拥塞控制,无论是否丢包,它该怎么发还是怎么发

    因为 UDP 是"小孩子",所以处理的是一些没那么难的项目,并且就算失败的也能接收。基于这些特点的话,UDP 可以使用在如下场景中

    UDP 的主要应用场景

    • 需要资源少,网络情况稳定的内网,或者对于丢包不敏感的应用,比如 DHCP 就是基于 UDP 协议的。
    • 不需要一对一沟通,建立连接,而是可以广播的应用。因为它不面向连接,所以可以做到一对多,承担广播或者多播的协议。
    • 需要处理速度快,可以容忍丢包,但是即使网络拥塞,也毫不退缩,一往无前的时候

    基于 UDP 的几个例子

    • 直播。直播对实时性的要求比较高,宁可丢包,也不要卡顿的,所以很多直播应用都基于 UDP 实现了自己的视频传输协议
    • 实时游戏。游戏的特点也是实时性比较高,在这种情况下,采用自定义的可靠的 UDP 协议,自定义重传策略,能够把产生的延迟降到最低,减少网络问题对游戏造成的影响
    • 物联网。一方面,物联网领域中断资源少,很可能知识个很小的嵌入式系统,而维护 TCP 协议的代价太大了;另一方面,物联网对实时性的要求也特别高。比如 Google 旗下的 Nest 简历 Thread Group,推出了物联网通信协议 Thread,就是基于 UDP 协议的

    还有一些,但是写的太多了也记不住,所以主要记住这几个就够了

    2. TCP

    首先是 TCP 的包头格式
    TCP 包头

    TCP 的包头有哪些内容,分别有什么用

    • 首先,源端口和目标端口是不可少的。
    • 接下来是包的序号。主要是为了解决乱序问题。不编好号怎么知道哪个先来,哪个后到
    • 确认序号。发出去的包应该有确认,这样能知道对方是否收到,如果没收到就应该重新发送,这个解决的是不丢包的问题
    • 状态位。SYN 是发起一个链接,ACK 是回复,RST 是重新连接,FIN 是结束连接。因为 TCP 是面向连接的,因此需要双方维护连接的状态,这些状态位的包会引起双方的状态变更
    • 窗口大小,TCP 要做流量控制,需要通信双方各声明一个窗口,标识自己当前的处理能力。

    通过对 TCP 头的解析,我们知道要掌握 TCP 协议,应该重点关注以下问题:

    • 顺序问题
    • 丢包问题
    • 连接维护
    • 流量控制
    • 拥塞控制

    2.1 TCP 的三次握手

    所有的问题,首先都要建立连接,所以首先是连接维护的问题

    TCP 的建立连接称为三次握手,可以简单理解为下面这种情况

    A:您好,我是 A
    B:您好 A,我是 B
    A:您好 B

    至于为什么是三次握手我这里就不细讲了,可以看其他人的博客,总结的话就是通信双方全都有来有回

    对于 A 来说它发出请求,并收到了 B 的响应,对于 B 来说它响应了 A 的请求,并且也接收到了响应。

    TCP 的三次握手除了建立连接外,主要还是为了沟通 TCP 包的序号问题。

    A 告诉 B,我发起的包的序号是从哪个号开始的,B 同样也告诉 A,B 发起的 包的序号是从哪个号开始的。

    双方建立连接之后需要共同维护一个状态机,在建立连接的过程中,双方的状态变化时序图如下所示
    状态变化时序图
    这是网上经常见到的一张图,刚开始的时候,客户端和服务器都处于 CLOSED 状态,先是服务端主动监听某个端口,处于 LISTEN 状态。然后客户端主动发起连接 SYN,之后处于 SYN-SENT 状态。服务端接收了发起的连接,返回 SYN,并且 ACK ( 确认 ) 客户端的 SYN,之后处于 SYN-SENT 状态。客户端接收到服务端发送的 SYN 和 ACK 之后,发送 ACK 的 ACK,之后就处于 ESTAVLISHED 状态,因为它一发一收成功了。服务端收到 ACK 的 ACK 之后,也处于 ESTABLISHED 状态,因为它也一发一收了。

    2.2 TCP 四次挥手

    说完建立连接,再说下断开连接,也被称为四次挥手,可以简单理解如下

    A:B 啊,我不想玩了
    B:哦,你不想玩了啊,我知道了
    这个时候,只是 A 不想玩了,即不再发送数据,但是 B 可能还有未发送完的数据,所以需要等待 B 也主动关闭。
    B:A 啊,好吧,我也不玩了,拜拜
    A:好的,拜拜

    这样整个连接就关闭了,当然上面只是正常的状态,也有些非正常的状态(比如 A 说完不玩了,直接跑路,B 发起的结束得不到 A 的回答,不知道该怎么办或则 B 直接跑路 A 不知道该怎么办),TCP 协议专门设计了几个状态来处理这些非正常状态
    断开连接状态时序图
    断开的时候,当 A 说不玩了,就进入 FIN_WAIT_1 的状态,B 收到 A 不玩了的消息后,进入 CLOSE_WAIT 的状态。

    A 收到 B 说知道了,就进入 FIN_WAIT_2 的状态,如果 B 直接跑路,则 A 永远处与这个状态。TCP 协议里面并没有对这个状态的处理,但 Linux 有,可以调整 tcp_fin_timeout 这个参数,设置一个超时时间。

    如果 B 没有跑路,A 接收到 B 的不玩了请求之后,从 FIN_WAIT_2 状态结束,按说 A 可以跑路了,但是如果 B 没有接收到 A 跑路的 ACK 呢,就再也接收不到了,所以这时候 A 需要等待一段时间,因为如果 B 没接收到 A 的 ACK 的话会重新发送给 A,所以 A 的等待时间需要足够长。

    2.3 累计确认

    TCP 如何实现可靠传输?

    首先为了保证顺序性,每个包都有一个 ID。在建立连接的时候会商定起始 ID 是什么,然后按照 ID 一个个发送,为了保证不丢包,需要对发送的包都要进行应答,当然,这个应答不是一个一个来的,而是会应答某个之前的 ID,表示都收到了,这种模式成为累计应答累计确认

    为了记录所有发送的包和接收的包,TCP 需要发送端和接收端分别来缓存这些记录,发送端的缓存里是按照包的 ID 一个个排列,根据处理的情况分成四个部分

    • 发送并且确认的
    • 发送尚未确认的
    • 没有发送等待发送的
    • 没有发送并且暂时不会发送的

    这里的第三部分和第四部分就属于流量控制的内容

    在 TCP 里,接收端会给发送端报一个窗口大小,叫 Advertised window。这个窗口应该等于上面的第二部分加上第三部分,超过这个窗口,接收端做不过来,就不能发送了

    于是,发送端要保持下面的数据结构
    发送端数据结构
    对于接收端来讲,它的缓存里面的内容要简单一些

    • 接收并且确认过的
    • 还没接收,但是马上就能接收的
    • 还没接收,但也无法接收的

    对应的数据结构如下
    接收端的数据结构

    2.4 顺序问题和丢包问题

    结合上面的图看,在发送端,1、2、3 已发送并确认;4、5、6、7、8、9 都是发送了还没确认;10、11、12 是还没发出的;13、14、15 是接收方没有空间,不准备发的。

    在接收端来看,1、2、3、4、5 是已经完成 ACK 但是还没读取的;6、7 是等待接收的;8、9 是已经接收还没有 ACK 的。

    发送端和接收端当前的状态如下:

    • 1、2、3 没有问题,双方达成了一致
    • 4、5 接收方说 ACK 了,但是发送方还没收到
    • 6、7、8、9 肯定都发了,但是 8、9 已经到了,6、7 没到,出现了乱序,缓存着但是没办法 ACK。

    根据这个例子可以知道顺序问题和丢包问题都有可能存在,所以我们先来看确认与重传机制

    假设 4 的确认收到了,5 的 ACK 丢了,6、7 的数据包丢了,该怎么办?

    一种方法是超时重试,即对每一个发送了但是没有 ACK 的包设定一个定时器,超过了一定的事件就重新尝试。这个时间必须大于往返时间,但也不宜过长,否则超时时间变长,访问就变慢了。

    如果过一段时间,5、6、7 都超时了就会重新发送。接收方发现 5 原来接收过,于是丢弃 5;6 收到了,发送 ACK,要求下一个是 7,7 不幸又丢了。当 7 再次超时的时候,TCP 的策略是超时间隔加倍。每当遇到一次超时重传的时候,都会讲下一次超时时间间隔设为先前值的两倍。

    超时重传的机制是超时周期可能相对较长,是否有更快的方式呢?

    有一个快速重传的机制,即当接收方接收到一个序号大于期望的报文段时,就检测到了数据流之间的间隔,于是发送三个冗余的 ACK,客户端接收到之后,知道数据报丢失,于是重传丢失的报文段。

    例如,接收方发现 6、8、9 都接收了,但是 7 没来,所以肯定丢了,于是发送三个 6 的 ACK,要求下一个是 7。客户端接收到 3 个,就会发现 7 的确又丢了,不等超时,马上重发。

    2.5 流量控制的问题

    在流量控制的机制里面,在对于包的确认中,会携带一个窗口的大小

    简单的说一下就是接收端在发送 ACK 的时候会带上缓冲区的窗口大小,但是一般在窗口达到一定大小才会更新窗口,因为每次都更新的话,刚空下来就又被填满了

    2.6 拥塞控制的问题

    也是通过窗口的大小来控制的,但是检测网络满不满是个挺难的事情,所以 TCP 发送包经常被比喻成往谁管理灌水,所以拥塞控制就是在不堵塞,不丢包的情况下尽可能的发挥带宽。

    水管有粗细,网络有带宽,即每秒钟能发送多少数据;水管有长度,端到端有时延。理想状态下,水管里面的水 = 水管粗细 * 水管长度。对于网络上,通道的容量 = 带宽 * 往返时延。

    如果我们设置发送窗口,使得发送但未确认的包为通道的容量,就能撑满整个管道。

    如图所示,假设往返时间为 8 秒,去 4 秒,回 4 秒,每秒发送一个包,已经过去了 8 秒,则 8 个包都发出去了,其中前四个已经到达接收端,但是 ACK 还没返回,不能算发送成功,5-8 后四个包还在路上,还没被接收,这个时候,管道正好撑满,在发送端,已发送未确认的 8 个包,正好等于带宽,也即每秒发送一个包,也即每秒发送一个包,乘以来回时间 8 秒。

    如果在这个基础上调大窗口,使得单位时间可以发送更多的包,那么会出现接收端处理不过来,多出来的包会被丢弃,这个时候,我们可以增加一个缓存,但是缓存里面的包 4 秒内肯定达不到接收端课,它的缺点会增加时延,如果时延达到一定程度就会超时重传

    TCP 拥塞控制主要来避免两种现象,包丢失和超时重传,一旦出现了这些现象说明发送的太快了,要慢一点。

    具体的方法就是发送端慢启动,比如倒水,刚开始倒的很慢,渐渐变快。然后设置一个阈值,当超过这个值的时候就要慢下来

    慢下来还是在增长,这时候就可能水满则溢,出现拥塞,需要降低倒水的速度,等水慢慢渗下去。

    拥塞的一种表现是丢包,需要超时重传,这个时候,采用快速重传算法,将当前速度变为一半。所以速度还是在比较高的值,也没有一夜回到解放前。

    总结及面试问题

    TCP 和 UDP 的区别

    • TCP 是面向连接的,UDP 是面向无连接的
    • UDP程序结构较简单
    • TCP 是面向字节流的,UDP 是基于数据报的
    • TCP 保证数据正确性,UDP 可能丢包
    • TCP 保证数据顺序,UDP 不保证

    什么是面向连接,什么是面向无连接

    在互通之前,面向连接的协议会先建立连接,如 TCP 有三次握手,而 UDP 不会

    TCP 为什么是可靠连接

    • 通过 TCP 连接传输的数据无差错,不丢失,不重复,且按顺序到达。
    • TCP 报文头里面的序号能使 TCP 的数据按序到达
    • 报文头里面的确认序号能保证不丢包,累计确认及超时重传机制
    • TCP 拥有流量控制及拥塞控制的机制

    TCP 的顺序问题,丢包问题,流量控制都是通过滑动窗口来解决的
    拥塞控制时通过拥塞窗口来解决的

    展开全文
  • TCP 和UDP 的区别

    2016-05-24 11:57:57
    TCP 和UDP 的区别

    偶然发现我们用的是UDP, 原因是TCP延时太大, 补一把基础知识。。

    Difference between TCP and UDP

    TCP UDP
    Reliability: TCP is connection-oriented protocol. When a file or message send it will get delivered unless connections fails. If connection lost, the server will request the lost part. There is no corruption while transferring a message. Reliability: UDP is connectionless protocol. When you a send a data or message, you don’t know if it’ll get there, it could get lost on the way. There may be corruption while transferring a message.
    Ordered: If you send two messages along a connection, one after the other, you know the first message will get there first. You don’t have to worry about data arriving in the wrong order. Ordered: If you send two messages out, you don’t know what order they’ll arrive in i.e. no ordered
    Heavyweight: – when the low level parts of the TCP “stream” arrive in the wrong order, resend requests have to be sent, and all the out of sequence parts have to be put back together, so requires a bit of work to piece together. Lightweight: No ordering of messages, no tracking connections, etc. It’s just fire and forget! This means it’s a lot quicker, and the network card / OS have to do very little work to translate the data back from the packets.
    Streaming: Data is read as a “stream,” with nothing distinguishing where one packet ends and another begins. There may be multiple packets per read call. Datagrams: Packets are sent individually and are guaranteed to be whole if they arrive. One packet per one read call.
    Examples: World Wide Web (Apache TCP port 80), e-mail (SMTP TCP port 25 Postfix MTA), File Transfer Protocol (FTP port 21) and Secure Shell (OpenSSH port 22) etc. Examples: Domain Name System (DNS UDP port 53), streaming media applications such as IPTV or movies, Voice over IP (VoIP), Trivial File Transfer Protocol (TFTP) and online multiplayer games etc
    展开全文
  • TCP和UDP的区别

    2021-01-11 18:10:57
    TCP和UDP的区别TCP/IP协议集其中应用层包括:其次网络层包括:最后说网络访问层:TCP协议TCP三次握手过程3次握手的特点断开连接要进行4次挥手名词解释TCP的包头结构:UDP协议UDP的包头结构:小结TCP与UDP的区别: ...

    内容转载至 https://zhuanlan.zhihu.com/p/24860273 链接: link.如有侵权 请联系删除


    TCP/IP协议是一个协议簇。里面包括很多协议的,UDP只是其中的一个, 之所以命名为TCP/IP协议,因为TCP、IP协议是两个很重要的协议,就用他两命名了。

    TCP/IP协议集包括应用层,传输层,网络层,网络访问层。

    TCP/IP协议集

    其中应用层包括:

    1、超文本传输协议(HTTP):万维网的基本协议;
    2、文件传输(TFTP简单文件传输协议);
    3、远程登录(Telnet),提供远程访问其它主机功能, 它允许用户登录internet主机,并在这台主机上执行命令;
    4、网络管理(SNMP简单网络管理协议),该协议提供了监控网络设备的方法, 以及配置管理,统计信息收集,性能管理及安全管理等;
    5、域名系统(DNS),该系统用于在internet中将域名及其公共广播的网络节点转换成IP地址。

    其次网络层包括:

    1、Internet协议(IP);
    2、Internet控制信息协议(ICMP);
    3、地址解析协议(ARP);
    4、反向地址解析协议(RARP)。

    最后说网络访问层:

    网络访问层又称作主机到网络层(host-to-network),网络访问层的功能包括IP地址与物理地址硬件的映射, 以及将IP封装成帧.基于不同硬件类型的网络接口,网络访问层定义了和物理介质的连接. 当然我这里说得不够完善,TCP/IP协议本来就是一门学问,每一个分支都是一个很复杂的流程, 但我相信每位学习软件开发的同学都有必要去仔细了解一番。

    TCP协议

    TCP(Transmission Control Protocol,传输控制协议)是面向连接的协议,也就是说,在收发数据前,必须和对方建立可靠的连接。 一个TCP连接必须要经过三次“对话”才能建立起来,其中的过程非常复杂, 只简单的描述下这三次对话的简单过程:

    1)主机A向主机B发出连接请求数据包:“我想给你发数据,可以吗?”,这是第一次对话;

    2)主机B向主机A发送同意连接和要求同步 (同步就是两台主机一个在发送,一个在接收,协调工作)的数据包 :“可以,你什么时候发?”,这是第二次对话;

    3)主机A再发出一个数据包确认主机B的要求同步:“我现在就发,你接着吧!”, 这是第三次对话。
    三次“对话”的目的是使数据包的发送和接收同步, 经过三次“对话”之后,主机A才向主机B正式发送数据。

    TCP三次握手过程

    第一次握手:主机A通过向主机B 发送一个含有同步序列号的标志位的数据段给主机B,向主机B 请求建立连接,通过这个数据段, 主机A告诉主机B 两件事:我想要和你通信;你可以用哪个序列号作为起始数据段来回应我。

    第二次握手:主机B 收到主机A的请求后,用一个带有确认应答(ACK)和同步序列号(SYN)标志位的数据段响应主机A,也告诉主机A两件事:我已经收到你的请求了,你可以传输数据了;你要用那个序列号作为起始数据段来回应我

    第三次握手:主机A收到这个数据段后,再发送一个确认应答,确认已收到主机B 的数据段:"我已收到回复,我现在要开始传输实际数据了,这样3次握手就完成了,主机A和主机B 就可以传输数据了。

    3次握手的特点

    没有应用层的数据 ,SYN这个标志位只有在TCP建立连接时才会被置1 ,握手完成后SYN标志位被置0。

    断开连接要进行4次挥手

    第一次: 当主机A完成数据传输后,将控制位FIN置1,提出停止TCP连接的请求 ;

    第二次: 主机B收到FIN后对其作出响应,确认这一方向上的TCP连接将关闭,将ACK置1;

    第三次: 由B 端再提出反方向的关闭请求,将FIN置1 ;

    第四次: 主机A对主机B的请求进行确认,将ACK置1,双方向的关闭结束.。

    由TCP的三次握手和四次断开可以看出,TCP使用面向连接的通信方式, 大大提高了数据通信的可靠性,使发送数据端和接收端在数据正式传输前就有了交互, 为数据正式传输打下了可靠的基础。

    名词解释

    1、ACK 是TCP报头的控制位之一,对数据进行确认。确认由目的端发出, 用它来告诉发送端这个序列号之前的数据段都收到了。 比如确认号为X,则表示前X-1个数据段都收到了,只有当ACK=1时,确认号才有效,当ACK=0时,确认号无效,这时会要求重传数据,保证数据的完整性。

    2、SYN 同步序列号,TCP建立连接时将这个位置1。

    3、FIN 发送端完成发送任务位,当TCP完成数据传输需要断开时,,提出断开连接的一方将这位置1。

    TCP的包头结构:

    源端口 16位;

    目标端口 16位;

    序列号 32位;

    回应序号 32位;

    TCP头长度 4位;

    reserved 6位;

    控制代码 6位;

    窗口大小 16位;

    偏移量 16位;

    校验和 16位;

    选项 32位(可选);

    这样我们得出了TCP包头的最小长度,为20字节。

    UDP协议

    UDP(User Data Protocol,用户数据报协议)
    1、UDP是一个非连接的协议,传输数据之前源端和终端不建立连接, 当它想传送时就简单地去抓取来自应用程序的数据,并尽可能快地把它扔到网络上。 在发送端,UDP传送数据的速度仅仅是受应用程序生成数据的速度、 计算机的能力和传输带宽的限制; 在接收端,UDP把每个消息段放在队列中,应用程序每次从队列中读一个消息段。

    2、 由于传输数据不建立连接,因此也就不需要维护连接状态,包括收发状态等, 因此一台服务机可同时向多个客户机传输相同的消息。

    3、UDP信息包的标题很短,只有8个字节,相对于TCP的20个字节信息包的额外开销很小。

    4、吞吐量不受拥挤控制算法的调节,只受应用软件生成数据的速率、传输带宽、 源端和终端主机性能的限制。

    5、UDP使用尽最大努力交付,即不保证可靠交付, 因此主机不需要维持复杂的链接状态表(这里面有许多参数)。

    6、UDP是面向报文的。发送方的UDP对应用程序交下来的报文, 在添加首部后就向下交付给IP层。既不拆分,也不合并,而是保留这些报文的边界, 因此,应用程序需要选择合适的报文大小。

    我们经常使用**“ping”**命令来测试两台主机之间TCP/IP通信是否正常, 其实“ping”命令的原理就是向对方主机发送UDP数据包,然后对方主机确认收到数据包, 如果数据包是否到达的消息及时反馈回来,那么网络就是通的。

    ping命令是用来探测主机到主机之间是否可通信,如果不能ping到某台主机,表明不能和这台主机建立连接。ping命令是使用 IP 和网络控制信息协议 (ICMP),因而没有涉及到任何传输协议(UDP/TCP) 和应用程序。它发送icmp回送请求消息给目的主机。

    ICMP协议规定:目的主机必须返回ICMP回送应答消息给源主机。如果源主机在一定时间内收到应答,则认为主机可达。

    UDP的包头结构:

    源端口 16位

    目的端口 16位

    长度 16位

    校验和 16位

    小结TCP与UDP的区别:

    1、基于连接与无连接;

    2、对系统资源的要求(TCP较多,UDP少);

    3、UDP程序结构较简单;

    4、流模式与数据报模式 ;

    5、TCP保证数据正确性,UDP可能丢包;

    6、TCP保证数据顺序,UDP不保证。

    展开全文
  • tcp和udp的区别

    2019-05-30 14:55:11
    tcp和udp的区别 tcp面向连接,udp不连接 2.tcp能够保证数据的有效有序 3 .tcp能够超时重传,如果一定时间内,没有收到ACK回应,表示发送的数据包丢失,会重新发送 4 .tcp没有发送广播的功能,但是udp能发送广播 tcp...

    tcp和udp的区别

    1. tcp面向连接,udp不连接
      2.tcp能够保证数据的有效有序
      3 .tcp能够超时重传,如果一定时间内,没有收到ACK回应,表示发送的数据包丢失,会重新发送
      4 .tcp没有发送广播的功能,但是udp能发送广播
    2. tcp有流量限制,udp持续接收
    展开全文

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 6,271
精华内容 2,508
关键字:

tcp和udp的区别