精华内容
下载资源
问答
  • 分布式数据库(Tencent Distributed SQL,TDSQL)是腾讯打造的一款分布式数据库产品,具备强一致高可用、全球部署架构、分布式水平扩展、高性能、企业级安全等特性,同时提供智能 DBA、自动化运营、监控告警等配套...
  • 腾讯云TDSQL独立部署最佳实践
  • Mysql TDSQL

    2018-06-15 17:23:00
    TDSQL 转载于:https://www.cnblogs.com/Presley-lpc/p/9188272.html

    TDSQL

    转载于:https://www.cnblogs.com/Presley-lpc/p/9188272.html

    展开全文
  • TDSQL核心架构

    2021-09-23 11:30:17
    TDSQL系统总览 1.1 资源池 这张图从下往上看,首先最底层是资源池,属于IaaS层服务,可以是物理机,也可以是虚拟机,只要是给TDSQL添加机器就好,TDSQL是在一个机器的资源池上实现了数据库实例的管理。当然,这里...

    TDSQL系统总览

    file

    1.1 资源池

    这张图从下往上看,首先最底层是资源池,属于IaaS层服务,可以是物理机,也可以是虚拟机,只要是给TDSQL添加机器就好,TDSQL是在一个机器的资源池上实现了数据库实例的管理。当然,这里推荐的还是物理机,如果增加一层虚拟机服务,无疑在稳定性和性能方面都会引入一些隐患。

    1.2 存储节点

    从资源池再往上是存储节点。存储节点要强调的是TDSQL的两种存储形态,一种是Noshard数据库,一种是分布式数据库(也叫Shard版TDSQL)。简单来说,Noshard就是一个单机版的TDSQL,在MySQL的基础上做了一系列的改造和改良,让它支持TDSQL的一系列特性,包括高可用,数据强一致、7×24小时自动故障切换等。第二种是分布式数据库,具备水平伸缩能力。所以TDSQL对外其实呈现了两种形态,呈现一种非分布式形态,一种是分布式的形态。至于这两种形态的区别,或者说什么场景更适合于哪种数据库,后面我们有专门的章节去分析。

    1.3 计算节点

    再看计算节点。计算节点就是TDSQL的计算引擎,做到了计算层和存储层相分离。计算层主要是做一些SQL方面的处理,比如词法解、语法解析、SQL改写等。如果是分布式数据库形态,还要做分布式事务相关的协调,所以我们看到计算层不存储数据,只运行SQL方面的实时计算,所以它更偏CPU密集型。此外,TDSQL计算节点还具备OLAP的能力,对一些复杂的计算可以进行算法上的优化——什么时候该下推到存储引擎层,什么时候需要在计算层做汇总等,这是计算节点需要做的事情。

    1.4 赤兔运营管理平台

    再往上,是赤兔运营管理平台,如果说把下面这一套东西比作一个黑盒,我们希望有一个用户界面操纵这个黑盒,这个界面就是赤兔运营管理平台。通过这个平台,DBA可以操纵TDSQL后台黑盒,所以相当于是一套WEB管理系统。让所有DBA的操作都可以在用户界面上完成,而不需要登陆到后台,不需要关心计算节点是哪个,存储节点是哪个,或者怎么样管理它,要加一些节点或者减一些节点,或者把这个节点从哪里要迁到哪里……这些都可以通过界面化完成。DBA操作界面不容易出错,但如果登陆到后台很容易一个误操作,不小心把机器重启了,就可能会造成一定的影响。

    1.5 “扁鹊”智能DBA平台

    有了赤兔之外,为什么还有一个“扁鹊”智能DBA平台呢?可能正常情况下,我们机器是好的,但是,机器如果发生了故障,或者说哪天磁盘有坏块了,或者是IO性能越来越差……SSD其实有一个衰老的过程,到了后期的话,吞吐量和IOPS可能会有一定下降,导致数据库的响应速度变慢。这种情况如果DBA要排查,得先去看到是哪一个实例、涉及到哪一台机器、这个机器有什么问题、检测机器的健康状态……这些都是机械性的工作,有了扁鹊智能管理平台,当出现故障的时候就可以自动分析故障的原因,举个例子,可以找出是因为什么导致SQL变慢了,或者又是因为什么原因发生了主备切换,突然IO异常了或者其他什么原因导致机器故障。

    file

    此外,扁鹊智能DBA平台还有一个智能诊断系统,可以定期由DBA发起对实例进行的诊断。比如有些数据库实例,CPU常年跑得很高,其实是一些比较差的SQL导致的。这个时候扁鹊智能DBA系统,可以很方便地到用户实例上做巡检,得到一个健康状况图,并对它进行打分,发现这个实例比如他的CPU超用了,需要扩容,但是没有扩容,就会减分;然后其他表的索引没有建好,要减分……以此生成一个诊断报告。所以,有了扁鹊,再加上赤兔运营管理平台,DBA的工作其实是非常轻松的,可能每天只需要点几下按纽,然后就解决了一系列的麻烦,包括高可用,性能分析,锁分析等,完全把DBA从繁杂的工作中解放出来。

    此外,我们看到这里其实还有几个小的模块。调度系统,调度系统主要是负责整体的资源调度,比如说数据库实例的增加删除、过期作废,还有一些容量的调度,即扩容、缩容,还有一些多租户的管理。也就是说这是整个管理台的调度器。

    另外还有一个备份系统,这个是冷备中心,后面有一个专门的章节去讲,这里就不再赘述。此外,我们还提供了一些服务模块作为辅助,比如审计,还有数据库之间的迁移服务——我们TDSQL怎么能够帮助异地数据库迁进来,或者从TDSQL再迁出。此外,还包括数据校验、数据订阅、SQL防火墙、注入检测等安全方面的模块,以及一个辅助模块——帮助我们的DBA也好,用户也好,完成一些个性化的丰富的需求。

    以上是TDSQL系统总览。

    TDSQL架构模块及其特性

    我们再看一下核心架构。核心架构其实是上一个图的缩览,我们把核心的模块挑选出来。

    file

    首先用户的请求通过负载均衡发往SQL引擎。然后,SQL引擎作为计算接入层,根据这个SQL的要求从后端的存储节点去取数据。当然,无论是SQL引擎还是后端的数据库实例都存在一个元数据来管理调度。举个例子,计算引擎需要拿到一个路由,路由告诉SQL引擎,这个SQL该发往哪一个后端的数据节点,到底是该发往主节点还是发往备节点。所以我们引入了ZK(Zookeeper)来储存类似于路由这类元数据信息。当然ZK只是静态的存储元数据,维护和管理这些元数据信息,还需要有一套调度以及接口组件,这里是OSS、Manager/Schedule。所以我们这张图可以看到是TDSQL整体来说就分为三部分:管理节点、计算节点和存储节点。当然这里还有一个辅助模块,帮助完成一些个性化需求的,比如备份、消息队列,数据迁移工具等。另外,这里的负载均衡其实不是必需的,用户可以选用自身的硬件负载,也可以用LVS软负载,这个负载均衡根据实际的用户场景可自定义。

    了解了整体架构以后,我们继续再看一下每个节点的特性是什么、对机器的依赖程度如何,要求机器有哪些特性,等等。

    2.1 管理模块:轻松通过web界面管理整个数据库后台

    file

    先,我们要看的是管理模块。作为一个集群只搭建一套的管理模块,一般可以复用一组机器。同时,管理模块对机器的要求相对来说比较低,比如资源紧张的时候,我们用虚拟机就可以代替。在我们内部,一套管理模块承载最大的管理单集群近上万实例。

    管理模块包含前文说的几个关键模块:Zookeeper(ZK)、Scheduler、Manager、OSS和监控采集程序、赤兔管理控制台。那么它们是怎么联合工作的呢?首先,DBA用户在赤兔管理台——这一套WEB前台发起一个操作——点了一个按纽,这个按纽可能是对实例进行扩容,这个按纽会把这个https的请求转移到OSS模块,这个OSS模块有点像web服务器,它能接收web请求,但是它可以把这个转发到ZK。所以,OSS模块就是一个前端到后台的桥梁,有了OSS模块,整个后台的工作模块都可以跟前台、跟web界面绑定在一起。

    好,捕捉到这个请求之后,在ZK上创建一个任务节点,这个任务节点被调度模块捕获,捕获之后就处理任务。处理完任务,再把它的处理结果返回到ZK上。ZK上的任务被OSS捕获,最后也是https的请求,去查询这个任务,最后得到一个结果,返回给前端。

    这是一个纯异步的过程,但是有了这套管理模块,让我们可以轻松的通过web界面去管理整个TDSQL的后台。当然,这整个过程都有一个监控采集模块去采集,对整个流程的审计及状态进行获取。

    2.2 DB模块:数据库无损升级

    file

    DB模块,即数据节点,数据存取服务属于IO密集型的服务,因此,数据节点也是我们的存储节点,它对IO的要求比较高,一般建议配置SSD硬盘,最好是PCI-E的SSD。因为对数据库服务来说,CPU再高,如果IO跟不上,仍然是小马拉大车。比如只有1千的IOPS,CPU根本就跑不起来,用不起来。所以这里一般建议至少IPS要达到1万以上。

    我们再看一下SET的概念。SET就是数据库实例,一个SET包含数据库的——比如我们默认要求的是一主两备,一个Master节点和两个Slave节点。当然在DB节点上有一个Agent的模块。MySQL在执行中,我们要监控它的行为,以及进行操作。如果把这些东西做到MySQL里面为什么不可以呢?这其实存在一个问题,如果对数据节点进行升级,可能就要涉及到重启,一旦重启就影响用户的业务,影响服务。这个时候我们就考虑,在它上面加一个模块Agent,它来完成对所有集群对MySQL的操作,并且上报MySQL的状态。有了它之后,对TDSQL数据节点的大部分升级,都会转变为对Agent的升级,而升级Agent,对业务没有任何影响,这就实现了无损升级。相比于Agent我们对数据节点MySQL不会频繁升级,一般情况下一年、半年都不会动它。这是我们DB模块,也是存储节点。

    2.3 SQL引擎模块:分布式复杂SQL处理

    file

    接下来再看另外一个比较重要的模块:SQL引擎模块。SQL引擎处于计算层的位置,本身属于CPU密集型,所以我们在选机型上尽量要求CPU高一些。其次是内存,作为计算接入层,它要管理链接,如果是大量的短链接或者长链接,非常占内存,所以它对CPU和内存的要求比较高。此外,它本身不存储数据,也没有主备之分,所以对硬盘没有太大要求。

    我们看一下SQL引擎的特性。SQL引擎首先还是从ZK上拉取到元数据,作为SQL引擎,包括权限校验、读写分离,以及统计信息、协议模拟等相关的操作。

    可能有些人会问,其实这个SQL引擎岂不是一种中间件?其实并不是这样,SQL引擎如果是一个中间件,它都可以脱离MySQL。但是我们这个SQL引擎,需要做词法、语法分析,以及作为查询引擎等工作。而且在分布式的场景下,SQL引擎复杂的功能性就会凸显,比如要处理分布式事物,还要维护全局自增字段,保证多个数据、多个存储节点共享一个保证全局自增的序列;如果是分布式的话,要限制一些语法,包括词法和语法的解析;还有在一些复杂计算上,它还要做一些SQL下推,以及最后数据的聚合。所以SQL引擎还是一个相对来说比较复杂的模块,作为计算层,并不是一个简单的中间件那么简单。这就是一个SQL引擎。

    本文由博客一文多发平台 OpenWrite 发布!

    展开全文
  • TDSQL产品的培训讲义

    2020-12-16 18:11:01
    腾讯云TDSQ产品的培训讲义,详细介绍了TDSQL这款产品介绍,部署已经使用方面的问题,有需要的朋友可以下载学习。
  • TDSQL智能运维平台架构.pptx
  • 这场盛典正式官宣腾讯云数据库品牌升级,“企业级分布式数据库TDSQL”首次出现在大众眼前,并且在行业及用户内引起了重大关注,而后数据君就收到了用户各种各样的提问,问得最多的大概是下面三个问题: TBase和...

    昨天,腾讯云数据库2020年度盛典完美谢幕。这场盛典正式官宣腾讯云数据库品牌升级,“企业级分布式数据库TDSQL”首次出现在大众眼前,并且在行业及用户内引起了重大关注,而后数据君就收到了用户各种各样的提问,问得最多的大概是下面三个问题:

    TBase和CynosDB没了?之前的TDSQL和现在这个有什么不一样?

    我已经买了的产品现在怎么办?

    ……

    接下来,让我们一起回答这些问题,同时重新回顾这次品牌升级的背景及意义。

    问题一、TBase和CynosDB没了?

    TBase和CynosDB还在。

    腾讯云企业级分布式数据库TDSQL品牌升级后,共有三大产品系列,分别为分布式数据库TDSQL、分析型数据库TDSQL-A、云原生数据库TDSQL-C,将原**TDSQL、TBase、CynosDB产品统一整合成TDSQL。**TDSQL MySQL版为原TDSQL,TDSQL PostgreSQL版为原TBase OLTP版及HTAP版;TDSQL-A PostgreSQL 版为原TBase OLAP版,并新增 ClickHouse 版;TDSQL-C为原CynosDB。

    全新升级后的企业级分布式数据库TDSQL辅以能够融合公有云与私有云、连接传统IDC与云数据库的数据库SaaS工具DBBridge,和实现软硬一体融合的TDSQL一体机,共同构成性能与通用性兼得的产品能力族。

    所以,TBase和CynosDB还在,而且都会在新品牌下一直向前发展,为用户带来更好的使用体验。不过需要另外说明的是,目前TBase开源版依然叫做TBase,暂未进行更名。

    问题二、之前的TDSQL和现在这个有什么不一样?

    目前的数据库有着不同的类型和各自的特点,企业正常都是从业务需求出发,针对实际场景使用不同的数据库,通用和性能间似乎存在着天然的矛盾。同时,在未来,云原生也是数据库的趋势,Gartner预测到了2022年,75%以上的数据库都会跑在云上,综合来看,云原生可以实现按需使用,甚至没有扩容的概念、还能结合其他saas服务,实现高度自自治。

    因此,我们将TDSQL、TBase和CynosDB正式升级为腾讯云企业级分布式数据库TDSQL,全新升级后的TDSQL将在多元场景下实现多引擎共存,充分发挥各个引擎的特点及优势,实现极致的性能和通用。

    所以目前的企业级分布式数据库TDSQL是腾讯云数据库战略升级的产物,由TDSQL、TBase和CynosDB融合而成,集成了原TDSQL、TBase和CynosDB的优势,与之前主打金融级高可用的TDSQL不一样。

    问题三、我已经购买的产品怎么办?

    本次腾讯云数据库品牌升级是为了更好的发展,对于用户来说,仅产品有所改变,价格、选型等均没有变化,所有已经购买的产品和服务也不会受到影响。

    至今,腾讯云数据库已经有超过20款产品服务,超过一千次的迭代,服务超过一千家政务客户,两千家金融客户,支持五十万开发者,新的发布也是新的起点,希望未来能和各行各业一起创造无限的可能。

    本文由博客一文多发平台 OpenWrite 发布!

    展开全文
  • 腾讯云数据库TDSQL基于这样的考虑,实现了云化的审计能力,下面就让我们一起来看看具体的技术细节。三个无差别proxyIp,保证一个或者两个proxy故障时,剩余proxyIp正常工作用户无感知。旁路信息进入kafka时,对数据...
  • 腾讯计费平台部为了解决基于内存的NoSQL解决方案HOLD平台在应对多种业务接入时的不足,结合团队在MySQL领域多年应用和优化经验,最终在MySQL存储引擎基础上,打造一套分布式SQL系统TDSQL。本文是对该系统架构分析。...
  • TDSQL高可用集群部署方案.pptx
  • TDSQL高可用集群部署方案.pdf
  • TDSQL自动化运营体系概述.pptx
  • TDSQL自动化运营体系概述.pdf
  • TDSQL分布式金融级数据库架构.pptx
  • TDSQL分布式数据库核心架构解读.pptx
  • TDSQL分布式数据库核心架构解读.pdf
  • 分布式TDSQL的实践

    2021-09-23 11:38:43
    当业务涉及到分布式时就开启了TDSQL的另外一种形态。接下来我们就聊一聊分布式TDSQL跟单节点的TDSQL有什么不同,以及这种分布式架构下又是如何实现一系列的保障,同时如何做到对业务透明、对业务无感知。 分表,当...

    当业务涉及到分布式时就开启了TDSQL的另外一种形态。接下来我们就聊一聊分布式TDSQL跟单节点的TDSQL有什么不同,以及这种分布式架构下又是如何实现一系列的保障,同时如何做到对业务透明、对业务无感知。

    file

    分表,当在单机模式下,用户看到的一张逻辑表,其实也是一张物理表,存储在一个物理节点(物理机)上。在分布式形态下,用户看到的逻辑表的实际物理存储可能是被打散分布到不同的物理节点上。所以TDSQL分表的目标,希望做到对业务完全透明,比如业务只看到一个完整的逻辑表,他并不知道这些表其实已经被TDSQL均匀拆分到各个物理节点上。比如:之前可能数据都在一台机器上,现在这些数据平均分布在了5台机器上,但用户却丝毫没有觉察,这是TDSQL要实现的一个目标——在用户看来是完全的一张逻辑表,实际上它是在后台打散了的。

    这个表在后台如何去打散,如何去分布呢?我们希望对用户做到透明,做到屏蔽,让他不关心数据分布的细节。怎么将这个数据分布和打散呢?这就引出了一个概念:shardkey——是TDSQL的分片关键字,也就是说TDSQL会根据shardkey字段将这个数据去分散。

    file

    我们认为,shardkey是一个很自然的字段,自然地通过一个字段去将数据打散。举个例子,腾讯内部我们喜欢用QQ号作为一个shardkey,通过QQ号自动把数据打散,或者微信号;而一些银行类的客户,更喜欢用一些客户号、身份证号以及银行卡号,作为shardkey。也就是说通过一个字段自然而然把这个数据分散开来。我们认为引入shardkey后并不会增加额外的工作,因为首先用户是最了解自己得数据的,知道自己的数据按照什么字段均匀分布最佳,同时给用户自主选择分片关键字的权利,有助于从全局角度实现分布式数据库的全局性能最佳。

    所以这里可能有些人会想,是不是主键是最好的或者尽可能地分散?没错,确实是这样的,作为TDSQL的分片关键字越分散越好,要求是主键或者是唯一索引的一部分。确定了这个分片关键字后,TDSQL就可以根据这个分片关键字将数据均匀分散开来。比如这张图,我们按照一个字段做了分片之后,将1万条数据均匀分布在了四个节点上。

    既然我们了解了shardkey是一个分片关键字,那怎么去使用呢?这里我们就聊聊如何去使用。

    file

    举个例子,我们创建了TB1这个表,这里有若干个字段,比如说ID,从这个名字上来看就应该知道它是一个不唯一的,或者可以说是一个比较分散的值。我们看到这里,以“ID”作为分配关键字,这样六条数据就均匀分散到了两个分片上。当然,数据均匀分散之后,我们要求SQL在发往这边的都需要带上shardkey,也就是说发到这里之后可以根据对应的shardkey发往对应的分片。

    如果不带这个shardkey的话,它不知道发给哪个分片,就发给了所有分片。所以强调通过这样的改善,我们要求尽可能SQL要带上shardkey。带上shardkey的话,就实现了SQL的路由分发到对应的分片。

    讲完数据分片,我们再看一下数据的拆分。

    水平拆分

    file

    对于分布式来说,可能最初我们所有的数据都在一个节点上。当一个节点出现了性能瓶颈,需要将数据拆分,这时对我们TDSQL来说非常简单,在界面上的一个按纽:即一键扩容,它就可以将这个数据自动拆分。拆分的过程也比较容易理解,其实就是一个数据的拷贝和搬迁过程,因为数据本身是可以按照一半一半这样的划分的。

    比如最先是这么一份数据,我们需要拆成两份,需要把它的下半部分数据拷到另外一个节点上。这个原理也比较简单,就是一个数据的拷贝,这里强调的是在拷贝的过程中,其实业务是不受任何影响的。最终业务只会最终有一个秒级冻结。

    为什么叫秒级冻结?因为,最后一步,数据分布到两个节点上涉及到一个路由信息变更,比如原来的路由信息要发到这个分片,现在改了之后需要按照划分,上半部分要发给一个分片,下半部分发给另一个分片。我们在改路由的这个过程中,希望这个数据是没有写入相对静止的。

    当然改路由也是毫秒级别完成,所以数据拆分时,真正最后对业务的影响只有不到1s,并且只有在最后改路由的冻结阶段才会触发。

    讲完数据拆分,我们开始切入分布式里面最难解决的这个问题,分布式事务。

    健壮、可靠的分布式事务

    单节点的事务是很好解决的,但是在分布式场景下想解决分布式事务还是存在一定的困难性,它需要考虑各种各样复杂的场景。

    其实分布式事务实现不难,但首要是保证它的健壮性和可靠性,能应对各种各样的复杂场景。比如说涉及到分布式事务的时候,有主备切换、节点宕机……在各种容灾的测试环境下,如何保证数据总帐是平的,不会多一分钱也不会少一分钱,这是分布式事务需要考虑的。

    TDSQL分布式事务基于拆的标准两阶段提交实现,这也是业内比较通用的方法。我们看到SQL 引擎作为分布式事务的发起者,联合各个资源节点共同完成分布式事务的处理。

    file

    分布式事务也是根据shardkey来判断,具体来说,对于SQL引擎读发起一个事务,比如第一条SQL是改用户ID为A的用户信息表。第二条SQL是插入一个用户ID为A的流水表,这两张表都以用户ID作为shardkey。我们发现这两条SQL都是发往一个分片,虽然是一个开启的事务,但是发现它并没有走分布式事务,它实际还是限制在单个分片里面走了一个单节点的事务。当然如果涉及到转帐:比如从A帐户转到B帐户,正好A帐户在第一个分片,B帐户是第二个分片,这样就涉及到一个分布式事务,需要SQL引擎完成整个分布式事务处理。

    分布式事务是一个去中心化的设计,无论是SQL引擎还是后端的数据节点,其实都是具备高可用的同时支持线性扩展的设计。分布式事务比较复杂,单独讲的话可能能讲一门课,这里面涉及的内容非常多,比如两级段提交过程中有哪些异常场景,失败怎么处理,超时怎么处理,怎么样保证事务最终的一致性等等。这里不再深入,希望有机会能单独给大家分享这块内容。

    所以,这里只对分布式事务做一个总结,我们不再去探讨它的细节:

    file

    首先是基于两阶段提交,我们在MySQL原生XA事务的基础上做了大量的优化和BUG修复。比如说原生的XA在主备切换时会发生数据不一致和丢失,TDSQL在这个基础上做了大量的修复,让XA事务能够保证数据一致性。

    第二个是强劲的性能。起初我们引进原生分布式事务的时候,分布式事务的性能还达不到单节点的一半。当然经过一系列的优化调优,最后我们的性能损耗是25%,也就是说它能达到单节点75%的性能。

    第三个是对业务透明,因为对业务来说其实根本无需关心到底是分布式还是非分布式,仅需要按照正常业务开启一个事务使用即可。

    第四个是完备的异常容错。分布式事务是否健壮也需要考虑容错性的能力。

    第五个是全局的锁检测。对于分布式环境下锁检测也是不可或缺的。TDSQL提供全局视角的分布式死锁检测,可清晰查看多个分布式事务之间的锁等待关系。

    第六点是完全去中心化。无论是SQL引擎还是数据节点,都是支持高可用并且能够线性扩展。

    以上是TDSQL分布式事务的总结。如果说用户要求保持跟MySQL的高度兼容性,那可能Noshard版TDSQL更适合。但是如果对于用户来说,单节点已经达到资源的瓶颈,没有办法在单节点下做数据重分布或者扩容,那必须选择Shard模式。但是在Shard模式下,我们对SQL有一定的约束和限制,后面会有专门的一门课去讲分布式TDSQL对SQL是如何约束的。

    我们看到无论是Noshard还是Shard,都具备高可用、数据强一致、自动容灾的能力。

    file

    同时TDSQL也支持Noshard到Shard的迁移,可能早期我们规划的Noshard还可以承载业务压力,但是随着业务的突增已经撑不住了,这个时候需要全部迁到Shard,那么TDSQL也有完善的工具帮助用户快速进行数据迁移。

    本文由博客一文多发平台 OpenWrite 发布!

    展开全文
  • Page 27 腾讯分布式数据库TDSQL金融级能力的架构原理概述 目录 TDSQL是什么腾讯如何打造一款金融级分布式数据库 我们先初步了解TDSQL产品以及它的适用场景第一章包括四个方面使用场景发展历程核心特性以及兼容性 ...
  • TDSQL异构数据同步与迁移方案.pptx
  • TDSQL异构数据同步与迁移方案.pdf
  • 金融云分布式数据库TDSQL技术架构.pptx
  • TDSQL数据库水平扩容方案实践.pdf
  • TDSQL分布式金融级数据库技术介绍.pptx
  • TDSQL在银行的大规模实践.docx
  • 金融数据库TDSQL

    2020-07-16 18:57:52
    tdsql 三层: 网关层: 路由表 + 解析mysql(类似无状态的server) 存储层:真实的mysql,添加agent用以容灾备份数据切换 控制层:zookeeper用以存储状态,加一个keeper用以进行调度 扩容: 水平扩容 垂直扩容 谁扩...
  • 腾讯金融级数据库TDSQL分析:2015年,TDSQL正式进驻腾讯云,并更名为腾讯云金融级数据库CDB for TDSQL,开始面向腾讯之外的企业提供金融级云数据库服务。 架构 系统由三个模块组成:Sc...|下载前务必先预览,自己验证...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 1,835
精华内容 734
关键字:

tdsql