udp 订阅
Internet 协议集支持一个无连接的传输协议,该协议称为用户数据报协议(UDP,User Datagram Protocol)。UDP 为应用程序提供了一种无需建立连接就可以发送封装的 IP 数据包的方法。RFC 768 [1]  描述了 UDP。Internet 的传输层有两个主要协议,互为补充。无连接的是 UDP,它除了给应用程序发送数据包功能并允许它们在所需的层次上架构自己的协议之外,几乎没有做什么特别的事情。面向连接的是 TCP,该协议几乎做了所有的事情。 [2] 展开全文
Internet 协议集支持一个无连接的传输协议,该协议称为用户数据报协议(UDP,User Datagram Protocol)。UDP 为应用程序提供了一种无需建立连接就可以发送封装的 IP 数据包的方法。RFC 768 [1]  描述了 UDP。Internet 的传输层有两个主要协议,互为补充。无连接的是 UDP,它除了给应用程序发送数据包功能并允许它们在所需的层次上架构自己的协议之外,几乎没有做什么特别的事情。面向连接的是 TCP,该协议几乎做了所有的事情。 [2]
信息
外文名
User Datagram Protocol
特    点
无连接、不可靠、快速传输
类    别
传输层协议
用    途
发送IP数据包
中文名
用户数据报协议
基    础
IP数据包服务上增加一点功能
UDP协议简介
UDP 是User Datagram Protocol的简称, 中文名是用户数据报协议,是OSI(Open System Interconnection,开放式系统互联) 参考模型中一种无连接的传输层协议,提供面向事务的简单不可靠信息传送服务,IETF RFC 768 [1]  是UDP的正式规范。UDP在IP报文的协议号是17。UDP协议与TCP协议一样用于处理数据包,在OSI模型中,两者都位于传输层,处于IP协议的上一层。UDP有不提供数据包分组、组装和不能对数据包进行排序的缺点,也就是说,当报文发送之后,是无法得知其是否安全完整到达的。UDP用来支持那些需要在计算机之间传输数据的网络应用。包括网络视频会议系统在内的众多的客户/服务器模式的网络应用都需要使用UDP协议。UDP协议从问世至今已经被使用了很多年,虽然其最初的光彩已经被一些类似协议所掩盖,但即使在今天UDP仍然不失为一项非常实用和可行的网络传输层协议。许多应用只支持UDP,如:多媒体数据流,不产生任何额外的数据,即使知道有破坏的包也不进行重发。当强调传输性能而不是传输的完整性时,如:音频和多媒体应用,UDP是最好的选择。在数据传输时间很短,以至于此前的连接过程成为整个流量主体的情况下,UDP也是一个好的选择。 [3]  UDP是OSI参考模型中一种无连接的传输层协议,它主要用于不要求分组顺序到达的传输中,分组传输顺序的检查与排序由应用层完成 [4]  ,提供面向事务的简单不可靠信息传送服务。UDP 协议基本上是IP协议与上层协议的接口。UDP协议适用端口分别运行在同一台设备上的多个应用程序。UDP提供了无连接通信,且不对传送数据包进行可靠性保证,适合于一次传输少量数据,UDP传输的可靠性由应用层负责。常用的UDP端口号有:53(DNS)、69(TFTP)、161(SNMP),使用UDP协议包括:TFTP、SNMP、NFS、DNS、BOOTP。UDP报文没有可靠性保证、顺序保证和流量控制字段等,可靠性较差。但是正因为UDP协议的控制选项较少,在数据传输过程中延迟小、数据传输效率高,适合对可靠性要求不高的应用程序,或者可以保障可靠性的应用程序,如DNS、TFTP、SNMP等。为了在给定的主机上能识别多个目的地址,同时允许多个应用程序在同一台主机上工作并能独立地进行数据包的发送和接收,设计用户数据报协议UDP。  UDP使用底层的互联网协议来传送报文,同IP一样提供不可靠的无连接数据包传输服务。它不提供报文到达确认、排序、及流量控制等功能。UDP Helper可以实现对指定UDP端口广播报文的中继转发,即将指定UDP端口的广播报文转换为单播报文发送给指定的服务器,起到中继的作用。
收起全文
精华内容
下载资源
问答
  • TCP和UDP的最完整的区别

    万次阅读 多人点赞 2016-08-04 11:30:30
    TCP和UDP两种协议的比较汇总

    欢迎访问个人网站:码到城攻

    TCP UDP
    TCP与UDP基本区别
      1.基于连接与无连接
      2.TCP要求系统资源较多,UDP较少; 
      3.UDP程序结构较简单 
      4.流模式(TCP)与数据报模式(UDP); 
      5.TCP保证数据正确性,UDP可能丢包 

      6.TCP保证数据顺序,UDP不保证 
      
    UDP应用场景:
      1.面向数据报方式
      2.网络数据大多为短消息 
      3.拥有大量Client
      4.对数据安全性无特殊要求

      5.网络负担非常重,但对响应速度要求高
     
    具体编程时的区别
       1.socket()的参数不同 
       2.UDP Server不需要调用listen和accept 
       3.UDP收发数据用sendto/recvfrom函数 
       4.TCP:地址信息在connect/accept时确定 
       5.UDP:在sendto/recvfrom函数中每次均 需指定地址信息 
       6.UDP:shutdown函数无效

     
    编程区别
       通常我们在说到网络编程时默认是指TCP编程,即用前面提到的socket函数创建一个socket用于TCP通讯,函数参数我们通常填为SOCK_STREAM。即socket(PF_INET, SOCK_STREAM, 0),这表示建立一个socket用于流式网络通讯。 
       SOCK_STREAM这种的特点是面向连接的,即每次收发数据之前必须通过connect建立连接,也是双向的,即任何一方都可以收发数据,协议本身提供了一些保障机制保证它是可靠的、有序的,即每个包按照发送的顺序到达接收方。 

      而SOCK_DGRAM这种是User Datagram Protocol协议的网络通讯,它是无连接的,不可靠的,因为通讯双方发送数据后不知道对方是否已经收到数据,是否正常收到数据。任何一方建立一个socket以后就可以用sendto发送数据,也可以用recvfrom接收数据。根本不关心对方是否存在,是否发送了数据。它的特点是通讯速度比较快。大家都知道TCP是要经过三次握手的,而UDP没有。 


    基于上述不同,UDP和TCP编程步骤也有些不同,如下:

    TCP: 
    TCP编程的服务器端一般步骤是: 
      1、创建一个socket,用函数socket(); 
      2、设置socket属性,用函数setsockopt(); * 可选 
      3、绑定IP地址、端口等信息到socket上,用函数bind(); 
      4、开启监听,用函数listen(); 
      5、接收客户端上来的连接,用函数accept(); 
      6、收发数据,用函数send()和recv(),或者read()和write(); 
      7、关闭网络连接; 
      8、关闭监听; 

    TCP编程的客户端一般步骤是: 
      1、创建一个socket,用函数socket(); 
      2、设置socket属性,用函数setsockopt();* 可选 
      3、绑定IP地址、端口等信息到socket上,用函数bind();* 可选 
      4、设置要连接的对方的IP地址和端口等属性; 
      5、连接服务器,用函数connect(); 
      6、收发数据,用函数send()和recv(),或者read()和write(); 
      7、关闭网络连接;

    UDP:
    与之对应的UDP编程步骤要简单许多,分别如下: 
      UDP编程的服务器端一般步骤是: 
      1、创建一个socket,用函数socket(); 
      2、设置socket属性,用函数setsockopt();* 可选 
      3、绑定IP地址、端口等信息到socket上,用函数bind(); 
      4、循环接收数据,用函数recvfrom(); 
      5、关闭网络连接; 

    UDP编程的客户端一般步骤是: 
      1、创建一个socket,用函数socket(); 
      2、设置socket属性,用函数setsockopt();* 可选 
      3、绑定IP地址、端口等信息到socket上,用函数bind();* 可选 
      4、设置对方的IP地址和端口等属性; 
      5、发送数据,用函数sendto(); 
      6、关闭网络连接;

    TCP和UDP是OSI模型中的运输层中的协议。TCP提供可靠的通信传输,而UDP则常被用于让广播和细节控制交给应用的通信传输。

    UDP补充:
       UDP不提供复杂的控制机制,利用IP提供面向无连接的通信服务。并且它是将应用程序发来的数据在收到的那一刻,立刻按照原样发送到网络上的一种机制。即使是出现网络拥堵的情况下,UDP也无法进行流量控制等避免网络拥塞的行为。此外,传输途中如果出现了丢包,UDO也不负责重发。甚至当出现包的到达顺序乱掉时也没有纠正的功能。如果需要这些细节控制,那么不得不交给由采用UDO的应用程序去处理。换句话说,UDP将部分控制转移到应用程序去处理,自己却只提供作为传输层协议的最基本功能。UDP有点类似于用户说什么听什么的机制,但是需要用户充分考虑好上层协议类型并制作相应的应用程序。

    TCP补充:
      TCP充分实现了数据传输时各种控制功能,可以进行丢包的重发控制,还可以对次序乱掉的分包进行顺序控制。而这些在UDP中都没有。此外,TCP作为一种面向有连接的协议,只有在确认通信对端存在时才会发送数据,从而可以控制通信流量的浪费。TCP通过检验和、序列号、确认应答、重发控制、连接管理以及窗口控制等机制实现可靠性传输。


    TCP与UDP区别总结:
    1、TCP面向连接(如打电话要先拨号建立连接);UDP是无连接的,即发送数据之前不需要建立连接
    2、TCP提供可靠的服务。也就是说,通过TCP连接传送的数据,无差错,不丢失,不重复,且按序到达;UDP尽最大努力交付,即不保   证可靠交付
    3、TCP面向字节流,实际上是TCP把数据看成一连串无结构的字节流;UDP是面向报文的
      UDP没有拥塞控制,因此网络出现拥塞不会使源主机的发送速率降低(对实时应用很有用,如IP电话,实时视频会议等)
    4、每一条TCP连接只能是点到点的;UDP支持一对一,一对多,多对一和多对多的交互通信
    5、TCP首部开销20字节;UDP的首部开销小,只有8个字节
    6、TCP的逻辑通信信道是全双工的可靠信道,UDP则是不可靠信道

    展开全文
  • Linux| |对于UDP的学习

    万次阅读 多人点赞 2019-01-07 08:51:10
    UDP # 前序 UDP(用户数据报协议)没有连接的,是面向数据报的,是不可靠 # 套接字 就是IP地址+端口号 IP地址:4字节 端口号:2字节,也就是说范围是0~65536 端口号分为 知名端口号 0--1023...

    UDP


    # 前序

    UDP(用户数据报协议)没有连接的,是面向数据报的,是不可靠

    # 套接字

    就是IP地址+端口号

    IP地址:4字节

    端口号:2字节,也就是说范围是0~65535

    • 端口号分为

    • 知名端口号

      • 0--1023:http,ssh,ftp,telnet等一些协议端口号都是固定的,对于操作系统来说是不能对其进行分配的

      • 一些固定的端口号

      1. ssh服务器,使用22端口

      2. ftp服务器,使用21端口

      3. telnet服务器,使用23端口

      4. http服务器,使用80端口

      5. https服务器,使用443端口

    • 操作系统动态分配的端口号

      • 客户端服务器的端口号,这个范围的端口号操作系统可以对其进行分配

    • 查看端口号

    • less /etc/services
       //就可以查看Linux下所有的端口号了

       

    IP地址的理解:

    • IP地址用来标识一个主机

    端口号的理解:

    • 端口号就是用来告诉操作系统要对于那一个进程进行操作,也就是说端口号就是用来标识一个进程

    • 一个端口号只可被一个进程所占用,但是一个进程可以拥有多个端口号,也就是进程和端口号是一对多的关系

    • 当我们写一个程序使用端口号的时候,要避开这些知名端口号

    【问题】

    1. 一个进程是否可以bind多个端口号呢?

      • 可以,因为一个进程可以打开多个文件描述符,而每一个文件描述符都对应着一个端口号,所以一个进程可以绑定多个端口号

    2. 一个端口号是否可以被多个进程bind?

      • 不可以

      • 如果一个进程先绑定一个端口号,然后再fork一个子进程,这样的话就实现了多个进程绑定一个端口号,但是不同的进程绑定同一个端口号是不可以

      • TIME_WAIT状态,服务器不能立即重启也说明不用进程不能同时绑定同一个端口号

    3. 多个进程可以监听同一个端口号吗?

      • 可以。监听之前要进行创建套接字->绑定ip::端口号->监听。我们可以在bind之前使用setsockopt函数,设置套接字选项,其中就包括REUSEADDR这个选项,表明多个进程可以复用bind函数中指定的地址和端口号

    所以套接字就可以准确的标识一台主机上的一个进程,从而完成计算机之间的通信

    计算机之间的通信:

    • 主机A的某个进程与主机B上的另一个进程进行通信

     

    # 网络字节序转换

    对于数据在网络中传输的时候有着自己遵循的传输规则大端传输

    对于主机上的数据的传输序列有着两种:

    • 大端:即高位字节序放在低地址上

    • 小端:即低位字节序放在低地址上

    • 传输:均是先传输低地址上的数据然后是高地址上的数据

    所以对于主机上的数据传输的时候传输到网络上的时候有可能导致数据错误(例如主机上是小端的时候,所以需要进行转换)

    转换函数:

    #include <arpa/inet.h>
    ​
    uint32_t htonl(uint32_t hostlong);
    uint16_t htons(uint16 hostshort);
    uint32_t ntohl(uint32_t netlong);
    uint16_t ntohs(uint16_t netshort);

    h:表示主机host name

    n:表示网络network

    l:表示4字节long

    s:表示2字节short

     

    # 地址转换函数

    • 字符串转化为in_addr

      • in_addr_t inet_addr(const char* strptr)

    • in_addr转化为字符串

      • char* inet_ntoa(struct in_addr inaddr)

      • 具有不可重入性,也就是不可多次调用,因为该函数自己在静态区开辟一块空间用来存放IP地址字符串的

     

    # UDP协议

    UDP协议端格式

    插图:UDP协议端格式

    • 16为UDP长度,表示整个数据报(UDP首部+UDP数据)的最大长度(64KB)

    • 检验和:如果校验和出错,就会直接丢弃(检验的是把首部和数据部分一起都检验)

      • 校验值首先在数据发送方通过特殊的算法计算得出,在传递到接收方之后,还要在重新计算。如果某个数据报在传输过程中被第三方篡改或者由于线路噪音等原因受到损坏,发送和接收方的校验计算值将不会相符,由此UDP协议可以检验是否出错。

    • 源端口号:在对方回信是选用,不需要时可用全0

    • 目的端口号:在终点交付报时必须要用到

    • 长度:UDP用户数据报的长度,其最小值是8(仅有首部)

    UDP的特点

    • 无连接:直到对端的IP和端口号就直接进行传输,不需要建立连接

    • 不可靠:没有确认机制,没有重传机制;因为没有网络故障该段无法发送到对方,UDP协议层也不会给应用层返回任何错误信息

    • 面向数据报:不能够灵活的控制读写数据的次数和数量

    • 控制选项较少,数据传输过程中延迟小,数据传输效率高

    面向数据报

    • 应用层交给UDP多长的报文,UDP原样发送,既不会拆分也不会合并

    • 例:用UDP传输100个字节的数据

      • 如果发送端调用一次sendto,发送100个字节。那么接收端也必须调用对应的一次recvfrom,接收100字节;而不能循环调用10次recvfrom,每次发送10个字节

    UDP的缓存区

    • UDP没有发送缓存区,调用sendto之后会直接交给内核,由内核·将数据传给网络层协议进行后续的传输动作。因为UDP是不面向连接的,所以没有重发机制,也就不需要发送缓存区将已经发送的数据保存下来为了发送失败进行重传做准备

    • UDP具有接收缓存区。但是这个接收缓存区不能保证收到的UDP报的顺序和发送UDP报的顺序一致;如果缓存区满了,在到达的UDP数据就会被丢弃

    UDP的Socket既能读,也能写,全双工

    UDP的使用注意事项

    • UDP协议首部中有一个16位的最大长度,也就是说一个UDP能传输的数据的最大长度是64K(包含UDP首部)。但是64K在当今的互联网环境下,是一个非常小的数字。如果我们需要传输的数据超过64K,就需要应用层手动的分包,多次发送,并在接收端拼装

    • UDP首部中校验和的计算方法有些特殊。在计算校验和时,要在UDP用户数据报之前增加12个字节的伪首部

    • 伪首部既不向下传输也不想上递送,而仅仅是为了计算校验和

    • 与IP数据报的校验和只检验IP数据报的首部不同,UDP的校验和是把首部和数据部分一起都检验

    伪首部:

    插图:伪首部

    基于UDP的应用层的协议

    • NFS:网络文件系统

    • TFTP:简单文件传输文件协议

    • DHCP:动态主机配置协议

    • DNS:域名解析协议

    面试题用UDP实现可靠传输?

    参考TCP的可靠性机制,在应用层实现类似的逻辑

    • 引用序列号,保证数据顺序

    • 引入确认应答,确保对端收到了数据

    • 引入超时重传,如果隔一段时间没有应答,就重发数据

     

    1. 对于socket函数的使用

    1.1 函数原型

    int socket(int domain, int type, int protocol);
    ​
    domain: 领域
        AF_INET:IPV4
        AF_INET6:IPV6
    type: 类型
        SOCK_STREAM
        SOCK_DGARM
    protocol: 协议

    1.2 函数的作用

    在通信领域中创建一个未被绑定的套接字,并且返回一个文件描述符,可以在以后对套接字进行操作的函数调用中使用

     

    2. 对于bind函数的使用

    2.1 函数原型

    int bind(int socket, const struct sockaddr* address, socklen_t address_len);

    2.2. 函数的作用

    该函数采用先前创建好的套接字来对于IP地址以及端口号进行绑定,也就是表示该套接字可以标识出在一个网络中一台确定的主机并且主机中的进程

     

    3. 对于recvfrom函数的使用

    3.1 函数原型

    ssize_t recvfrom(int socket, void* restrict buffer, size_t length, 
                     int flags, struct sockaddr* restrict address, 
                    socklen_t* restrict address_len);
    ​
    socket:要接受那一个套接字的消息
    buffer:用来接收消息的缓存区
    length:接收的消息的长度
    flags:类型
    address:空指针或者存储发送信息的sockaddr结构
    addless_len:指定地址参数指向的sockaddr结构的长度
    3.2 函数的作用

    3.2 函数的作用  

    用来接收从socket套接字发送来的消息。该套接字的sockaddr结构也知道

     

    4. 对于sendto函数的使用

    4.1 函数原型

    ssize_t recvfrom(int socket, const void* message, size_t length, 
                     int flags, const struct sockaddr* dest_addr, 
                    socklen_t* dest_len);

    4.2 函数的作用

    该函数是socket套接字从dest_addr出接收消息

     

    5. 扩展知识

    5.1 netstat

    netstat是一个用来监控TCP/IP网络非重要工具

    语法:netstat [选项]

    功能:查看网络状态

    选项:

    • -a,显示所有连线的Socket

    • -c,持续列出网络状态

    • -n,直接使用ip地址,而不通过域名服务器,也就是显示为数字

    • -l,显示监控中的服务器的Socket,仅列出监听(Listen)状态下的Socket

    • -p,显示正在使用Socket的程序的识别码和名称(PID/Program name)

    • -t,显示TCP传输协议的连线状况

    • -u,显示UDP传输协议的连线状况

    • -v,显示指令执行过程

    • -V,显示版本信息

    • -x,显示UNIX传输协议的连线状况

    • -s,显示网络工作信息统计表

    • -h,在线帮助

     

    5.2 pidof

    查看服务器进程id是非常方面

    语法:pisdof [进程名]

    功能:通过进程名,查看进程id

     

    5.3 scp命令

    基于ssh登录进行的网络安全的远程文件拷贝命令

    例:要将自己当前路径下的clinet文件发送到主机IP为192.168.153.140的home目录下

    scp ./clinet root@192.168.153.140:/home

     

     

    5.4 关于防火墙的命令

    • 启动:systemctl start firewalld

    • 关闭:systemctl stop firewalld

    • 查看状态:systemctl status firewalld

    • 开机禁用:systemctl disable firewalld

    • 开机启用:systemctl enable firewalld

    # 对于UDP书写服务器的思路

    由于UDP是无连接的,所以对于两个处于同一局域网下计算机的进程之间通信,所以是不需要两台计算机之间的进程进行连接的,对于UDP使用的接口是需要包含知道从哪里接收消息的,要发送消息到哪里的。

    • 实现本地通信

      • 服务器

        • 只需要服务器创建一个套接字

        • 使该套接字对于本地地址(127.0.0.1)进行绑定,并且绑定一个端口号(1024--65535)就行了

          • 绑定本地地址是为了对于本地计算机的两个进程进程通信,而绑定端口号是为了绑定一个进程,是为了对于客户端进行发送消息到服务器的时候,可以找到服务器

        • 然后就接受客户端发来的消息

        • 对于客户端的消息进行处理然后就可以再次将处理后的消息进行返回

        • 插图:服务器流程

      • 客户端

        • 绑定一个套接字

          • 为了绑定一个进程,可以和服务器进行通信,将消息发送过去的时候要让服务器知道是哪一个进程再和他进程通信

        • 客户端只需要向服务器发送消息

        • 然后再次从客户端接收消息就好了,不需要考虑要进行连接

        • 插图:客户端流程

    • 实现处于同一局域网下的不同主机间进行通信

      • 服务器

        • 和本地通信的一致,只是对于套接字绑定的ip地址不一样了

        • 也对于套接字要绑定该局域网的ip地址以及一个端口号不需要在绑定本地地址(127.0.0.1)

          • 这样的话处于同一局域网下的计算机的进程就可以进行通信了

      • 客户端

        • 对于客户端来说没有任何改变,仍然是只需要知道服务器的ip和端口号就行了

     

    # 对于UDP服务器要注意的问题

    • 启动客户端

      • 启动客户端的时候必须给客户端输入一个ip地址和端口号,这个ip地址和端口号也就是要知道客户端要发送消息给哪一个服务器进行发送

    • 启动服务器

      • 必须要给服务器绑定一个ip地址和端口号,也就是要注意该服务器处于该计算机上的哪一个进程上

    展开全文
  • UDP

    千次阅读 2020-03-11 21:57:25
    UDP 是一个简单的传输层协议,应用进程往一个UDP套接字写入一个消息,该消息随后被封装到一个UDP数据包,该UDP数据报进而又被封装到一个IP数据报,然后发送到目的地。UDP不保证UDP数据会达到其最终目的地,不保证...

         UDP 是一个简单的传输层协议,应用进程往一个UDP套接字写入一个消息,该消息随后被封装到一个UDP数据包,该UDP数据报进而又被封装到一个IP数据报,然后发送到目的地。UDP不保证UDP数据会达到其最终目的地,不保证各个数据报的先后顺序跨网络后保持不变,也不保证每个数据包只能达到一次。

        我们使用UDP进行网络编程所遇到的问题是它缺乏可靠性。如果一个数据报达到了其最终的目的地,但是检验和检测发现有错误,或者该数据报在网络传输中被丢弃了,它就无法投递UDP套接字,也不会被源端自动重传。如果想要确保一个数据包达到其目的地。可以往应用程序填写一大堆的特性:来自端的确认、本端的超时与重传等。

       每个UDP数据包都有一个长度。如果一个数据报正确达到其目的地,那么该数据包的长度将随数据一道传递给接收端应用进程。

       UDP提供无连接的服务,因为UDP客户端于服务器之间不必存在任何长期的关系。举例来说,一个UDP客户端可以创建一个套接字并发送一个数据包给一个给定的服务器,然后立即用一个套接字发送另一个数据报给另一个服务器。同样的,一个UDP服务器可以用同一个UDP套接字从若干个不同的客户端接受数据报,每个客户端一个数据报。

     

    展开全文
  • TCP 和 UDP 的区别

    万次阅读 多人点赞 2018-08-04 21:57:42
    UDP TCP TCP 的三次握手 TCP 四次挥手 累计确认 顺序问题和丢包问题 流量控制的问题 拥塞控制的问题 总结及面试问题 前言 前端的面试中经常问的 TCP 和 UDP 的区别,网上也有好多内容,比如 TCP 和 ...

    前言

    前端的面试中经常问的 TCP 和 UDP 的区别,网上也有好多内容,比如

    TCP 和 UDP 的区别

    • TCP 是面向连接的,UDP 是面向无连接的
    • UDP程序结构较简单
    • TCP 是面向字节流的,UDP 是基于数据报的
    • TCP 保证数据正确性,UDP 可能丢包
    • TCP 保证数据顺序,UDP 不保证

    之前也因为面试的原因了解过一下,但是面试官又问了为什么 TCP 是可靠传输,一下就露馅了,说不出来了,然后这两天就仔细了解了一下这方面的内容,还专门订阅了极客时间的趣谈网络协议,因此,这篇文章主要基于趣谈网络协议和自己的理解。

    1. UDP

    要想理解 TCP 和 UDP 的区别,首先要明白什么是 TCP,什么是 UDP

    TCP 和 UDP 是传输层的两个协议

    我们来看一下 UDP 的包头
    UDP 包头
    由上图可以看出,UDP 除了端口号,基本啥都没有了。如果没有这两个端口号,数据就不知道该发给哪个应用。

    所以 UDP 就像一个小孩子,特别简单,有如下三个特点

    UDP 的特点

    • 沟通简单,不需要大量的数据结构,处理逻辑和包头字段
    • 轻信他人。它不会建立连接,但是会监听这个地方,谁都可以传给它数据,它也可以传给任何人数据,甚至可以同时传给多个人数据。
    • 愣头青,做事不懂变通。不会根据网络的情况进行拥塞控制,无论是否丢包,它该怎么发还是怎么发

    因为 UDP 是"小孩子",所以处理的是一些没那么难的项目,并且就算失败的也能接收。基于这些特点的话,UDP 可以使用在如下场景中

    UDP 的主要应用场景

    • 需要资源少,网络情况稳定的内网,或者对于丢包不敏感的应用,比如 DHCP 就是基于 UDP 协议的。
    • 不需要一对一沟通,建立连接,而是可以广播的应用。因为它不面向连接,所以可以做到一对多,承担广播或者多播的协议。
    • 需要处理速度快,可以容忍丢包,但是即使网络拥塞,也毫不退缩,一往无前的时候

    基于 UDP 的几个例子

    • 直播。直播对实时性的要求比较高,宁可丢包,也不要卡顿的,所以很多直播应用都基于 UDP 实现了自己的视频传输协议
    • 实时游戏。游戏的特点也是实时性比较高,在这种情况下,采用自定义的可靠的 UDP 协议,自定义重传策略,能够把产生的延迟降到最低,减少网络问题对游戏造成的影响
    • 物联网。一方面,物联网领域中断资源少,很可能知识个很小的嵌入式系统,而维护 TCP 协议的代价太大了;另一方面,物联网对实时性的要求也特别高。比如 Google 旗下的 Nest 简历 Thread Group,推出了物联网通信协议 Thread,就是基于 UDP 协议的

    还有一些,但是写的太多了也记不住,所以主要记住这几个就够了

    2. TCP

    首先是 TCP 的包头格式
    TCP 包头

    TCP 的包头有哪些内容,分别有什么用

    • 首先,源端口和目标端口是不可少的。
    • 接下来是包的序号。主要是为了解决乱序问题。不编好号怎么知道哪个先来,哪个后到
    • 确认序号。发出去的包应该有确认,这样能知道对方是否收到,如果没收到就应该重新发送,这个解决的是不丢包的问题
    • 状态位。SYN 是发起一个链接,ACK 是回复,RST 是重新连接,FIN 是结束连接。因为 TCP 是面向连接的,因此需要双方维护连接的状态,这些状态位的包会引起双方的状态变更
    • 窗口大小,TCP 要做流量控制,需要通信双方各声明一个窗口,标识自己当前的处理能力。

    通过对 TCP 头的解析,我们知道要掌握 TCP 协议,应该重点关注以下问题:

    • 顺序问题
    • 丢包问题
    • 连接维护
    • 流量控制
    • 拥塞控制

    2.1 TCP 的三次握手

    所有的问题,首先都要建立连接,所以首先是连接维护的问题

    TCP 的建立连接称为三次握手,可以简单理解为下面这种情况

    A:您好,我是 A
    B:您好 A,我是 B
    A:您好 B

    至于为什么是三次握手我这里就不细讲了,可以看其他人的博客,总结的话就是通信双方全都有来有回

    对于 A 来说它发出请求,并收到了 B 的响应,对于 B 来说它响应了 A 的请求,并且也接收到了响应。

    TCP 的三次握手除了建立连接外,主要还是为了沟通 TCP 包的序号问题。

    A 告诉 B,我发起的包的序号是从哪个号开始的,B 同样也告诉 A,B 发起的 包的序号是从哪个号开始的。

    双方建立连接之后需要共同维护一个状态机,在建立连接的过程中,双方的状态变化时序图如下所示
    状态变化时序图
    这是网上经常见到的一张图,刚开始的时候,客户端和服务器都处于 CLOSED 状态,先是服务端主动监听某个端口,处于 LISTEN 状态。然后客户端主动发起连接 SYN,之后处于 SYN-SENT 状态。服务端接收了发起的连接,返回 SYN,并且 ACK ( 确认 ) 客户端的 SYN,之后处于 SYN-SENT 状态。客户端接收到服务端发送的 SYN 和 ACK 之后,发送 ACK 的 ACK,之后就处于 ESTAVLISHED 状态,因为它一发一收成功了。服务端收到 ACK 的 ACK 之后,也处于 ESTABLISHED 状态,因为它也一发一收了。

    2.2 TCP 四次挥手

    说完建立连接,再说下断开连接,也被称为四次挥手,可以简单理解如下

    A:B 啊,我不想玩了
    B:哦,你不想玩了啊,我知道了
    这个时候,只是 A 不想玩了,即不再发送数据,但是 B 可能还有未发送完的数据,所以需要等待 B 也主动关闭。
    B:A 啊,好吧,我也不玩了,拜拜
    A:好的,拜拜

    这样整个连接就关闭了,当然上面只是正常的状态,也有些非正常的状态(比如 A 说完不玩了,直接跑路,B 发起的结束得不到 A 的回答,不知道该怎么办或则 B 直接跑路 A 不知道该怎么办),TCP 协议专门设计了几个状态来处理这些非正常状态
    断开连接状态时序图
    断开的时候,当 A 说不玩了,就进入 FIN_WAIT_1 的状态,B 收到 A 不玩了的消息后,进入 CLOSE_WAIT 的状态。

    A 收到 B 说知道了,就进入 FIN_WAIT_2 的状态,如果 B 直接跑路,则 A 永远处与这个状态。TCP 协议里面并没有对这个状态的处理,但 Linux 有,可以调整 tcp_fin_timeout 这个参数,设置一个超时时间。

    如果 B 没有跑路,A 接收到 B 的不玩了请求之后,从 FIN_WAIT_2 状态结束,按说 A 可以跑路了,但是如果 B 没有接收到 A 跑路的 ACK 呢,就再也接收不到了,所以这时候 A 需要等待一段时间,因为如果 B 没接收到 A 的 ACK 的话会重新发送给 A,所以 A 的等待时间需要足够长。

    2.3 累计确认

    TCP 如何实现可靠传输?

    首先为了保证顺序性,每个包都有一个 ID。在建立连接的时候会商定起始 ID 是什么,然后按照 ID 一个个发送,为了保证不丢包,需要对发送的包都要进行应答,当然,这个应答不是一个一个来的,而是会应答某个之前的 ID,表示都收到了,这种模式成为累计应答累计确认

    为了记录所有发送的包和接收的包,TCP 需要发送端和接收端分别来缓存这些记录,发送端的缓存里是按照包的 ID 一个个排列,根据处理的情况分成四个部分

    • 发送并且确认的
    • 发送尚未确认的
    • 没有发送等待发送的
    • 没有发送并且暂时不会发送的

    这里的第三部分和第四部分就属于流量控制的内容

    在 TCP 里,接收端会给发送端报一个窗口大小,叫 Advertised window。这个窗口应该等于上面的第二部分加上第三部分,超过这个窗口,接收端做不过来,就不能发送了

    于是,发送端要保持下面的数据结构
    发送端数据结构
    对于接收端来讲,它的缓存里面的内容要简单一些

    • 接收并且确认过的
    • 还没接收,但是马上就能接收的
    • 还没接收,但也无法接收的

    对应的数据结构如下
    接收端的数据结构

    2.4 顺序问题和丢包问题

    结合上面的图看,在发送端,1、2、3 已发送并确认;4、5、6、7、8、9 都是发送了还没确认;10、11、12 是还没发出的;13、14、15 是接收方没有空间,不准备发的。

    在接收端来看,1、2、3、4、5 是已经完成 ACK 但是还没读取的;6、7 是等待接收的;8、9 是已经接收还没有 ACK 的。

    发送端和接收端当前的状态如下:

    • 1、2、3 没有问题,双方达成了一致
    • 4、5 接收方说 ACK 了,但是发送方还没收到
    • 6、7、8、9 肯定都发了,但是 8、9 已经到了,6、7 没到,出现了乱序,缓存着但是没办法 ACK。

    根据这个例子可以知道顺序问题和丢包问题都有可能存在,所以我们先来看确认与重传机制

    假设 4 的确认收到了,5 的 ACK 丢了,6、7 的数据包丢了,该怎么办?

    一种方法是超时重试,即对每一个发送了但是没有 ACK 的包设定一个定时器,超过了一定的事件就重新尝试。这个时间必须大于往返时间,但也不宜过长,否则超时时间变长,访问就变慢了。

    如果过一段时间,5、6、7 都超时了就会重新发送。接收方发现 5 原来接收过,于是丢弃 5;6 收到了,发送 ACK,要求下一个是 7,7 不幸又丢了。当 7 再次超时的时候,TCP 的策略是超时间隔加倍。每当遇到一次超时重传的时候,都会讲下一次超时时间间隔设为先前值的两倍。

    超时重传的机制是超时周期可能相对较长,是否有更快的方式呢?

    有一个快速重传的机制,即当接收方接收到一个序号大于期望的报文段时,就检测到了数据流之间的间隔,于是发送三个冗余的 ACK,客户端接收到之后,知道数据报丢失,于是重传丢失的报文段。

    例如,接收方发现 6、8、9 都接收了,但是 7 没来,所以肯定丢了,于是发送三个 6 的 ACK,要求下一个是 7。客户端接收到 3 个,就会发现 7 的确又丢了,不等超时,马上重发。

    2.5 流量控制的问题

    在流量控制的机制里面,在对于包的确认中,会携带一个窗口的大小

    简单的说一下就是接收端在发送 ACK 的时候会带上缓冲区的窗口大小,但是一般在窗口达到一定大小才会更新窗口,因为每次都更新的话,刚空下来就又被填满了

    2.6 拥塞控制的问题

    也是通过窗口的大小来控制的,但是检测网络满不满是个挺难的事情,所以 TCP 发送包经常被比喻成往谁管理灌水,所以拥塞控制就是在不堵塞,不丢包的情况下尽可能的发挥带宽。

    水管有粗细,网络有带宽,即每秒钟能发送多少数据;水管有长度,端到端有时延。理想状态下,水管里面的水 = 水管粗细 * 水管长度。对于网络上,通道的容量 = 带宽 * 往返时延。

    如果我们设置发送窗口,使得发送但未确认的包为通道的容量,就能撑满整个管道。

    如图所示,假设往返时间为 8 秒,去 4 秒,回 4 秒,每秒发送一个包,已经过去了 8 秒,则 8 个包都发出去了,其中前四个已经到达接收端,但是 ACK 还没返回,不能算发送成功,5-8 后四个包还在路上,还没被接收,这个时候,管道正好撑满,在发送端,已发送未确认的 8 个包,正好等于带宽,也即每秒发送一个包,也即每秒发送一个包,乘以来回时间 8 秒。

    如果在这个基础上调大窗口,使得单位时间可以发送更多的包,那么会出现接收端处理不过来,多出来的包会被丢弃,这个时候,我们可以增加一个缓存,但是缓存里面的包 4 秒内肯定达不到接收端课,它的缺点会增加时延,如果时延达到一定程度就会超时重传

    TCP 拥塞控制主要来避免两种现象,包丢失和超时重传,一旦出现了这些现象说明发送的太快了,要慢一点。

    具体的方法就是发送端慢启动,比如倒水,刚开始倒的很慢,渐渐变快。然后设置一个阈值,当超过这个值的时候就要慢下来

    慢下来还是在增长,这时候就可能水满则溢,出现拥塞,需要降低倒水的速度,等水慢慢渗下去。

    拥塞的一种表现是丢包,需要超时重传,这个时候,采用快速重传算法,将当前速度变为一半。所以速度还是在比较高的值,也没有一夜回到解放前。

    总结及面试问题

    TCP 和 UDP 的区别

    • TCP 是面向连接的,UDP 是面向无连接的
    • UDP程序结构较简单
    • TCP 是面向字节流的,UDP 是基于数据报的
    • TCP 保证数据正确性,UDP 可能丢包
    • TCP 保证数据顺序,UDP 不保证

    什么是面向连接,什么是面向无连接

    在互通之前,面向连接的协议会先建立连接,如 TCP 有三次握手,而 UDP 不会

    TCP 为什么是可靠连接

    • 通过 TCP 连接传输的数据无差错,不丢失,不重复,且按顺序到达。
    • TCP 报文头里面的序号能使 TCP 的数据按序到达
    • 报文头里面的确认序号能保证不丢包,累计确认及超时重传机制
    • TCP 拥有流量控制及拥塞控制的机制

    TCP 的顺序问题,丢包问题,流量控制都是通过滑动窗口来解决的
    拥塞控制时通过拥塞窗口来解决的

    展开全文
  • TCP、UDP数据包大小的限制

    万次阅读 多人点赞 2016-05-29 10:27:34
    1、概述 首先要看TCP/IP协议,涉及到四层:链路层,网络层,传输层,应用层。 其中以太网(Ethernet...它们的关系是 数据帧{IP包{TCP或UDP包{Data}}} 不同的协议层对数据包有不同的称谓,在传输层叫做段(se
  • 计算机网络协议(三)——UDP、TCP、Socket

    万次阅读 多人点赞 2019-09-04 08:39:53
    底层网络知识详解:最重要的传输层概述一、UDP协议二、TCP协议2.1 TCP的三次握手 概述 这个专栏的计算机网络协议,我是在极客时间上学习 已经有三万多人购买的刘超老师的趣谈网络协议专栏,讲的特别好,像看小说...
  • UDP源码 UDP UDP传输 UDP发送文件 UDP发送
  • UDP 客户端,用于通过UDP协议实现服务端客户端通讯。
  • 面试题:UDP&TCP的区别

    万次阅读 多人点赞 2018-09-01 10:38:20
    UDP协议和TCP协议都是传输层协议。 TCP(Transmission Control Protocol,传输控制协议)提供的是面向连接,可靠的字节流服务。即客户和服务器交换数据前,必须现在双方之间建立一个TCP连接,之后才能传输数据。...
  • 终于懂了TCP和UDP协议区别

    万次阅读 多人点赞 2020-03-26 12:03:28
    终于懂了TCP和UDP协议区别
  • 软件名称:网络UDP调试工具 软件可以发送、接收UDP网络消息,同时支持客户端和服务器模式
  • UDP基础UDP基础UDP基础

    2009-12-04 16:19:25
    UDP基础UDP基础UDP基础UDP基础UDP基础UDP基础UDP基础UDP基础UDP基础UDP基础
  • UDPSender UDP发包工具

    2018-05-15 15:03:50
    UDPSender UDP发包工具,支持自动及手动发送,可以进行压力测试等
  • UDP_c#UDP_vs2013UDP通信_UDP通信_vs2019udp通信_featherss3l_源码.zip
  • UDP_c#UDP_vs2013UDP通信_UDP通信_vs2019udp通信_featherss3l_源码.rar
  • 使用vs2013平台下C#语言编写的UDP通信程序。
  • socket udp socket udp

    2011-06-25 00:56:59
    socket udpsocket udpsocket udpsocket udpsocket udp
  • UDP协议

    万次阅读 多人点赞 2017-06-21 12:31:05
    UDP协议UDP协议简介UDP(User Datagram Protocol),用户数据报协议,是OSI(Open System Interconnection,开放式系统互联) 参考模型中一种无连接的传输层协议,提供面向事务的简单不可靠信息传送服务,IETF RFC 768...
  • 关于UDP接收icmp端口不可达(port unreachable)

    万次阅读 多人点赞 2015-02-03 17:18:34
    本篇分为3部分 1:报文格式 2:产生的原因 3:linux协议栈如何处理 4:应用层如何获取 ...报文如下,10.30.13.1往10.30.16.10的80端口发送了一个UDP报文,80端口其实监听的是TCP。... 首先原因就是接收udp报文...
  • Qt 实现UDP数据发送接收,IP地址 ,端口
  • UDP数据绘动态图_qtudp_QtUDP动态图_UDP接收qt_udpqt_udp生动动图_源码.zip
  • UDP数据绘动态图_qtudp_QtUDP动态图_UDP接收qt_udpqt_udp生动动图_源码.rar
  • UDP理解及UDP的MATLAB实现 Matlab UDP

    千次阅读 2020-04-14 16:04:01
    UDP理解及UDP的MATLAB实现一、UDP通信方式理解1、什么是UDP2、TCP和UDP区别3、个人对UDP的理解二、UDP的MATLAB实现1、单窗口实现2、多窗口实现参考 一、UDP通信方式理解 1、什么是UDP UDP是User Datagram Protocol的...
  • UDP协议的详细解析

    万次阅读 多人点赞 2018-12-26 17:16:34
    UDP数据报 一、UDP的概述 二、UDP的首部格式 UDP校验
  • 终于把TCP协议与UDP协议给整明白了

    万次阅读 多人点赞 2020-07-04 21:35:16
    网络编程有三个要素,分别是IP地址、端口号和通信协议,本文主要讲述的是TCP与UDP这两种通信协议,以及编程的实现。
  • UDP网络通讯

    2017-12-13 17:15:36
    UDP网络通讯!UDP网络通讯!UDP网络通讯!UDP网络通讯!UDP网络通讯!UDP网络通讯!UDP网络通讯!UDP网络通讯!UDP网络通讯!
  • C# UDP穿越NAT,UDP打洞,UDP Hole Punching源代码
  • UDP打洞UDP打洞UDP打洞UDP打洞UDP打洞UDP打洞
  • udp聊天报告 udp聊天报告 udp聊天报告 udp聊天报告udp聊天报告 udp聊天报告udp聊天报告 udp聊天报告udp聊天报告 udp聊天报告

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 502,389
精华内容 200,955
关键字:

udp