-
Namespace zincrby and zscore
2020-11-28 19:14:39<div><p>This PR adds namespace support to <code>zincrby</code> and <code>zscore</code>.</p><p>该提问来源于开源项目:redis-store/redis-store</p></div> -
RedisHelper.ZScore方法报错
2020-12-31 02:00:18<div><p>var success = RedisHelper.ZScore("CG_001", 591); System.FormatException:“Input string was not in a correct format.”</p><p>该提问来源于开源项目:2881099/csredis</p></div> -
Redis学习之zscore命令
2019-12-15 15:36:20目录zscore命令语法返回值例子 zscore命令 Redis zscore, 命令返回有序集中,成员的分数值。如果成员元素不是有序集 key 的成员,或 key 不存在,返回 nil 。 语法 zscore key member 返回值 成员的分数值,以字符... -
zscore doc update: two profiles
2020-12-25 18:13:03<div><p>Updating the zscore documentation to: - clean up - add new profile (all samples as base population)</p><p>该提问来源于开源项目:cBioPortal/cbioportal</p></div> -
Zscore fix
2021-01-06 10:39:38<div><p>I saw <a href="https://github.com/andrew/split/issues/199">this post</a> in the open issues, and upon closer inspection, realized that the z_score algorithm wasn't calculating z-scores ... -
Documentation: zscore example is showing stdev
2020-12-08 20:56:44<p>var x = nerdamer('smpvar(4,2,5,4)').evaluate(); console.log(x.text());...<p>It should be showing a zscore example</p><p>该提问来源于开源项目:jiggzson/nerdamer</p></div> -
MATLAB任务态脑网络zscore
2020-12-31 16:11:02zscore Task-block timeseries 生成相关矩阵并保存 转换为Z矩阵并保存 % extract the time course of each task block, normalize them within blcoks, then concatenate acorss blocks,; % finally,calculated the...MATLAB 任务态脑网络
- zscore Task-block timeseries
- 生成相关矩阵并保存
- 转换为Z矩阵并保存
% Filename::zscore&rmap.m % extract the time course of each task block, normalize them within blcoks, then concatenate acorss blocks,; % finally,calculated the FC derived from the concatenated time courses.. % NEED: redefine cd and create result file clear; cd ('G:\fMRIanalysis\Task2_GRETNA\GretnaTimeCourse'); subList=dir('Sub?_*.txt'); %extract task_specific time course; %task point: 1:12; 21:32; 41:52; %baseline : 13:20; 33:40; 53:60; for i=1:41; subTS=load(subList(i).name); id1=3:14; % raw:1:12,shift 2 time point,about 5 secends . task_course=subTS(id1,:); timec_Z1=zscore(task_course);%normalize id2=23:34; %raw:21:32 task_course=subTS(id2,:); timec_Z2=zscore(task_course); id3=43:54;%raw:41:52; task_course=subTS(id3,:); timec_Z3=zscore(task_course); %concatenate timec_Z=[timec_Z1;timec_Z2;timec_Z3]; %Pearson corr FC_Z=corrcoef(timec_Z); FC_Z = FC_Z - diag(diag(FC_Z)); %Fisher r to z zFC_Z = atanh(FC_Z); %output txt dlmwrite(['G:\fMRIanalysis\Task2_GRETNA\BNormalise\BNormaliseMatrixR\r',subList(i).name],FC_Z,'delimiter','\t','precision','%-20.15e'); dlmwrite(['G:\fMRIanalysis\Task2_GRETNA\BNormalise\BNormaliseMatrixZ\z',subList(i).name],zFC_Z,'delimiter','\t','precision','%-20.15e'); end disp done
-
ZSCORE ON Non-Existing member of a ZSET returns empty string
2020-12-07 04:33:22<div><p>Redis returns nil when you ask for the zscore if a key doesn't exist and also if the key does but the member doesn't. However ARDB returns an empty string if the key exists but the ... -
export zscore matrix to cool - open in HiGlass?
2020-12-09 00:53:58I would like to export the matrix of zscore from findTADs to HiGlass. Have you ever tried to do that? <p>I managed to make a .cool from the h5 matrix but when i try to zoomify it I get the following ... -
redis获取有序集合中指定元素的序号,zscore
2020-03-29 22:17:42 -
果蝇优化算法:优化ZScore模型 python实现
2020-12-03 21:53:55果蝇优化算法:优化ZScore模型 python实现 数据集: 0.016 0.177 0.4208 1.038 0.022 0 1.0957 0.19 0.2224 0.816 0.933 1 0.2543 0.206 0.5264 0.4 0.015 1 1.2257 0.224 0.3272 1.05 1.049 1 0.3872 0.228 0....果蝇优化算法:优化ZScore模型 python实现
数据集:
0.016 0.177 0.4208 1.038 0.022 0 1.0957 0.19 0.2224 0.816 0.933 1 0.2543 0.206 0.5264 0.4 0.015 1 1.2257 0.224 0.3272 1.05 1.049 1 0.3872 0.228 0.2256 0.98 0.998 1 1.6066 0.231 0.2832 1.054 1.009 1 1.1594 0.252 0.3344 0.946 0.987 0 0.3424 0.26 0.3408 0.196 0.126 1 0.8604 0.261 0.2616 0.994 0.996 0 0.5107 0.264 0.2352 0.888 0.004 1 0.8981 0.271 0.1536 0.688 0.857 1 0.0878 0.275 0.2072 0.732 0.908 1 0.2384 0.297 0.2336 0.036 0.099 0 0.8591 0.308 0.4208 0.132 1.031 1 0.5861 0.309 0.1656 0.836 0.896 1 0.6329 0.311 -0.24 -0.134 0.611 0 0.6173 0.311 0.1256 0.714 0.848 0 0.7811 0.326 0.2896 0.834 0.909 1 0.3937 0.329 0.2552 0.024 0.493 0 0.1211 0.055 0.3744 1.142 1.077 1
代码:
import numpy as np import matplotlib.pyplot as plt from matplotlib.font_manager import FontProperties #######果蝇算法###### ##初始化果蝇参数 popsize = 20 #果蝇种群规模 maxgen = 100 #果蝇最大迭代次数 R = 1 #果蝇飞行半径 D = 5 #优化变量个数 # 读取数据的函数 TXY = np.loadtxt('e:\\TXY.txt') # 计算这个TXY举证的行数还有列数 row= np.shape(TXY)[0] col=np.shape(TXY)[1] # 将函数来进行分块,然后来进行之后的操作 set = row/5 row1 = row - set # tr和t1来得到最优z-score系数 tr = TXY[0:row,:col-1] t1 = TXY[0:row,col-1] t_value = TXY[:,col-1] # te和t2来检查优化效果 te = TXY[int(row1):,:col-1] t2 = TXY[0:int(row1),col-1] # 计算这个距离的容量 Dist = np.zeros([popsize,D]) # 味道浓度判定值 S = np.zeros([popsize,D]) # 优化参数的结果存放值 bestS = np.zeros([1,D]) # 味道气味值 Smell = np.zeros([popsize,1]) #果蝇种群里面的每一个果蝇需要存放的一个坐标位置,有五个种群,进行5个参数来进行优化参数的作用 X = np.zeros([popsize,D]) Y = np.zeros([popsize,D]) # 每次迭代之后,保存的结果 fitness = np.zeros([maxgen,1]) # 需要计算的保存的最有果蝇的位置 XBest = np.zeros([maxgen,D]) YBest = np.zeros([maxgen,D]) #赋予果蝇群体初始位置,五个种群的位置 num=0 for i in range(row): res = TXY[i,0]*1.2+1.4*TXY[i,1]+3.3*TXY[i,2]+0.6*TXY[i,3]+1.0*TXY[i,4] if res>2.675: if int(t_value[i])==1: num+=1 else: if int(t_value[i])==0: num+=1 pre = num/row now=0 # 由于随机化的原因,收敛不到这个寻优的效果,然后现在是直接找到超过的,那么代表这个可以了 while True: #初始化种群的位置 X_axis = np.random.rand(1,D) Y_axis = np.random.rand(1,D) #果蝇寻优开始,利用嗅觉寻找食物 for i in range(popsize): X[i,:] = X_axis + R*(2*np.random.rand(1,D)-1) Y[i,:] = Y_axis + R*(2*np.random.rand(1,D)-1) #计算距离Dist Dist[i,:] = np.sqrt(X[i,:]**2+Y[i,:]**2) #计算味道浓度的倒数作为味道浓度判定值 S[i,:] = 1/Dist[i,:] #带入味道浓度函数中求出味道浓度值 yc = S[i,0] * tr[:,0] + S[i,1] * tr[:,1] + S[i,2]* tr[:,2] + S[i,3] * tr[:,3] + S[i,4] * tr[:,4]; yy = yc - t1; # 每5个果蝇飞行一次计算一次均方根误差 g = 0 for j in range(row): g = g + yy[j]**2; Smell[i] = (g/row)**0.5; #将每次的和原来数据的均方根误差,当作气味值 #找出味道值最小的,即最接近预测结果的气味值,及其下标 Smellbest,index = np.min(Smell),np.argmin(Smell) bestSmell = Smellbest #保留最佳味道浓度处的果蝇 X_axis = X[int(index),:] Y_axis = Y[int(index),:] #果蝇种群进入迭代寻优 for j in range(maxgen): for i in range(popsize): X[i,:] = X_axis + R*(2*np.random.rand(1,D)-1) Y[i,:] = Y_axis + R*(2*np.random.rand(1,D)-1) #计算距离Dist Dist[i,:] = np.sqrt(X[i,:]**2+Y[i,:]**2) #计算味道浓度的倒数作为味道浓度判定值 S[i,:] = 1/Dist[i,:] #带入味道浓度函数中求出味道浓度值 yc = S[i,0] * tr[:,0] + S[i,1] * tr[:,1] + S[i,2]* tr[:,2] + S[i,3] * tr[:,3] + S[i,4] * tr[:,4]; yy = yc - t1; g = 0 for k in range(row): g = g + yy[k]**2; Smell[i] = (g/row)**0.5; Smellbest,index = np.min(Smell),np.argmin(Smell) if Smellbest < bestSmell: bestSmell = Smellbest bestS = S[index] X_axis = X[int(index),:] Y_axis = Y[int(index),:] fitness[j] = bestSmell XBest[j] = X_axis YBest[j] = Y_axis #计算当前预测的一个过程, num=0 for i in range(row): res = TXY[i,0]*bestS[0]+bestS[1]*TXY[i,1]+bestS[2]*TXY[i,2]+bestS[3]*TXY[i,3]+bestS[4]*TXY[i,4] if res>0.5: if int(t_value[i])==1: num+=1 else: if int(t_value[i])==0: num+=1 now = num/row if now>pre: break; print("最后迭代的趋近值RMSE:") print(bestSmell) print("优化之后的参数:") print(bestS) print('之前的预测正确率:') print(pre) print('之后的预测正确率:') print(now) font_set = FontProperties(fname=r"c:\\windows\\fonts\\simsun.ttc", size=15) plt.figure(1) plt.plot(range(maxgen),fitness) plt.xlabel('迭代次数',fontproperties=font_set) plt.ylabel('RMSE',fontproperties=font_set) plt.figure(2) plt.plot(XBest,YBest,'r*') plt.xlabel(u'X_axis',fontproperties=font_set) plt.ylabel(u'Y_axis',fontproperties=font_set) plt.show()
-
Redis命令-有序集合-zscore
2016-04-24 11:22:41原文 http://redis.io/commands/zscore 简介 Get the score associated with the given member in a sorted set. ...ZSCORE key member 版本 Available since 1.2.0. 自1.2.0... -
Implementation difference in normalization(shark) and zscore(MATLAB)
2020-12-26 08:05:33zscore(A)</code></p> <p>Both make mean 0 and stddev 1, yet produce difference in output. <p>I was follwing this this tutorial:... -
matlab标准化和反标准化——zscore
2016-03-25 09:27:18先来看自带函数zscore的使用 >> A=[1 2 3;4 5 6]; >> [B,A_mean,A_std]=zscore(A) B = -0.7071 -0.7071 -0.7071 0.7071 0.7071 0.7071 A_mean = 2.5000 3.5000 4.5000 A_std = 2.1213 -
MATLAB任务态脑网络 提取Block连接(不做Zscore)
2020-12-31 16:41:23MATLAB任务态脑网络 提取Block连接(不做Zscore) 提取任务相关block的timeseries 生成相关矩阵 转换为z矩阵 txt导出 % extract the time course of each task block, normalize them within blcoks, then ... -
Redis - 有序集合ZADD、ZSCORE、ZINCRBY、ZCARD、ZCOUNT命令介绍
2020-11-27 12:00:24Redis学习(十四) - 有序集合ZADD、ZSCORE、ZINCRBY、ZCARD、ZCOUNT命令介绍 ZADD ZADD key [NX|XX] [CH] [INCR] score member [score member ...] 可用版本: >= 1.2.0 时间复杂度: O(M*log(N)), N 是有序集... -
zscore 是如何标准化矩阵的?
2013-04-08 10:17:59用zscore标准化的目的是:使平均值为0,标准差为 1,这样可以使不同量纲的数据放在同一个矩阵。 zscore的公式如下: zscore的代码如下: z=(x-mean(x))./std(x) mean(x)函数: 如果X是一个矩阵,则其均值... -
c# 标准正太分布函数_数据标准化处理中的min-max和zscore
2020-12-12 04:59:54数据标准化就是把有量纲的数据变成无量纲的数据,把量级不同的数据处理到一个层级,从而让不同的数据之间具有...标准化的方法有很多,min-max和zscore就是其中两种,min-maxmin-max可以将数据全部处理到0-1之间zsc... -
ZSCORE key member
2018-03-01 11:02:00返回有序集key中,成员member的score值。 如果member元素不是有序集key的成员,或key不存在,返回nil。 ##返回值 bulk-string-reply: member成员的score值(double型浮点数),以字符串形式表示。... -
Redis的有序集合zadd,zrange,zrevrange,zrem,zscore,zrangebyscore,zincrby,zcard命令学习
2020-12-23 02:40:17Redis的有序集合zadd,zrange,zrevrange,zrem,zscore,zrangebyscore,zincrby,zcard命令学习 1.特点: Redis 有序集合和集合一样也是 string 类型元素的集合,且不允许重复的成员。不同的是每个元素都会关联一个... -
python怎样定义zscore_为什么在Pandas数据帧中使用Zscore进行规范化会生成NaN列?
2020-12-30 14:25:34我使用scipy中的Z-score对数据集进行规范化,如下所示:import numpy as npimport pandas as pdfrom scipy import statsfrom scipy.stats import zscoredf = pd.DataFrame(pd.read_csv('dataset.csv', sep=','))df =... -
opencv图像归一化zscore_normalize
2019-09-23 11:20:42opencv_图像归一化 #include <cv.h> #include <highgui.h> void zscoreNormalize(const cv::Mat& src, cv::Mat&... // compute mu and mu squared cv::Mat mu(src.size(), src.type());... -
scipy.stats.zscore(a)的用法
2019-04-23 15:07:07Calculates the z score of each value in the sample, relative to the sample mean and standard deviation. 计算Z分数即标准分数。所得值与样本的平均值和方差有关。 计算公式为: 看如下代码: ... -
matlab zscore函数 数据的标准化处理
2017-02-16 14:51:01在数据分析之前,我们通常需要先将数据标准化(normalization),利用标准化后的数据进行数据分析。数据标准化也就是统计数据的指数化。数据标准化处理主要包括数据同趋化处理和无量纲化处理两个方面。...
收藏数
283
精华内容
113
-
竟斗云2.0编程器固件OPBOOT_1.1.2.BIN
-
Vue3学习(二)新建项目
-
单元测试UnitTest+Pytest【Selenium3】
-
专利文献信息在技术创新中的应用
-
Java学习路线,好的学习路线和好的方法,能让我们少走些弯路
-
国家注册信息安全工程师体系课程(CISP-PTE)
-
axios 封装上传图片与thinkphp6.0后端接收图片
-
图像语义分割 -- FCN
-
FFmpeg4.3系列之26:视频监控之H265多路摄像头播控项目实战
-
数据类型转换、运算符、方法入门
-
都2021年了,你还不多学几种创建型模式,创建个对象?
-
三维地图GIS大数据可视化
-
前端架构师-速成
-
S7-200常用问题.rar
-
ACM算法系列笔记总结
-
QQTIM案例.zip
-
[硕士论文精品]基于FPGA的CPU核及其虚拟平台的设计与实现.pdf
-
Cocos Creator游戏开发-连连看 (接入腾讯优量汇广告)
-
Java星选一卡通
-
深入源码,阿里大佬的SpringSecurity手册惊呆我了