精华内容
下载资源
问答
  • 二阶rc无源带通滤波器
    千次阅读
    2021-04-21 10:16:31

    摘要 在信号处理中,滤波的优劣直接影响信息的准确性。模拟滤波虽然快捷但不灵活,数字滤波效果虽好但复杂。所以文中提出一种以模拟滤波器为基准,设计具有相同功能而且参数可调的数字滤波器的方法。并以二阶RC无源低通滤波电路为例对此过程进行说明,与模拟滤波电路和传统的数字滤波相比,该方法不仅比传统的数字滤波算法简单快捷,而且可有效防止模拟电路中器件的寄生参数、精度、温度等的影响,使滤波更加稳定。

    随着信息科技的发展,信号处理得到了大幅推动,已经被广泛应用于雷达、通信、自动化、航空航天等领域。在信号处理系统中,输入信号通常含有各种噪声和干扰。为对信号进行准确的测量和控制,必须削弱或滤除被测信号中的噪声和干扰。一般在系统中可选用硬件滤波和软件滤波。硬件滤波又分为无源滤波和有源滤波,无源滤波是通过RC滤波器或LC滤波器等模拟滤波器进行滤波。软件滤波也称数字滤波,是通过一定的算法削弱噪声的影响。硬件滤波的优势是不需要进行复杂的程序处理,反应灵敏。而软件滤波的优势是不需要硬件的投入,而且可靠稳定。

    综合两者的优势,本文提出了一种以低通二阶RC无源滤波电路为基准,用Matlab和Visual C++设计一个具有相同功能数字滤波器的方法即模拟电路数字化方法,以滤除信号中的高频杂波,得到了较为理想的波形。

    1 模拟电路数字化方法

    模拟电路数字化的过程如下,首先从硬件滤波电路出发,计算电路的传递函数H(s)。由于软件滤波的信号是离散的数字信号,所以将H(s)转换成离散域的H(z),通过Matlab编程实现对信号的滤波。如果滤波效果不理想,则对传递函数中的参数进行调整,得到具有较理想滤波效果的H(z)。为最终用Visual C++编程实现,需要将H(z)反变换得时域的h(t),与信号进行卷积和运算以完成滤波。经过以上步骤,完成模拟滤波电路数字化的过程,并在Matlab和Visual C++平台上实现滤波。

    2 二阶RC无源低通滤波电路

    对于模拟电路的分析,通常采用传递函数的分析方法。电子电路往往是由若干个动态环节连在一起构成一个复杂电路。对于每个具体环节来说,都有它的输入量和输出量,而一定输入量的变化都会引起输出量的变化。根据一个环节中所进行的物理过程可以写出微分方程,它表示了该环节输出量和输入量的关系。

    例如RLC振荡回路的微分方程为

    输入量与输出量都是时间t的函数,用微分方程直接表示输入量与输出量时间函数之间的关系比较复杂。但利用拉氏变换把时间函数变换为s的函数以后,原函数对于时间t的微分积分就简化为s的乘除法。

    在零起始条件下,一个动态环节的输出量的拉氏变换用X(s)表示,输入量的拉氏变换用F(s)表示,把

    称为传递函数。

    通常信号在进行放大之前,先对该信号进行滤波。以低频信号为例,使用经典的二阶RC无源滤波电路进行滤波,电路如图1所示。在接下来的部分将以此电路为例对模拟电路数字化方法进行详细的分析和讲解。

    计算出该电路的传递函数H(s)如式(2)所示。其中,b=R1C1+R1C2+R2C2,a=R1R2C1C2。

    3 传递函数离散化

    滤波器的滤波效果与R1、R2、C1和C2等参数相关,如果取值不当会造成滤波效果不理想。对于复杂的传递函数,谐振频率和带宽不易计算,所以本文采用控制变量法。

    对于多因素的问题,常常采用控制因素的方法,把多因素的问题变成多个单因素的问题。每一次只改变其中的某一个因素,而控制其余几个因素不变,从而研究被改变的这个因素对事物的影响,分别加以研究,最后再综合解决,这种方法叫控制变量法,被广泛地运用在各种科学研究之中。

    得到传递函数后,就可以对信号进行滤波。由于待处理的数据是数字信号,若想仿真需将频域的传递函数转换为x域的传递函数,即将模拟滤波器转换为数字滤波器。模拟滤波器转换为数字滤波器有两种方法:脉冲响应不变法和双线性变换法。

    脉冲响应不变法是一个稳定的设计,主要用于设计某些要求在时域上能模仿模拟滤波器功能的数字滤波器。这种变换法的主要特点是频率坐标的变换是线性的,即由于混叠现象,阻带边缘的衰减要比模拟滤波器稍差一些,但仍能满足技术指标的要求。脉冲响应不变法要求该模拟滤波器是带通滤波器或者低通滤波器,但这种方法在阻带没有起伏的情况下才有用。

    双线性变换法映射也是一种稳定的设计,不存在混叠现象,对能够变换的滤波器类型没有限制。但这种方法也有固有缺陷:模拟频率和数字频率之间是非线性关系,它使得频率的标度弯曲,不能保持原来的模拟滤波器的相频特性;数字的频率响应与模拟的频率响应有明显的差别。一般情况下,可以通过频率的预畸变进行校正。但总体来说,双线性变换法的仿真结果比脉冲响应不变法更加理想。

    由于脉冲响应不变法从s平面到z平面是多值映射,会在频域响应产生混叠失真。而双线性变换法可以把整个s平面变换到整个z平面上去,且使s的左半平面映射到z平面的单位圆内,所以设计采用双线性变换法。

    双线性变化法的映射函数为

    调用Matlab中的Fiher函数R1和R2调节参数、进行仿真,仿真结果如图2所示。图2(a)是未加滤波的波形,图2(b)、图2(c)、图2(d)的电阻依次增大,从图中可以看到,电阻越大,高频分量越少。

    4 时域传递函数

    Matlab一般只用于功能仿真,而实际项目应用,通常采用Visual C++软件编程进行信号控制和硬件实现,所以需要将Matlab仿真时使用的滤波器函数Filter转化为C代码实现。

    软件编程有时域和频域两种思路。由于输入信号较为复杂不易进行时-频转换,只能采用时域滤波。所以需将传递函数反变换到时域,对信号进行滤波处理。

    5 时域卷积滤波

    卷积在通信技术和信号处理中起着重要的作用。在线性时域系统中,根据时间的连续性,可以分为卷积积分和卷积和。在LTI连续时间系统中,把激励信号分解为一系列冲激函数,求出各种冲激函数单独作用于系统时的冲激响应,然后将这些响应相加就得到系统对于该激励信号的零状态响应。这个相加的过程表现为求卷积积分。在LTI离散系统中,可用上述方法进行分析。由于离散信号本身是一个序列,因此,激励信号分解为单位序列的工作就较容易完成。如果系统的单位序列响应为已知,那么,也不难求得每个单位序列单独作用于系统的响应。把这些序列相加就得到系统对于该激励信号的零状态响应,这个相加的过程表现为求卷积和。

    由于本系统中的信号是离散时间序列,常用的卷积和的求解方法有图解法、对位相乘求和法、解析法和列表法等4种。一般,待处理的信号的数据量比较大,列表法不适用,所以采用解析法。

    卷积与傅里叶变换有着密切的关系。利用两个函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换的性质,能使傅里叶分析中许多问题的处理得到简化。本文正是采用这一点,将频域的滤波转化为时域滤波。

    频域相乘等效于时域卷积。编写C程序求输入信号和传递函数的卷积和。当两个信号为因果信号时,可以根据式(5)求卷积和。当f1(k)的数据长度为m;f2(k)的数据长度为n(n

    6 结果及分析

    信号分别经卷积和滤波和Filter函数滤波,将滤波后的数据导入Matlab比较,结果如图3所示。由图可见,前者在初始状态出现尖峰,这是因为卷积和是在特定窗口内时域累加的过程,会造成头部数据和尾部数据不准确。虽然编写的C卷积和滤波程序有一定的缺陷,但是整体波形一致,说明实验获得初步成功。

    7 结束语

    提出了一种将硬件滤波电路数字化的方法,并在Matlab和Visual C++平台上得以实现。与模拟滤波电路和传统的数字滤波相比,不仅比传统的数字滤波算法简单快捷,而且有效防止了模拟电路中器件的寄生参数、精度、温度等的影响,使滤波更加稳定。

    更多相关内容
  • 二阶有源带通滤波器设计1、背景对于微弱的信号的处理方式一般是:放大和滤波,这个过程中就涉及到放大电路的选取、滤波器的选择以及偏置电路的设计。本例以实例的方式讲解并附带参数计算、仿真、实物测试三个环节。 ...

    二阶有源带通滤波器设计

    1、背景

    对于微弱的信号的处理方式一般是:放大和滤波,这个过程中就涉及到放大电路的选取、滤波器的选择以及偏置电路的设计。本例以实例的方式讲解并附带参数计算、仿真、实物测试三个环节。

    假设需要处理一个20mV的正弦信号,该信号的频率范围是15~35Hz,经过处理后幅值不超过3.3V,且需要经过带通滤波器滤除杂波。

    2、滤波器定义

    滤波电路又称为滤波器,是一种选频电路,能够使特定频率范围的信号通过,而且其他频率的信号大大衰减即阻止其通过。按滤波器工作频率范围的不同,可分为:

    • 低通滤波器(Low-pass Filter,LPF)
    • 高通滤波器(High-pass Filter,HPF)
    • 带通滤波器(Band-pass Filter,BPF)
    • 带阻滤波器(Band-rejection Filter,BRF)
    • 全通滤波器(All-pass Filter,APF)

    仅由电阻、电容、电感这些无源器件组成的滤波电路称为无源滤波器。如果滤波电路中含有有源元件,如集成运放等,则称为有源滤波器。与无源滤波器相比,有源滤波器具有效率高、带负载能力强、频率特性好,而且在滤波的同时还可以将有用信号放大等一系列有点而得到广泛应用。

    2.1、滤波器种类

    2.1.1、低通滤波器

    f0~f2频率之间,幅频特性平直,它可以使信号中低于f2的频率成分几乎不受衰减地通过,而高于f2的频率成分受到极大地衰减。

    c8762dd4ae4229fa2100ea56d903bc17.png

    图 1低通滤波器

    2.1.2、高通滤波器

      与低通滤波相反,从频率f1~∞,其幅频特性平直。它使信号中高于f1的频率成分几乎不受衰减地通过,而低于f1的频率成分将受到极大地衰减。

    130c23db9b84df849e4093db53574cad.png

    图 2高通滤波器

    2.1.3、带通滤波器

      它的通频带在f1~f2之间。它使信号中高于f1而低于f2的频率成分可以不受衰减地通过,而其它成分受到衰减。

    4635340d8e9eacb0c7798835b12db83c.png

    图 3带通滤波器

    实际上将低通滤波器和高通滤波器串联,即可构成带通滤波器,此处需要注意高通滤波器的截止频率一定要小于低通滤波器的截止频率即fH<fL,否则新构成的滤波器就会变成全频滤波器。

    37903e3644079811f76c7981199215e5.png

    图 4低通滤波器与高通滤波器的串联

    2.1.4、带阻滤波器

      与带通滤波相反,阻带在频率f1~f2之间。它使信号中高于f1而低于f2的频率成分受到衰减,其余频率成分的信号几乎不受衰减地通过。

    ad68317726760c5065001cee2094bc6c.png

    图 5带阻滤波器

    实际上将低通滤波器和高通滤波器并联,即可构成带通滤波器带阻滤波器。此处需要注意高通滤波器的截止频率一定要大于低通滤波器的截止频率即fH>fL, 否则新构成的滤波器就会变成全通滤波器。

    5ce3fa8ca7846f4bbd85bb71540a730f.png

    图 6低通滤波器与高通滤波器的并联

    2.2、滤波器的基本参数

    理想滤波器是不存在的,在实际滤波器的幅频特性图中,通带和阻带之间应没有严格的界限。在通带和阻带之间存在一个过渡带。在过渡带内的频率成分不会被完全抑制,只会受到不同程度的衰减。当然,希望过渡带越窄越好,也就是希望对通带外的频率成分衰减得越快、越多越好。因此,在设计实际滤波器时,总是通过各种方法使其尽量逼近理想滤波器。

    如图所示为理想带通(虚线)和实际带通(实线)滤波器的幅频特性。由图中可见,理想滤波器的特性只需用截止频率描述,而实际滤波器的特性曲线无明显的转折点,两截止频率之间的幅频特性也非常数,故需用更多参数来描述。

    857c6a57c8b84a0d72bbbf5974e3d427.png

    图 7实际滤波器

    2.2.1、纹波幅度d

    在一定频率范围内,实际滤波器的幅频特性可能呈波纹变化,其波动幅度d与幅频特性的平均值A0相比,越小越好,一般应远小于-3dB。

    2.2.2、截止频率fc

    截止频率(Cutoff Frequency):指低通滤波器的通带右边频点或高通滤波器的通带左边频点。通常以1dB或3dB相对损耗点的标准定义。相对损耗的参考基准为:低通以DC处插入损耗为基准,高通则以未出现寄生阻带足够高的通带频率处插入损为基准。

    2.2.3、中心频率(Center Frequency):

    滤波器通带的中心频率f0,一般取f0=(f1+f2)/2,f1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点。窄带滤波器常以插入损耗最小点为中心频率计算通带带宽。

    2.2.4、带宽B和品质因数Q值

    上下两截止频率之间的频率范围称为滤波器带宽,或-3dB带宽,单位为Hz。带宽决定着滤波器分离信号中相邻频率成分的能力——频率分辨力。在电工学中,通常用Q代表谐振回路的品质因数。在二阶振荡环节中,Q值相当于谐振点的幅值增益系数, Q=1/2ξ(ξ——阻尼率)。对于带通滤波器,通常把中心频率f0和带宽 B之比称为滤波器的品质因数Q。例如一个中心频率为500Hz的滤波器,若其中-3dB带宽为10Hz,则称其Q值为50。Q值越大,表明滤波器频率分辨力越高。

    2.2.5、倍频程选择性W

    在两截止频率外侧,实际滤波器有一个过渡带,这个过渡带幅频曲线的倾斜程度表明了幅频特性衰减的快慢,它决定着滤波器对带宽外频率成分衰阻的能力。通常用倍频程选择性来表征。所谓倍频程选择性,是指在上截止频率fc2与 2fc2之间,或者在下截止频率fc1与fc1/2之间幅频特性的衰减值,即频率变化一个倍频程时的衰减量或倍频程衰减量以dB/oct表示(octave,倍频程)。显然,衰减越快(即W值越大),滤波器的选择性越好。对于远离截止频率的衰减率也可用10倍频程衰减数表示之。即[dB/10oct]。

    2.2.6、滤波器因数(或矩形系数)

    滤波器因数是滤波器选择性的另一种表示方式 ,它是利用滤波器幅频特性的 -60dB带宽与-3dB带宽的比值来衡量滤波器选择性.即理想滤波器 =1,常用滤波器 =1~5,显然, 越接近于1,滤波器选择性越好。

    2.2.7、插入损耗(Insertion Loss):

    滤波器插入电路之前传播送到负载阻抗的功率与滤波器插入之后传送到负载阻抗的比值的对数,称为滤波器插入损耗。常以中心或截止频率处损耗表征。

    3、计算过程

    3.1、1.65V偏置电路计算

    抬升电路本质上是一个加法器,其原理是在输入信号的基础加一个偏置量。此处需要将被测信号抬升至0~3.3V范围内,假设信号为正弦信号,且在0V上下波动,因此需要将信号抬升1.65V。整个计算过程使用虚短、虚断的假设,列出如下两个方程,将②式化简并带入①式,可以求得③式。从化简后的③式可以看出:u0=ku2+gu1,其中k、g仅与电阻的大小有关,k为加法电路偏置,g为输入信号增益,此处仅实现1.65V偏置,因此k=2,g=1。如需在偏置的基础上增加对输入信号的放大,可以适当调节电阻阻值,此处不再赘述。为简化电阻选值,假设R1=R3,则、R2=2R1=2R3。该结论适用于同类的抬升电路。

    a070e6a9b3a07e6ba2c24a8d90b81e0a.png

    图 8偏置电路图

    f68e4fc6c18e0a4303fe3acffd712e4e.png

    图 9偏置电路

    根据虚短、虚断列出下面两个方程:

    9462f42787297293c0f82c3d152f9c88.png

    推导出下式:

    326f7075e7f94e944611fdee957e5064.png

    则是偏置电压的偏置常数,是闭环增益,此处希望,,带入可得:。即偏置电路中的二等分偏置电阻是反馈电阻的两倍,反馈端对地电阻和反馈电阻相等。对于有电容的电路,上式电阻(R)可以用阻抗(z)的形式表示。

    此处选择输入电阻为100KΩ,则偏置电路电阻为200KΩ。

    3.2、滤波器计算

    3.2.1、一阶有源滤波器

    4dcb7d7029d85120df07b329b366f393.png

    图 10一阶LPF

    3.2.2、二阶低通滤波器

      为改善滤波效果,使时,信号衰减的更快,一般在上图所示的一阶低通滤波器的基础上再增加一级RC电路就构成二阶有源低通滤波器,如下图所示。

    83d518ab591f98298867dda2c5c03526.png

    图 11二阶LPF

    3.2.3、二阶压控型低通滤波器

    二阶压控型低通有源滤波器中的一个电容器C1原来是接地的,现在改接到输出端。显然C1的改接不影响通带增益。

    6dc736e51ed6304cceb8fe40dcd4d067.png

    图 12二阶压控型LPF

    二阶LPF传递函数:

    16f08463d4bb410f636ae8eebbec1841.png

    通带增益:

    33d766b05298a1ce2984ec7457e8c4bf.png

    上式表明,该滤波器的通带增益应小于3,才能保障电路稳定工作。

    3.2.4、二阶高通滤波器

    高通滤波器电路与低通滤波器在电路上具备对偶性,通过把低通滤波器电路中的R、C互换位置即可得到高通滤波器,并且相应的截止频率也具备这种特性。

    582d07cef47aaedf6bd88a690993ce75.png

    图 13二阶HPF

    二阶HPF传递函数:

    b50059d5aaad4d7601ba10ff8f87e0d4.png

    通带增益:

    33d766b05298a1ce2984ec7457e8c4bf.png

    3.2、二阶滤波器计算

    0395ae9de0b23e6e702fcd16d6946737.png

    时,幅频特性曲线最平坦称为Butterworth滤波器;当Q=1时,称为Chebyshev滤波器;当Q>0.707时后,特性曲线将出现峰值,Q值越大,峰值越高

    LPF:假设待计算滤波器Q=0.7(读者可以根据实际情况取值,此处仅以0.7为例设计)、f0=35Hz。

    根据RC滤波器求解RC值:

    电容值一般取1uF以下,此处以1uF为例计算。

    202f4272f2a3896fc7a99ae97c2207bb.png

    求得R=4.549kΩ,实际取值R=4.3 kΩ。

    根据值求解R1R2 ,当f=f0时,

    0869ac36404bfa55193d909e62dd29bb.png

    则:

    97dfaf0387525bf2dd46e14e335580fc.png

    解得:R1=25.06kΩ,R2=14.29kΩ

    实际取值:R1=24kΩ,R2=15kΩ(实际电阻值是离散数据,选取相近阻值即可)。

    HPF:由于同类型LPF和HPF具有对偶性,实际计算按照LPF计算,电路中替换RC位置即可。

    假设待计算滤波器Q=0.7(读者可以根据实际情况取值,此处仅以0.7为例设计)、。

    根据RC滤波器求解RC值:

    电容值一般取1uF以下,此处以1uF为例计算。

    c96f67b1196ff15c5dd398aee785de32.png

    求得R=10.615kΩ,实际取值R=10 kΩ。

    根据值求解R1R2 ,当f=f0时,

    924c543c4e486071b40ce8cb7e589358.png

    则:

    eadf39550c85413f0f98b8a6e392edfc.png

    解得:R1=58.479kΩ,R2=33.333kΩ

    实际取值:R1=56kΩ,R2=33kΩ(实际电阻值是离散数据,选取相近阻值即可)。

    同理可以计算出Q=1

    LPF:R1=R2=18.19kΩ,实际取值R1=R2=18kΩ

    HPF:R1=R2=42.46 kΩ,R1=R2=43kΩ

    同理可以计算出Q=2.5

    LPF:R1=14.784kΩ,R2= 23.6548‬ kΩ,实际取值R1=15 kΩ、R2=24kΩ

    HPF:R1= 34.499 kΩ,R2= 55.198 kΩ,实际取值R1=33 kΩ、R2=56kΩ

    3.3、Matlab频谱相应仿真

    取Q=0.1~3,步长取0.2,绘制滤波器的波特图,其结果如下图所示,matlab绘图程序详见附录。

    1831e17a49b5a8e0a4e8f25f15278c62.png

    图 14带通滤波器不同Q值下的波特图

    4、Multisim仿真

    4.1、搭建仿真电路图

    7a6875857774cba104e1c4358b32493a.png

    图 15仿真电路图

    4.2、仿真结果

    4.2.1、Q=0.7时

    波特图:

    cd477e627ba0dfbed3dfa71f924ea96d.png

    图 16 Q=0.7时幅频特性图

    e26b32349d51cdc2732e35cf01509526.png

    图 17 Q=0.7时相频特性图

    各点波形输出:(注:紫色:LPF滤波后波形,蓝色:HPF滤波后波形,黄色:1.65V抬升后波形)

    d058864c0ce698cc3f25775200f66c24.png

    图 18仿真波形图

    4.2.2、Q=1时

    仿真图:

    46d441511ebaa36eb89d4ad633b35b85.png

    图 19仿真电路图

    波特图:

    8907e4397f98e128d8f68cdb6faca851.png

    图 20 Q=1时幅频特性图

    a4dda20702acb68f01b030c55fe82dbe.png

    图 21 Q=1时相频特性图

    各点波形输出:(注:紫色:LPF滤波后波形,蓝色:HPF滤波后波形,黄色:1.65V抬升后波形)

    1fa97c1d51ef27c90c9ccc8a3af4fc59.png

    图 22仿真波形图

    4.2.3、Q=2.5时

    仿真图:

    77f13af74c55f8553c1ce69d83a72932.png

    图 23仿真图

    波特图:(注意:此处F=50dB

    3aebadc40a532433be123f73ca37aede.png

    图 24 Q=2.5幅频特性图

    c9b3667a4a19decf01d423f8adfda5a5.png

    图 25 Q=2.5时相频特性图

    各点波形输出:((注:紫色:LPF滤波后波形,蓝色:HPF滤波后波形,黄色:1.65V抬升后波形)

    3872fb93d3688eb94eae67d37175235d.png

    图 26仿真波形图

    从上面Q值的对比可以发现:Q 因子的值越低,滤波器的带宽越宽,因此 Q 因子越高,滤波器越窄,“选择性”越强。由于有源带通滤波器(二阶系统)的品质因数与滤波器响应在其中心谐振频率( fr ) 附近的“锐度”有关,因此它也可以被认为是“阻尼系数”。因为滤波器的阻尼越大,其响应越平坦,同样,滤波器的阻尼越小,其响应越敏锐。

    5、硬件设计

    此处使用Atium Designer软件设计原理图和PCB,该部分硬件源文件均开源,可以直接下载附件。

    5.1、原理图设计:

    由于LM358D不是轨到轨运放,用于1.65偏置电路时无法提供0~3.3V的动态范围,抬升电路部分先择LMV358。此处应当注意两款芯片的电压范围不同。从理论计算可知,修改输入端RC可以改变滤波器的截止频率,修改反馈端电阻会影响滤波器品质因数Q。该部分电路结构相同,仅需修改电路中电阻、电容参数,便可以实现不同的带通效果,另外修改高通和低通的截止频率还可以实现带阻。读者可以直接根据生产文件,打样、测试,在实际的测试中探索其中的奥妙。

    412f07c04c68e9ddffc386b8f1047d84.png

    图 27硬件原理图

    5.2、PCB设计:

    PCB部分根据实际生产的需求制作了两种拼版文件:V-cut和邮票孔,此部分可以直接使用,读者也可以实际动手操作一遍,此处使用到高级粘贴功能,具体操作此处不再赘述没有兴趣的读者可以自行了解,另外在做V-cut拼版时需要注意各家板厂V-cut使用钻头的直径,实际拼板中需要根据V-cut钻头的直径预留两个相邻板间的间距,此处按照默认0.4mm设计。

    5.2.1、3D效果

    ee674e5c2268222e71050f3dba8d2a29.png

    图 28PCBA渲染图

    5.2.2、

    774278ff528955778731fd26d4b06a1e.png

    邮票孔拼版效果图:

    图 29邮票孔拼版图

    5.2.3、V-cut拼版效果图

    c7271c11fa0c82d64a8be19d8ceea2af.png

    图 30V-Cut拼版图

    5.3、实际测试

    前一级AD620放大和滤波运放LM358耐压范围较高,测试时可以使用5V正负电源供电,后一级LMV358默认不与正5V电源相连,读者可以将P2与正5V相连,如果使用大于正负5V的电源供电,此处可以使用另一路5V电源单独供电。

    4bd5ff95353e38f48017569740d20f6b.png

    图 31实物图

    5.3.1、测试结果

    示波器中蓝色为原始输入信号,第一级放大倍数G=20,黄色为滤波并偏置1.65V的信号。注意观察两个通道的刻度不同。

    f=12Hz时:

    066b488602b2cb035d3e369e18f3fc3d.png

    图 32 f=12Hz时的波形对比

    f=20Hz时

    ba9684eedfa721f51b32208e469955bf.png

    图 33 f=20Hz时的波形对比

    f=60Hz时:

    98b3efefec6737ca623c313c75de4a20.png

    图 34 f=60Hz时波形对比图

    注:此部分测试结果可以参见附件视频。

    至此整个论计算、设计、测试过程结束。

    附录

    Matlab 绘制bode图代码

    %有源二阶模拟带通滤波器

    %LPF 传递函数计算 f0=35Hz C = 1uF,R = R=4.549kΩ g1=k3/(s2+k1*s1+k2)

    c1 = 1e-6;

    r1 = 4549;

    %HPF 传递函数计算 f0=15Hz C = 1uF,R = R=4.549kΩ g2=k6*s2/(s2+k4*s1+k5)

    c2 = 1e-6;

    r2 = 10615;

    for q=0.1:0.2:3

    %LPF

    Avp1 = 3-(1/q);

    %R1 = 2*r1*Avp1/(Avp1-1);

    %R2 = 2*r1*Avp1;

    k1 = (3-Avp1)/(c1*r1);

    k2 = 1/(c1*c1*r1*r1);

    k3 = Avp1/(c1*c1*r1*r1);

    num1=[k3]; %传递函数分子

    den1=[1 k1 k2]; %传递函数分母式为:s2+k1s+k2

    G1=tf(num1,den1);

    %HPF

    Avp2 = 3-(1/q);

    %R1 = 2*r2*Avp2/(Avp2-1);

    %R2 = 2*r2*Avp2;

    k4 = (3-Avp2)/(c2*r2);

    k5 = 1/(c2*c2*r2*r2);

    k6 = Avp2;

    num2=[k6 0 0]; %传递函数分子,此处为s2需要特别注意

    den2=[1 k4 k5]; %传递函数分母格,式为:s2+k4s+k5

    G2=tf(num2,den2);

    p=bodeoptions;

    p.FreqUnits='Hz';

    p.Grid= 'on';

    [num,den] = series(num1,den1,num2,den2); %计算串联传递函数,串联传递函数需要相乘

    printsys(num,den) %显示串联后的总传递函数

    hold on;

    bode(num,den,p); %绘制波特图

    % hold on;

    % bode(G1,p);

    % hold on;

    % bode(G2,p);

    End

    legend('0.1','0.3','0.5','0.7','0.9','1.1','1.3','1.5','1.7','1.9','2.1','2.3','2.5','2.7','2.9');

    title('有源二阶模拟带通滤波器相频特性'); %标题

    测试视频:

    48e72883816e6027c6567c8d75641702.png
    https://www.zhihu.com/video/1188012220288667648
    9f57d4e3347454217a1c718b3ef764bc.png
    https://www.zhihu.com/video/1188012458559549440

    af4bf2424169c1454d16a5b33e26f00f.png

    相关附件请到论坛下载:

    二阶有源带通滤波器设计 - dmBot开源硬件分享 - dmBot Techical Forum - Powered by dmBot!​www.dmbot.cn
    展开全文
  • 二阶有源带通滤波器滤波原理

    万次阅读 多人点赞 2017-01-18 17:20:35
    一阶低通滤波器,包含一组RC构成的滤波器,将谐波过滤一次;两阶低通滤波器,包含两组RC构成的滤波器,将谐波过滤两次。同理三阶滤波。。。。 以下转载地址 http://blog.sina.com.cn/s/blog_61144c49

    转载增加:

    请注意有源滤波器因为运放的有效识别电压和响应频率的影响,适用于低频信号的滤波,对于高频信号最好使用无缘滤波。

    名词解释

    一阶低通滤波器,包含一组RC构成的滤波器,将谐波过滤一次;两阶低通滤波器,包含两组RC构成的滤波器,将谐波过滤两次。同理三阶滤波。。。。

    以下转载地址

    http://blog.sina.com.cn/s/blog_61144c490101jdpn.html

     

    11年的某月,因某个项目的需要,要求对接收的58KHZ超声波信号进行滤波,于是我就在网上找了很多与滤波器相关的资料,最后选择了使用有源二阶带通滤波器来对58KHZ的超声波信号进行滤波。而对于带通滤波器的设计要求是中心频率为58KHZ,带宽为5KHZ左右,中心频率的放大倍数要求尽可能的大。

           在说带通滤波器之前,先说说我对于滤波器的一些基本的认识,首先滤波器按照处理信号类型分类有模拟滤波器和离散滤波器,而我们常用的模拟滤波器又分为有源滤波器和无源滤波器。无源滤波器就是无源器件组成的滤波器,一般都是RC和LC等分立元件构成。常用的无源滤波器有贝塞尔滤波器、巴特沃斯滤波器、切尔雪夫滤波器、椭圆滤波器等等。而有源滤波器则是有源器件构成的,常用的有源器件有运放。按照频率通带来分有低通、高通、带通、带阻、全通滤波器。下面我就开始介绍一下有源带通滤波器,如下图所示:

      

    图1、压控电压源二阶带通滤波器


    图2、无限增益多路负反馈有缘二阶带通滤波器

          首先,我先说一下压控电压源二阶带通滤波器,关于带通滤波器,我们需要知道的几个重要参数:中心频率f0或者中心角频率W0、通带带宽BW、中心频率的放大倍数Auo和品质因素Q。其中按照图1中的原理图,通过查阅相关资料可得到这几个参数的计算公式如下:


    同理,无限增益多路负反馈有源二阶带通滤波器的参数计算公式如下:


        但是,我在按照如上的电路分别对压控电压源二阶带通滤波器和无限增益多路负反馈有源二阶带通滤波器进行的调试过程中,发现按照如上的公式计算出来的参数在电路板上得到的结果大部分并不相同,有时候会相差很大的结果。也许有人会说,先对计算好的电路用multisim进行仿真,仿真过了就把参数焊接到电路板上。其实我也这样试过,但是这样做得到的结果和在电路板上进行实验得到的结果也是不一样的。我在调试的过程中还发现,同样的参数移植到不同的放大器的时候,得到的结果也不一样。还有就是当同一款放大器和相同的一组参数,如果放大器的供电不一样的时候,比如说我给TLE2142正负12V和+12,+6这两种供电方式得到的结果也是不一样的。

         因此,我得到的结论是:理论上的计算和电路的仿真都是在理想情况下得到的,我们在做实物的时候不能完成按照理论上的东西照搬。因为现实中的情况是比较复杂的,至于为什么计算和仿真得到的参数,搬到电路板上为什么不能够得到结论,我个人觉得有两个原因:一个就是PCB板上本身就带有寄生电容、电感和分布电容,虽然这些值很小,但是有可能会影响到电路的结论;第二就是放大器,由于不同的放大器内部的结构是不同的,因此在用不同的放大器的时候,有可能会影响到放大器外围的电路参数。

          下面我就介绍一下我对于两种带通滤波器调试得到的结果:

      首先是压控电压源二阶带通滤波器,我用的放大器型号是TLE2142I,因为各种原因有很多组参数都没有保存并且记录下来,只是记录了如下图3所示的这组参数,这组参数的中心频率是58KHZ,放大倍数为14倍。在调试的时候我发现改变R17、R12和R19的阻值可以改变带通滤波器的中心频率,改变R14和R9的阻值可以改变带通滤波器的带宽且R9的阻值不可以大于R14的两倍。如果阻值大于两倍,则带通滤波器将失去滤波的作用。这个结论和理论计算上得到的公式相吻合。


     图3、单级带通滤波器

         下面则是无限增益带通滤波器的原理图,我使用的放大器型号是SA5532。在调试这个电路的时候我发现减小C503可抬升中心频率的值,反之减小中心频率,减小C504也可抬升中心频率,反之可减小中心频率。这个结论和理论计算上得到的公式相吻合。


     图4、无限增益带通滤波器

    注:图4中Vref为放大器参考电压,其值为6V。

    下面是我调试无限增益带通滤波器图4得到的参数。


    表1、无限增益放大器调试结果

           总之,理论上计算出来的公式大体上每一个参数对应的关系(正比或者反比关系)是对的,但是计算出来的数值和现实调试得到的结果是不一样的。还有就是关于multisim的仿真,大部分仿真得到的结果和实验调试得到结果也是不一样。自己动手得到的实际结果才是王道。     

     


    展开全文
  • 假设需要处理一个20mV的正弦信号,该信号的频率范围是15~35Hz,经过处理后幅值不超过3.3V,且需要经过带通滤波器滤除杂波。 2、滤波器定义 滤波电路又称为滤波器,是一种选频电路,能够使特定频...

    1、背景

    对于微弱的信号的处理方式一般是:放大和滤波,这个过程中就涉及到放大电路的选取、滤波器的选择以及偏置电路的设计。本例以实例的方式讲解并附带参数计算、仿真、实物测试三个环节。

     

    假设需要处理一个20mV的正弦信号,该信号的频率范围是15~35Hz,经过处理后幅值不超过3.3V,且需要经过带通滤波器滤除杂波。

     

    2、滤波器定义

    滤波电路又称为滤波器,是一种选频电路,能够使特定频率范围的信号通过,而且其他频率的信号大大衰减即阻止其通过。按滤波器工作频率范围的不同,可分为:

     

    低通滤波器(Low-pass Filter,LPF)

    高通滤波器(High-pass Filter,HPF)

    带通滤波器(Band-pass Filter,BPF)

    带阻滤波器(Band-rejection Filter,BRF)

    全通滤波器(All-pass Filter,APF)仅由电阻、电容、电感这些无源器件组成的滤波电路称为无源滤波器。如果滤波电路中含有有源元件,如集成运放等,则称为有源滤波器。与无源滤波器相比,有源滤波器具有效率高、带负载能力强、频率特性好,而且在滤波的同时还可以将有用信号放大等一系列有点而得到广泛应用。

     

    2.1、滤波器种类

     

    2.1.1、低通滤波器

    从f0~f2频率之间,幅频特性平直,它可以使信号中低于f2的频率成分几乎不受衰减地通过,而高于f2的频率成分受到极大地衰减。

     

    图1低通滤波器

    2.1.2、高通滤波器

    与低通滤波相反,从频率f1~∞,其幅频特性平直。它使信号中高于f1的频率成分几乎不受衰减地通过,而低于f1的频率成分将受到极大地衰减。

     

    图2高通滤波器

    2.1.3、带通滤波器

    它的通频带在f1~f2之间。它使信号中高于f1而低于f2的频率成分可以不受衰减地通过,而其它成分受到衰减。

     

    图3带通滤波器

    实际上将低通滤波器和高通滤波器串联,即可构成带通滤波器,此处需要注意高通滤波器的截止频率一定要小于低通滤波器的截止频率即fH

     

    图4低通滤波器与高通滤波器的串联

    2.1.4、带阻滤波器

    与带通滤波相反,阻带在频率f1~f2之间。它使信号中高于f1而低于f2的频率成分受到衰减,其余频率成分的信号几乎不受衰减地通过。

     

    图 5带阻滤波器

    实际上将低通滤波器和高通滤波器并联,即可构成带通滤波器带阻滤波器。此处需要注意高通滤波器的截止频率一定要大于低通滤波器的截止频率即fH>fL,否则新构成的滤波器就会变成全通滤波器。

     

    图 6低通滤波器与高通滤波器的并联

     

    2.2、滤波器的基本参数

    理想滤波器是不存在的,在实际滤波器的幅频特性图中,通带和阻带之间应没有严格的界限。在通带和阻带之间存在一个过渡带。在过渡带内的频率成分不会被完全抑制,只会受到不同程度的衰减。当然,希望过渡带越窄越好,也就是希望对通带外的频率成分衰减得越快、越多越好。因此,在设计实际滤波器时,总是通过各种方法使其尽量逼近理想滤波器。

     

    如图所示为理想带通(虚线)和实际带通(实线)滤波器的幅频特性。由图中可见,理想滤波器的特性只需用截止频率描述,而实际滤波器的特性曲线无明显的转折点,两截止频率之间的幅频特性也非常数,故需用更多参数来描述。

     

    图7实际滤波器

    2.2.1、纹波幅度d

    在一定频率范围内,实际滤波器的幅频特性可能呈波纹变化,其波动幅度d与幅频特性的平均值A0相比,越小越好,一般应远小于-3dB。

     

    2.2.2、截止频率fc

    截止频率(CutoffFrequency):指低通滤波器的通带右边频点或高通滤波器的通带左边频点。通常以1dB或3dB相对损耗点的标准定义。相对损耗的参考基准为:低通以DC处插入损耗为基准,高通则以未出现寄生阻带足够高的通带频率处插入损为基准。

     

    2.2.3、中心频率(Center Frequency):

    滤波器通带的中心频率f0,一般取f0=(f1+f2)/2,f1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点。窄带滤波器常以插入损耗最小点为中心频率计算通带带宽。

     

    2.2.4、带宽B和品质因数Q值

    上下两截止频率之间的频率范围称为滤波器带宽,或-3dB带宽,单位为Hz。带宽决定着滤波器分离信号中相邻频率成分的能力——频率分辨力。在电工学中,通常用Q代表谐振回路的品质因数。在二阶振荡环节中,Q值相当于谐振点的幅值增益系数, Q=1/2ξ(ξ——阻尼率)。对于带通滤波器,通常把中心频率f0和带宽 B之比称为滤波器的品质因数Q。例如一个中心频率为500Hz的滤波器,若其中-3dB带宽为10Hz,则称其Q值为50。Q值越大,表明滤波器频率分辨力越高。

    2.2.5、倍频程选择性W

     

    在两截止频率外侧,实际滤波器有一个过渡带,这个过渡带幅频曲线的倾斜程度表明了幅频特性衰减的快慢,它决定着滤波器对带宽外频率成分衰阻的能力。通常用倍频程选择性来表征。所谓倍频程选择性,是指在上截止频率fc2与 2fc2之间,或者在下截止频率fc1与fc1/2之间幅频特性的衰减值,即频率变化一个倍频程时的衰减量或倍频程衰减量以dB/oct表示(octave,倍频程)。显然,衰减越快(即W值越大),滤波器的选择性越好。对于远离截止频率的衰减率也可用10倍频程衰减数表示之。即[dB/10oct]。

     

    2.2.6、滤波器因数(或矩形系数)

    滤波器因数是滤波器选择性的另一种表示方式 ,它是利用滤波器幅频特性的 -60dB带宽与-3dB带宽的比值来衡量滤波器选择性.即理想滤波器 =1,常用滤波器 =1~5,显然,越接近于1,滤波器选择性越好。

     

    2.2.7、插入损耗(Insertion Loss):

    滤波器插入电路之前传播送到负载阻抗的功率与滤波器插入之后传送到负载阻抗的比值的对数,称为滤波器插入损耗。常以中心或截止频率处损耗表征。

     

    3、计算过程

     

    3.1、1.65V偏置电路计算

    抬升电路本质上是一个加法器,其原理是在输入信号的基础加一个偏置量。此处需要将被测信号抬升至0~3.3V范围内,假设信号为正弦信号,且在0V上下波动,因此需要将信号抬升1.65V。整个计算过程使用虚短、虚断的假设,列出如下两个方程,将②式化简并带入①式,可以求得③式。从化简后的③式可以看出:u0=ku2+gu1,其中k、g仅与电阻的大小有关,k为加法电路偏置,g为输入信号增益,此处仅实现1.65V偏置,因此k=2,g=1。如需在偏置的基础上增加对输入信号的放大,可以适当调节电阻阻值,此处不再赘述。为简化电阻选值,假设R1=R3,则、R2=2R1=2R3。该结论适用于同类的抬升电路。

     

    图8偏置电路图

     

    图9偏置电路

     

    根据虚短、虚断列出下面两个方程:

     

    推导出下式:

    则是偏置电压的偏置常数,是闭环增益,此处希望,,带入可得:。即偏置电路中的二等分偏置电阻是反馈电阻的两倍,反馈端对地电阻和反馈电阻相等。对于有电容的电路,上式电阻(R)可以用阻抗(z)的形式表示。

     

    此处选择输入电阻为100KΩ,则偏置电路电阻为200KΩ。

    3.2、滤波器计算

    3.2.1、一阶有源滤波器

     

    图10一阶LPF

    3.2.2、二阶低通滤波器

    为改善滤波效果,使f>>f0时,信号衰减的更快,一般在上图所示的一阶低通滤波器的基础上再增加一级RC电路就构成二阶有源低通滤波器,如下图所示。

     

    图11二阶LPF

    3.2.3、二阶压控型低通滤波器

    二阶压控型低通有源滤波器中的一个电容器C1原来是接地的,现在改接到输出端。显然C1的改接不影响通带增益。

     

    图12二阶压控型LPF

    二阶LPF传递函数:

     

     

    通带增益:

     

    上式表明,该滤波器的通带增益应小于3,才能保障电路稳定工作。

    3.2.4、二阶高通滤波器

    高通滤波器电路与低通滤波器在电路上具备对偶性,通过把低通滤波器电路中的R、C互换位置即可得到高通滤波器,并且相应的截止频率也具备这种特性。

     

    图13二阶HPF

    二阶HPF传递函数:

     

     

    通带增益:

     

     

    3.2、二阶滤波器计算

    当时,幅频特性曲线最平坦 成为Butterworth滤波器;当Q=1时,称为Chebyshev滤波器;当Q>0.707时后,特性曲线将出现峰值,Q值越大,峰值越高

    LPF:假设待计算滤波器Q=0.7(读者可以根据实际情况取值,此处仅以0.7为例设计)f=35Hz、。

    根据RC滤波器求解RC值:

    电容值一般取1uF以下,此处以1uF为例计算。

     

     

    求得R=4.549kΩ,实际取值R=4.3 kΩ。

    根据Q值求解R1和R2,当f=f0时,

     

     

    则:

     

     

    解得:R1=25.06kΩ,R2=14.29kΩ

     

    实际取值:R1=24kΩ,R2=15kΩ(实际电阻值是离散数据,选取相近阻值即可)。

    HPF:由于同类型LPF和HPF具有对偶性,实际计算按照LPF计算,电路中替换RC位置即可。

     

    假设待计算滤波器Q=0.7(读者可以根据实际情况取值,此处仅以0.7为例设计)、f0=15hz。

     

    根据RC滤波器求解RC值:

     

    电容值一般取1uF以下,此处以1uF为例计算。

     

     

    求得R=10.615kΩ,实际取值R=10 kΩ。

     

    根据Q值求解R1和R2,当f=f0时,

     

     

    则:

     

     

    解得:R1=58.479kΩ,R2=33.333kΩ

     

    实际取值:R1=56kΩ,R2=33kΩ(实际电阻值是离散数据,选取相近阻值即可)。

    同理可以计算出Q=1时

     

    LPF:R1=R2=18.19kΩ,实际取值R1=R2=18kΩ

    HPF:R1=R2=42.46 kΩ,R1=R2=43kΩ

     

    同理可以计算出Q=2.5时

     

    LPF:R1=14.784kΩ,R2=23.6548 kΩ,实际取值R1=15kΩ、R2=24kΩ

    HPF:R1= 34.499 kΩ,R2=55.198 kΩ,实际取值R1=33 kΩ、R2=56kΩ

    3.3、Matlab频谱相应仿真

     

    取Q=0.1~3,步长取0.2,绘制滤波器的波特图,其结果如下图所示,matlab绘图程序详见附录。

     

    图14带通滤波器不同Q值下的波特图

    4、Multisim仿真

     

    4.1、搭建仿真电路图

     

    图15仿真电路图

    4.2、仿真结果

     

    4.2.1、Q=0.7时

    波特图:

     

    图16 Q=0.7时幅频特性图

     

    图17 Q=0.7时相频特性图

     

    各点波形输出:(注:紫色:LPF滤波后波形,蓝色:HPF滤波后波形,黄色:1.65V抬升后波形)

     

    图18仿真波形图

    4.2.2、Q=1时

     

    仿真图:

     

    图19仿真电路图

    波特图:

     

    图20 Q=1时幅频特性图

     

    图21 Q=1时相频特性图

     

    各点波形输出:(注:紫色:LPF滤波后波形,蓝色:HPF滤波后波形,黄色:1.65V抬升后波形)

     

    图22仿真波形图

    4.2.3、Q=2.5时

     

    仿真图:

     

    图23仿真图

    波特图:(注意:此处F=50dB)

     

    图24 Q=2.5幅频特性图

     

    图25 Q=2.5时相频特性图

     

    各点波形输出:((注:紫色:LPF滤波后波形,蓝色:HPF滤波后波形,黄色:1.65V抬升后波形)

     

    图26仿真波形图

    从上面Q值的对比可以发现:Q 因子的值越低,滤波器的带宽越宽,因此 Q 因子越高,滤波器越窄,“选择性”越强。由于有源带通滤波器(二阶系统)的品质因数与滤波器响应在其中心谐振频率(fr )附近的“锐度”有关,因此它也可以被认为是“阻尼系数”。因为滤波器的阻尼越大,其响应越平坦,同样,滤波器的阻尼越小,其响应越敏锐。

     

    5、硬件设计

     

    此处使用Atium Designer软件设计原理图和PCB,该部分硬件源文件均开源,可以直接下载附件。

     

    5.1、原理图设计:

    由于LM358D不是轨到轨运放,用于1.65偏置电路时无法提供0~3.3V的动态范围,抬升电路部分先择LMV358。此处应当注意两款芯片的电压范围不同。从理论计算可知,修改输入端RC可以改变滤波器的截止频率,修改反馈端电阻会影响滤波器品质因数Q。该部分电路结构相同,仅需修改电路中电阻、电容参数,便可以实现不同的带通效果,另外修改高通和低通的截止频率还可以实现带阻。读者可以直接根据生产文件,打样、测试,在实际的测试中探索其中的奥妙。

     

    图27硬件原理图

     

    5.2、PCB设计:

    PCB部分根据实际生产的需求制作了两种拼版文件:V-cut和邮票孔,此部分可以直接使用,读者也可以实际动手操作一遍,此处使用到高级粘贴功能,具体操作此处不再赘述没有兴趣的读者可以自行了解,另外在做V-cut拼版时需要注意各家板厂V-cut使用钻头的直径,实际拼板中需要根据V-cut钻头的直径预留两个相邻板间的间距,此处按照默认0.4mm设计。

    5.2.1、3D效果

     

    图28PCBA渲染图

    5.2.2、邮票孔拼版效果图:

     

    图29邮票孔拼版图

    5.2.3、V-cut拼版效果图

     

    图30V-Cut拼版图

    5.3、实际测试

    前一级AD620放大和滤波运放LM358耐压范围较高,测试时可以使用5V正负电源供电,后一级LMV358默认不与正5V电源相连,读者可以将P2与正5V相连,如果使用大于正负5V的电源供电,此处可以使用另一路5V电源单独供电。

     

    图31实物图

    5.3.1、测试结果

    示波器中蓝色为原始输入信号,第一级放大倍数G=20,黄色为滤波并偏置1.65V的信号。注意观察两个通道的刻度不同。

    f=12Hz时:

     

    图32 f=12Hz时的波形对比

    f=20Hz时

     

    图33 f=20Hz时的波形对比

    f=60Hz时:

     

    图34 f=60Hz时波形对比图

     

    注:此部分测试结果可以参见附件视频。

     

     

     

     

     

    附录

    Matlab 绘制bode图代码

     

    %有源二阶模拟带通滤波器%LPF 传递函数计算f0=35Hz C = 1uF,R = R=4.549kΩ g1=k3/(s2+k1*s1+k2) c1  =1e-6;r1  =4549;%HPF 传递函数计算f0=15Hz C = 1uF,R = R=4.549kΩ g2=k6*s2/(s2+k4*s1+k5) c2  =1e-6;r2  =10615;for q=0.1:0.2:3    %LPF   Avp1 = 3-(1/q);    %R1 = 2*r1*Avp1/(Avp1-1);    %R2 = 2*r1*Avp1;   k1  = (3-Avp1)/(c1*r1);   k2  = 1/(c1*c1*r1*r1);   k3  = Avp1/(c1*c1*r1*r1);   num1=[k3]; %传递函数分子   den1=[1 k1 k2]; %传递函数分母式为:s2+k1s+k2   G1=tf(num1,den1);    %HPF   Avp2 = 3-(1/q);    %R1 = 2*r2*Avp2/(Avp2-1);    %R2 = 2*r2*Avp2;   k4  = (3-Avp2)/(c2*r2);   k5  = 1/(c2*c2*r2*r2);   k6  = Avp2;    num2=[k60 0];                                %传递函数分子,此处为s2需要特别注意   den2=[1 k4 k5];                               %传递函数分母格,式为:s2+k4s+k5   G2=tf(num2,den2);   p=bodeoptions;   p.FreqUnits='Hz';   p.Grid= 'on';   [num,den] = series(num1,den1,num2,den2); %计算串联传递函数,串联传递函数需要相乘   printsys(num,den)                             %显示串联后的总传递函数   hold on;      bode(num,den,p);                               %绘制波特图%    hold on;%    bode(G1,p);%    hold on;%    bode(G2,p);   Endlegend('0.1','0.3','0.5','0.7','0.9','1.1','1.3','1.5','1.7','1.9','2.1','2.3','2.5','2.7','2.9');title('有源二阶模拟带通滤波器相频特性'); %标题
    展开全文
  • 本文介绍了基于无限增益多路反馈型二阶有源带通滤波器的设计方法、参数计算过程,并通过Multisim仿真进行了仿真,其截止频率与设计要求基本一致。
  • 假设需要处理一个20mV的正弦信号,该信号的频率范围是15~35Hz,经过处理后幅值不超过3.3V,且需要经过带通滤波器滤除杂波。2、滤波器定义滤波电路又称为滤波器,是一种选频电路,能够使特定频率范围的信号通过,...
  • 带通滤波器可用于隔离或滤除位于特定频带或频率范围内的某些频率。简单的RC无源滤波器中的截止频率或ƒc点可以通过仅使用一个与无极性电容器串联的电阻器来精确控制,并且根据连接它们的方式,我们可以看到低通或...
  • 二阶无源滤波器

    千次阅读 2020-12-20 03:22:01
    了解RC 无源滤波器的种类、基本结构及其特性。 2. 学会列写无源滤波器网络函数的方法。 3. 学会测量无源滤波器幅频特性的方法。二、实验内容1. 列写无源低通、高通、带通和带阻滤波器的网络函数。 2. 用示波器...
  • 什么是二阶滤波器?有什么优点?

    千次阅读 2022-02-09 14:06:51
    滤波器是常见的信号调理电路,其中低通滤波器最为普遍,我们常听说一阶滤波器二阶滤波器,二者有什么差别呢? 低通滤波器有3个重要参数:通带、阻带和过度带,理想的滤波器是没有过度带的,超过Fc截止频率的成分...
  • 二阶无源滤波器.doc

    千次阅读 2020-12-20 03:22:03
    nbsp无线电电子学/电信技术二阶无源滤波器.doc6页本文档一共被下载:次,您可全文免费在线阅读后下载本文档。 下载提示1.本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予...
  • 无源滤波器设计与选型

    千次阅读 2021-08-05 14:04:04
    无源滤波器设计与选型 简介: 无源滤波器,顾名思义,就是不需要额外提供电源。滤波器一般是由电容器、电感和电阻适当组合而成。 有源滤波器就需要用到运放等。 无源滤波电路的结构简单,易于设计,但它的通带放大...
  • RC滤波器

    千次阅读 2021-10-17 11:03:49
    3、二阶RC低通滤波器 二阶 RC 电路对同频带外信号的抑制能力更强,滤波效果更好。截止频率和一阶截止频率相同。 RC滤波几乎都是用有源的,因为电阻会消耗信号能量,不管是信号还是噪声,无源用LC,有源用RC。 4、RC...
  • 滤波器可以定义为:它是一种用于重塑,修改和阻断所有不需要的频率的电路。通常,在低频(<...通常使用三种滤波器设计:低通滤波器,高通滤波器和带通滤波器本文讨论低通滤波器。1什么是低通滤...
  • 电子设计教程2:RC低通滤波器

    万次阅读 多人点赞 2020-02-02 18:29:42
      吃火锅的时候,圆滚滚的鱼丸不好用筷子夹到,我会用漏勺把鱼丸捞出来,让火锅汤底漏出去,这个漏勺就相当于一个滤波器。 波器的分类   电子领域的滤波器,...  无源滤波器:一般由电容、电感、电阻等无源元...
  • 转:二阶有源低通滤波器设计

    万次阅读 2018-09-14 11:44:31
    滤波一般可分为有源滤波和无源滤波, 有源滤波可以使幅频特性比较陡峭, 而无源滤波设计简单易行, 但幅频特性不如滤波器, 而且体积较大。从滤波器阶数可分为一阶和高阶, 阶数越高, 幅频特性越陡峭。高阶滤波器通常可由...
  • 二阶有源低通滤波器设计

    万次阅读 多人点赞 2016-04-13 18:58:45
    滤波一般可分为有源滤波和无源滤波, 有源滤波可以使幅频特性比较陡峭, 而无源滤波设计简单易行, 但幅频特性不如滤波器, 而且体积较大。从滤波器阶数可分为一阶和高阶, 阶数越高, 幅频特性越陡峭。高阶滤波器通常可由...
  • 假设需要处理一个20mV的正弦信号,该信号的频率范围是15~35Hz,经过处理后幅值不超过3.3V,且需要经过带通滤波器滤除杂波。2、滤波器定义滤波电路又称为滤波器,是一种选频电路,能够使特定频率范围的信号通过,...
  • 二阶有源滤波器设计

    万次阅读 多人点赞 2018-10-31 17:21:31
    对于无源二阶低通滤波器: 其幅頻方程为: 我们从中可以看出其通带截止频率为 有其品质因子为0.372。 我们根据上图得到二阶无源低通滤波器的品质因子只有0.372,如果希望Q大于0.5,就需要在ω=ωo附近...
  • 假设需要处理一个20mV的正弦信号,该信号的频率范围是15~35Hz,经过处理后幅值不超过3.3V,且需要经过带通滤波器滤除杂波。2、滤波器定义滤波电路又称为滤波器,是一种选频电路,能够使特定频率范围的信号通过,...
  • 滤波_视频讲解 图片来源视频 滤波是将信号中特定波段频率滤除,得到想要...带通:有RC,LC,还有专用带通滤波器,通常用专用带通滤波器(三端和五端滤波器) 仅仅RC LC滤波的叫无源滤波 RC LC加上放大器的叫有源滤波
  • 有源低通滤波器是由有源元件和一部分无源元件(电阻、电容、电感)共同组成的低通滤波器。有源元件指的是必须要有供电电源才能正常工作的元件,最常见的有源元件是运算放大器。如何判断滤波器的阶数一般来说,判断...
  • RLC无源滤波器 由RLC网络构成。带负载能力差,无放大作用,特性不理想,边沿不陡。 H(s)=Y(s)X(s)=Au˙=Uo˙Ui˙ H(s)=\frac{Y(s)}{X(s)}=\dot{A_u}=\frac{\dot{U_o}}{\dot{U_i}} H(s)=X(s)Y(s)​=Au​˙​=Ui​˙​...
  • 实验六 有源滤波器

    千次阅读 多人点赞 2020-11-29 11:42:17
    实验六 有源滤波器一、实验目的二、仪器及设备三、预习要求画出三个电路的幅频特性曲线。四、实验内容l.低通滤波电路2.高通滤波电路3.带阻滤波电路(1)实测电路中心频率。(2)以实测中心频率为中心,测出电路幅频特性...
  • 几种常用的无源滤波器的特征

    千次阅读 2020-11-20 16:07:35
    按电路组成分:LC无源、RC无源、由特殊元件构成的无源滤波器、RC有源滤波器 按照传递函数的微分方程的阶数:一阶、二阶、……高阶。 几种滤波器的幅频特性曲线 上图中(a)低通滤波器、(b)高通滤波器、(c)带通...
  • 图中,R1和C1构成了无源RC低通滤波器,运放只起到更随或放大的作用。 通过选择R2和R3的值可以将输出信号放大,这里仿真时将R2设为0只是为了不放大,便于观察波特图。 RC低通滤波器的计算过程如下: 变换后...
  • 分享一篇科普文~了解一下电阻 - 电容(RC)低通滤波器是什么以及在何处使用它们能让你更好的掌握高端的电路设计实战。本文将介绍了滤波的概念,并详细说明了电阻 - 电容(RC)低通滤波器的用途和特性。 时域和频域当您在...
  • 低通,高通,带通,带阻滤波器的定义

    万次阅读 多人点赞 2019-07-15 10:38:16
    1、低通:(Low-pass filter)是容许低于截止频率的信号通过,但高于截止频率的信号不能通过的电子...3、带通:是指能通过某一频率范围内的频率分量、但将其他范围的频率分量衰减到极低水平的滤波器,与带阻滤波器的...
  • 备注:截止频率f=1/2pi*sqrt(r*r...摘要 设计一种压控电压源型二阶有源低通滤波电路,并利用Multisim10仿真软件对电路的频率特性、特征参量等进行了仿真分析,仿真结果与理论设计一致,为有源滤波器的电路设计提供了EDA
  • 有源滤波电路设计

    千次阅读 2022-02-23 19:10:29
    目录一、低通滤波器1、同相输入低通滤波器(1)一阶低通滤波电路(2)二阶低通滤波电路(压控电压源;Sallen-Key)2、反相输入低通滤波器(1)一阶低通滤波...即在一阶无源低通滤波器的基础上,加了一个集成运放。 它的
  • 滤波器原理

    万次阅读 2018-07-12 16:24:20
    滤波器原理滤波器是一种选频装置,可以使信号中特定的频率成分通过,而极大地衰减其它频率成分。在测试装置中,利用滤波器的这种选频作用,可以滤除干扰噪声或进行频谱分析。广义地讲,任何一种信息传输的通道(媒质...

空空如也

空空如也

1 2 3 4 5 6
收藏数 108
精华内容 43
热门标签
关键字:

二阶rc无源带通滤波器