• 1.WEBUI页面打不开怎么办? systemctl status firewalld 查看防火墙 systemctl stop firewalld 查看防火墙 systemctl disable firewalld 查看防火墙 ...2.链接拒绝(Connection refused)的错误?...

    1.WEBUI页面打不开怎么办?  

     

    systemctl status firewalld 查看防火墙

    systemctl stop firewalld 查看防火墙

    systemctl disable firewalld 查看防火墙

     

    2.链接拒绝(Connection refused)的错误?

     

    查看主机名与映射的关系

    集群没启动

     

    3.格式化错误

     

    删除data 和 logs目录,重新在主节点执行hdfs namenode -format的操作

     

    4.Cluster ID 错误

     

    删除data 和 logs目录,重新在主节点执行hdfs namenode -format的操作

    把集群的数据统一,同样可以解决Cluster ID的错误

     

    5.重启网卡失败,检查后配置没问题!

     

    Job for network.service failed because the control process exited with error code. See “systemctl status network.service” and “journalctl -xe” for details

     

    systemctl stop NetworkManager 关闭网卡

    systemctl disable NetworkManager 禁用网卡

    service network restart 重启网卡即可成功

     

    6. ifconfig 如果发现命令不存在

     

    需要执行yum -y install net-tools

     

    7. Centos图形化桌面如果去掉?

     

    https://blog.csdn.net/VickHUC/article/details/89455569

     

    8. 虚拟机有时候打不开怎么办?    

     

    删除存储虚拟机的*.lck结尾的文件,即可打开虚拟机

    我把我自己的虚拟机拷贝给另外的电脑可不可以?

    可以,但是要注意的问题:当你打开虚拟机的时候,

    要注意他会询问你,是移动还是复制,记得点“我已移动虚拟机”

    展开全文
  • 总结了学生在学习大数据开发过程中遇到的难点,帮助大家逐一攻克难关! 大数据开发,有4个阶段: 1、数据采集 想成为云计算大数据Spark高手,看这里!戳我阅读 年薪50W的Java程序员转大数据学习路线戳我阅读 ...

    大数据开发工程师,很多人都向往的职业,但总有这样那样的理由,在逼迫这自己放弃。明明知道大数据良好的前景,明明知道学完大数据可以找到一份很好的工作,但就是不会对自己下狠心。总结了学生在学习大数据开发过程中遇到的难点,帮助大家逐一攻克难关!

     

    大数据开发,有4个阶段:

    1、数据采集

    想成为云计算大数据Spark高手,看这里!戳我阅读

    年薪50W的Java程序员转大数据学习路线戳我阅读

    大数据人工智能发展趋势与前景  戳我阅读

    最全最新的大数据系统交流路径!!戳我阅读

    2019最新!大数据工程师就业薪资,让人惊艳!戳我阅读

    数据采集有线上和线下两种方式,线上一般通过爬虫、通过抓取,或者通过已有应用系统的采集,在这个阶段,我们可以做一个大数据采集平台,依托自动爬虫(使用python或者nodejs制作爬虫软件),ETL工具、或者自定义的抽取转换引擎,从文件中、数据库中、网页中专项爬取数据,如果这一步通过自动化系统来做的话,可以很方便的管理所有的原始数据,并且从数据的开始对数据进行标签采集,可以规范开发人员的工作。并且目标数据源可以更方便的管理。

    数据采集的难点在于多数据源,例如mysql、postgresql、sqlserver 、 mongodb 、sqllite。还有本地文件、excel统计文档、甚至是doc文件。如何将他们规整的、有方案的整理进我们的大数据流程中也是必不可缺的一环。

    2、数据汇聚

    数据的汇聚是大数据流程关键的一步,你可以在这里加上数据标准化,你也可以在这里做数据清洗,数据合并,还可以在这一步将数据存档,将确认可用的数据经过可监控的流程进行整理归类,这里产出的所有数据就是整个公司的数据资产了,到了一定的量就是一笔固定资产。

    数据汇聚的难点在于如何标准化数据,例如表名标准化,表的标签分类,表的用途,数据的量,是否有数据增量?,数据是否可用? 需要在业务上下很大的功夫,必要时还要引入智能化处理,例如根据内容训练结果自动打标签,自动分配推荐表名、表字段名等。还有如何从原始数据中导入数据等。

    3、数据转换和映射

    经过数据汇聚的数据资产如何提供给具体的使用方使用?在这一步,主要就是考虑数据如何应用,如何将两个?三个?数据表转换成一张能够提供服务的数据。然后定期更新增量。

    经过前面的那几步,在这一步难点并不太多了,如何转换数据与如何清洗数据、标准数据无二,将两个字段的值转换成一个字段,或者根据多个可用表统计出一张图表数据等等。

    4、数据应用

    数据的应用方式很多,有对外的、有对内的,如果拥有了前期的大量数据资产,通过restful API提供给用户?或者提供流式引擎 KAFKA 给应用消费? 或者直接组成专题数据,供自己的应用查询?这里对数据资产的要求比较高,所以前期的工作做好了,这里的自由度很高。

    大数据开发的难点主要是监控,怎么样规划开发人员的工作?开发人员随随便便采集了一堆垃圾数据,并且直连数据库。 短期来看,这些问题比较小,可以矫正。 但是在资产的量不断增加的时候,这就是一颗定时炸弹,随时会引爆,然后引发一系列对数据资产的影响,例如数据混乱带来的就是数据资产的价值下降,客户信任度变低。

     

     

     

    大数据学习路线

    java(Java se,javaweb)
    Linux(shell,高并发架构,lucene,solr)
    Hadoop(Hadoop,HDFS,Mapreduce,yarn,hive,hbase,sqoop,zookeeper,flume)
    机器学习(R,mahout)
    Storm(Storm,kafka,redis)
    Spark(scala,spark,spark core,spark sql,spark streaming,spark mllib,spark graphx)
    Python(python,spark python) 
    云计算平台(docker,kvm,openstack)

    名词解释

    一、Linux
    lucene: 全文检索引擎的架构
    solr: 基于lucene的全文搜索服务器,实现了可配置、可扩展并对查询性能进行了优化,并且提供了一个完善的功能管理界面。

    二、Hadoop
    HDFS: 分布式存储系统,包含NameNode,DataNode。NameNode:元数据,DataNode。DataNode:存数数据。
    yarn: 可以理解为MapReduce的协调机制,本质就是Hadoop的处理分析机制,分为ResourceManager NodeManager。
    MapReduce: 软件框架,编写程序。
    Hive: 数据仓库 可以用SQL查询,可以运行Map/Reduce程序。用来计算趋势或者网站日志,不应用于实时查询,需要很长时间返回结果。
    HBase: 数据库。非常适合用来做大数据的实时查询。Facebook用Hbase存储消息数据并进行消息实时的分析
    ZooKeeper: 针对大型分布式的可靠性协调系统。Hadoop的分布式同步等靠Zookeeper实现,例如多个NameNode,active standby切换。
    Sqoop: 数据库相互转移,关系型数据库和HDFS相互转移
    Mahout: 可扩展的机器学习和数据挖掘库。用来做推荐挖掘,聚集,分类,频繁项集挖掘。
    Chukwa: 开源收集系统,监视大型分布式系统,建立在HDFS和Map/Reduce框架之上。显示、监视、分析结果。
    Ambari: 用于配置、管理和监视Hadoop集群,基于Web,界面友好。

    二、Cloudera
    Cloudera Manager: 管理 监控 诊断 集成
    Cloudera CDH:(Cloudera's Distribution,including Apache Hadoop) Cloudera对Hadoop做了相应的改变,发行版本称为CDH。
    Cloudera Flume: 日志收集系统,支持在日志系统中定制各类数据发送方,用来收集数据。
    Cloudera Impala: 对存储在Apache Hadoop的HDFS,HBase的数据提供直接查询互动的SQL。
    Cloudera hue: web管理器,包括hue ui,hui server,hui db。hue提供所有CDH组件的shell界面的接口,可以在hue编写mr。

    三、机器学习/R
    R: 用于统计分析、绘图的语言和操作环境,目前有Hadoop-R
    mahout: 提供可扩展的机器学习领域经典算法的实现,包括聚类、分类、推荐过滤、频繁子项挖掘等,且可通过Hadoop扩展到云中。

    四、storm
    Storm: 分布式,容错的实时流式计算系统,可以用作实时分析,在线机器学习,信息流处理,连续性计算,分布式RPC,实时处理消息并更新数据库。
    Kafka: 高吞吐量的分布式发布订阅消息系统,可以处理消费者规模的网站中的所有动作流数据(浏览,搜索等)。相对Hadoop的日志数据和离线分析,可以实现实时处理。目前通过Hadoop的并行加载机制来统一线上和离线的消息处理
    Redis: 由c语言编写,支持网络、可基于内存亦可持久化的日志型、key-value型数据库。

    五、Spark
    Scala: 一种类似java的完全面向对象的编程语言。

     

    jblas: 一个快速的线性代数库(JAVA)。基于BLAS与LAPACK,矩阵计算实际的行业标准,并使用先进的基础设施等所有的计算程序的ATLAS艺术的实现,使其非常快。

    Spark: Spark是在Scala语言中实现的类似于Hadoop MapReduce的通用并行框架,除了Hadoop MapReduce所具有的优点,但不同于MapReduce的是job中间输出结果可以保存在内存中,从而不需要读写HDFS,因此Spark能更好的适用于数据挖掘与机器学习等需要迭代的MapReduce算法。可以和Hadoop文件系统并行运作,用过Mesos的第三方集群框架可以支持此行为。
    Spark SQL: 作为Apache Spark大数据框架的一部分,可用于结构化数据处理并可以执行类似SQL的Spark数据查询
    Spark Streaming: 一种构建在Spark上的实时计算框架,扩展了Spark处理大数据流式数据的能力。
    Spark MLlib: MLlib是Spark是常用的机器学习算法的实现库,目前(2014.05)支持二元分类,回归,聚类以及协同过滤。同时也包括一个底层的梯度下降优化基础算法。MLlib以来jblas线性代数库,jblas本身以来远程的Fortran程序。

     

     

    Spark GraphX: GraphX是Spark中用于图和图并行计算的API,可以在Spark之上提供一站式数据解决方案,可以方便且高效地完成图计算的一整套流水作业。

     

    Fortran: 最早出现的计算机高级程序设计语言,广泛应用于科学和工程计算领域。

    BLAS: 基础线性代数子程序库,拥有大量已经编写好的关于线性代数运算的程序。
    LAPACK: 著名的公开软件,包含了求解科学与工程计算中最常见的数值线性代数问题,如求解线性方程组、线性最小二乘问题、特征值问题和奇异值问题等。
    ATLAS: BLAS线性算法库的优化版本。
    Spark Python: Spark是由scala语言编写的,但是为了推广和兼容,提供了java和python接口。

    六、Python
    Python: 一种面向对象的、解释型计算机程序设计语言。


    七、云计算平台
    Docker: 开源的应用容器引擎
    kvm: (Keyboard Video Mouse)

    openstack:  开源的云计算管理平台项目

    展开全文
  • 今天我们聊聊大数据开发,大数据开发共有四个阶段:数据采集,数据汇聚,数据转换和映射,数据应用 。那么每一个阶段,他们的难点有都是什么呢? 数据采集 数据采集有线上和线下两种方式,线上一般通过爬虫、通过...

    今天我们聊聊大数据开发,大数据开发共有四个阶段:数据采集,数据汇聚,数据转换和映射,数据应用 。那么每一个阶段,他们的难点有都是什么呢?

    数据采集

    数据采集有线上和线下两种方式,线上一般通过爬虫、通过抓取,或者通过已有应用系统的采集,在这个阶段,我们可以做一个大数据采集平台,依托自动爬虫(使用python或者nodejs制作爬虫软件),ETL工具、或者自定义的抽取转换引擎,从文件中、数据库中、网页中专项爬取数据,如果这一步通过自动化系统来做的话,可以很方便的管理所有的原始数据,并且从数据的开始对数据进行标签采集,可以规范开发人员的工作。并且目标数据源可以更方便的管理。

    数据采集的难点在于多数据源,例如mysql、postgresql、sqlserver 、 mongodb 、sqllite。还有本地文件、excel统计文档、甚至是doc文件。如何将他们规整的、有方案的整理进我们的大数据流程中也是必不可缺的一环。

    【大数据开发学习资料领取方式】:加入大数据技术学习交流群458345782,点击加入群聊,私信管理员即可免费领取

    数据汇聚

    数据的汇聚是大数据流程最关键的一步,你可以在这里加上数据标准化,你也可以在这里做数据清洗,数据合并,还可以在这一步将数据存档,将确认可用的数据经过可监控的流程进行整理归类,这里产出的所有数据就是整个公司的数据资产了,到了一定的量就是一笔固定资产。

    数据汇聚的难点在于如何标准化数据,例如表名标准化,表的标签分类,表的用途,数据的量,是否有数据增量?,数据是否可用? 需要在业务上下很大的功夫,必要时还要引入智能化处理,例如根据内容训练结果自动打标签,自动分配推荐表名、表字段名等。还有如何从原始数据中导入数据等。

    数据转换和映射

    经过数据汇聚的数据资产如何提供给具体的使用方使用?在这一步,主要就是考虑数据如何应用,如何将两个?三个?数据表转换成一张能够提供服务的数据。然后定期更新增量。

    经过前面的那几步,在这一步难点并不太多了,如何转换数据与如何清洗数据、标准数据无二,将两个字段的值转换成一个字段,或者根据多个可用表统计出一张图表数据等等。

    数据应用

    数据的应用方式很多,有对外的、有对内的,如果拥有了前期的大量数据资产,通过restful API提供给用户?或者提供流式引擎 KAFKA 给应用消费? 或者直接组成专题数据,供自己的应用查询?这里对数据资产的要求比较高,所以前期的工作做好了,这里的自由度很高。

     

     

    展开全文
  • 总结了学生在学习大数据开发过程中遇到的难点,帮助大家逐一攻克难关! 大数据开发,有4个阶段: 1、数据采集 数据采集有线上和线下两种方式,线上一般通过爬虫、通过抓取,或者通过已有应用系统的采集,在这个...

    大数据开发工程师,很多人都向往的职业,但总有这样那样的理由,在逼迫这自己放弃。明明知道大数据良好的前景,明明知道学完大数据可以找到一份很好的工作,但就是不会对自己下狠心。总结了学生在学习大数据开发过程中遇到的难点,帮助大家逐一攻克难关!

    大数据开发,有4个阶段:

    1、数据采集

    数据采集有线上和线下两种方式,线上一般通过爬虫、通过抓取,或者通过已有应用系统的采集,在这个阶段,我们可以做一个大数据采集平台,依托自动爬虫(使用python或者nodejs制作爬虫软件),ETL工具、或者自定义的抽取转换引擎,从文件中、数据库中、网页中专项爬取数据,如果这一步通过自动化系统来做的话,可以很方便的管理所有的原始数据,并且从数据的开始对数据进行标签采集,可以规范开发人员的工作。并且目标数据源可以更方便的管理。

    数据采集的难点在于多数据源,例如mysql、postgresql、sqlserver 、 mongodb 、sqllite。还有本地文件、excel统计文档、甚至是doc文件。如何将他们规整的、有方案的整理进我们的大数据流程中也是必不可缺的一环。

    2、数据汇聚

    数据的汇聚是大数据流程关键的一步,你可以在这里加上数据标准化,你也可以在这里做数据清洗,数据合并,还可以在这一步将数据存档,将确认可用的数据经过可监控的流程进行整理归类,这里产出的所有数据就是整个公司的数据资产了,到了一定的量就是一笔固定资产。

    数据汇聚的难点在于如何标准化数据,例如表名标准化,表的标签分类,表的用途,数据的量,是否有数据增量?,数据是否可用? 需要在业务上下很大的功夫,必要时还要引入智能化处理,例如根据内容训练结果自动打标签,自动分配推荐表名、表字段名等。还有如何从原始数据中导入数据等。

    3、数据转换和映射

    经过数据汇聚的数据资产如何提供给具体的使用方使用?在这一步,主要就是考虑数据如何应用,如何将两个?三个?数据表转换成一张能够提供服务的数据。然后定期更新增量。

    经过前面的那几步,在这一步难点并不太多了,如何转换数据与如何清洗数据、标准数据无二,将两个字段的值转换成一个字段,或者根据多个可用表统计出一张图表数据等等。

    4、数据应用

    数据的应用方式很多,有对外的、有对内的,如果拥有了前期的大量数据资产,通过restful API提供给用户?或者提供流式引擎 KAFKA 给应用消费? 或者直接组成专题数据,供自己的应用查询?这里对数据资产的要求比较高,所以前期的工作做好了,这里的自由度很高。

    大数据开发的难点主要是监控,怎么样规划开发人员的工作?开发人员随随便便采集了一堆垃圾数据,并且直连数据库。 短期来看,这些问题比较小,可以矫正。 但是在资产的量不断增加的时候,这就是一颗定时炸弹,随时会引爆,然后引发一系列对数据资产的影响,例如数据混乱带来的就是数据资产的价值下降,客户信任度变低。

    大数据学习路线

    java(Java se,javaweb)
    Linux(shell,高并发架构,lucene,solr)
    Hadoop(Hadoop,HDFS,Mapreduce,yarn,hive,hbase,sqoop,zookeeper,flume)
    机器学习(R,mahout)
    Storm(Storm,kafka,redis)
    Spark(scala,spark,spark core,spark sql,spark streaming,spark mllib,spark graphx)
    Python(python,spark python) 
    云计算平台(docker,kvm,openstack)

    名词解释

    一、Linux
    lucene: 全文检索引擎的架构
    solr: 基于lucene的全文搜索服务器,实现了可配置、可扩展并对查询性能进行了优化,并且提供了一个完善的功能管理界面。

    二、Hadoop
    HDFS: 分布式存储系统,包含NameNode,DataNode。NameNode:元数据,DataNode。DataNode:存数数据。
    yarn: 可以理解为MapReduce的协调机制,本质就是Hadoop的处理分析机制,分为ResourceManager NodeManager。
    MapReduce: 软件框架,编写程序。
    Hive: 数据仓库 可以用SQL查询,可以运行Map/Reduce程序。用来计算趋势或者网站日志,不应用于实时查询,需要很长时间返回结果。想系统学习大数据的话,可以加入大数据技术学习交流扣扣君羊:522189307,欢迎添加,了解课程介绍
    HBase: 数据库。非常适合用来做大数据的实时查询。Facebook用Hbase存储消息数据并进行消息实时的分析
    ZooKeeper: 针对大型分布式的可靠性协调系统。Hadoop的分布式同步等靠Zookeeper实现,例如多个NameNode,active standby切换。
    Sqoop: 数据库相互转移,关系型数据库和HDFS相互转移
    Mahout: 可扩展的机器学习和数据挖掘库。用来做推荐挖掘,聚集,分类,频繁项集挖掘。
    Chukwa: 开源收集系统,监视大型分布式系统,建立在HDFS和Map/Reduce框架之上。显示、监视、分析结果。
    Ambari: 用于配置、管理和监视Hadoop集群,基于Web,界面友好。

    二、Cloudera
    Cloudera Manager: 管理 监控 诊断 集成
    Cloudera CDH:(Cloudera's Distribution,including Apache Hadoop) Cloudera对Hadoop做了相应的改变,发行版本称为CDH。
    Cloudera Flume: 日志收集系统,支持在日志系统中定制各类数据发送方,用来收集数据。
    Cloudera Impala: 对存储在Apache Hadoop的HDFS,HBase的数据提供直接查询互动的SQL。
    Cloudera hue: web管理器,包括hue ui,hui server,hui db。hue提供所有CDH组件的shell界面的接口,可以在hue编写mr。

    三、机器学习/R
    R: 用于统计分析、绘图的语言和操作环境,目前有Hadoop-R
    mahout: 提供可扩展的机器学习领域经典算法的实现,包括聚类、分类、推荐过滤、频繁子项挖掘等,且可通过Hadoop扩展到云中。

    四、storm
    Storm: 分布式,容错的实时流式计算系统,可以用作实时分析,在线机器学习,信息流处理,连续性计算,分布式RPC,实时处理消息并更新数据库。
    Kafka: 高吞吐量的分布式发布订阅消息系统,可以处理消费者规模的网站中的所有动作流数据(浏览,搜索等)。相对Hadoop的日志数据和离线分析,可以实现实时处理。目前通过Hadoop的并行加载机制来统一线上和离线的消息处理
    Redis: 由c语言编写,支持网络、可基于内存亦可持久化的日志型、key-value型数据库。

    五、Spark
    Scala: 一种类似java的完全面向对象的编程语言。

     

    jblas: 一个快速的线性代数库(JAVA)。基于BLAS与LAPACK,矩阵计算实际的行业标准,并使用先进的基础设施等所有的计算程序的ATLAS艺术的实现,使其非常快。

    Spark: Spark是在Scala语言中实现的类似于Hadoop MapReduce的通用并行框架,除了Hadoop MapReduce所具有的优点,但不同于MapReduce的是job中间输出结果可以保存在内存中,从而不需要读写HDFS,因此Spark能更好的适用于数据挖掘与机器学习等需要迭代的MapReduce算法。可以和Hadoop文件系统并行运作,用过Mesos的第三方集群框架可以支持此行为。
    Spark SQL: 作为Apache Spark大数据框架的一部分,可用于结构化数据处理并可以执行类似SQL的Spark数据查询
    Spark Streaming: 一种构建在Spark上的实时计算框架,扩展了Spark处理大数据流式数据的能力。
    Spark MLlib: MLlib是Spark是常用的机器学习算法的实现库,目前(2014.05)支持二元分类,回归,聚类以及协同过滤。同时也包括一个底层的梯度下降优化基础算法。MLlib以来jblas线性代数库,jblas本身以来远程的Fortran程序。

    Spark GraphX: GraphX是Spark中用于图和图并行计算的API,可以在Spark之上提供一站式数据解决方案,可以方便且高效地完成图计算的一整套流水作业。

    Fortran: 最早出现的计算机高级程序设计语言,广泛应用于科学和工程计算领域。

    BLAS: 基础线性代数子程序库,拥有大量已经编写好的关于线性代数运算的程序。
    LAPACK: 著名的公开软件,包含了求解科学与工程计算中最常见的数值线性代数问题,如求解线性方程组、线性最小二乘问题、特征值问题和奇异值问题等。
    ATLAS: BLAS线性算法库的优化版本。
    Spark Python: Spark是由scala语言编写的,但是为了推广和兼容,提供了java和python接口。

    六、Python
    Python: 一种面向对象的、解释型计算机程序设计语言。


    七、云计算平台
    Docker: 开源的应用容器引擎
    kvm: (Keyboard Video Mouse)

     

    展开全文
  • 总结了学生在学习大数据开发过程中遇到的难点,帮助大家逐一攻克难关! 大数据开发,有4个阶段: 1、数据采集 数据采集有线上和线下两种方式,线上一般通过爬虫、通过抓取,或者通过已有应用系统的采集,在这个...

    大数据开发工程师,很多人都向往的职业,但总有这样那样的理由,在逼迫这自己放弃。明明知道大数据良好的前景,明明知道学完大数据可以找到一份很好的工作,但就是不会对自己下狠心。总结了学生在学习大数据开发过程中遇到的难点,帮助大家逐一攻克难关!

    大数据开发,有4个阶段:

    1、数据采集

    数据采集有线上和线下两种方式,线上一般通过爬虫、通过抓取,或者通过已有应用系统的采集,在这个阶段,我们可以做一个大数据采集平台,依托自动爬虫(使用python或者nodejs制作爬虫软件),ETL工具、或者自定义的抽取转换引擎,从文件中、数据库中、网页中专项爬取数据,如果这一步通过自动化系统来做的话,可以很方便的管理所有的原始数据,并且从数据的开始对数据进行标签采集,可以规范开发人员的工作。并且目标数据源可以更方便的管理。

    数据采集的难点在于多数据源,例如mysql、postgresql、sqlserver 、 mongodb 、sqllite。还有本地文件、excel统计文档、甚至是doc文件。如何将他们规整的、有方案的整理进我们的大数据流程中也是必不可缺的一环。

    2、数据汇聚

    数据的汇聚是大数据流程关键的一步,你可以在这里加上数据标准化,你也可以在这里做数据清洗,数据合并,还可以在这一步将数据存档,将确认可用的数据经过可监控的流程进行整理归类,这里产出的所有数据就是整个公司的数据资产了,到了一定的量就是一笔固定资产。

    数据汇聚的难点在于如何标准化数据,例如表名标准化,表的标签分类,表的用途,数据的量,是否有数据增量?,数据是否可用? 需要在业务上下很大的功夫,必要时还要引入智能化处理,例如根据内容训练结果自动打标签,自动分配推荐表名、表字段名等。还有如何从原始数据中导入数据等。

    3、数据转换和映射

    经过数据汇聚的数据资产如何提供给具体的使用方使用?在这一步,主要就是考虑数据如何应用,如何将两个?三个?数据表转换成一张能够提供服务的数据。然后定期更新增量。

    经过前面的那几步,在这一步难点并不太多了,如何转换数据与如何清洗数据、标准数据无二,将两个字段的值转换成一个字段,或者根据多个可用表统计出一张图表数据等等。

    4、数据应用

    数据的应用方式很多,有对外的、有对内的,如果拥有了前期的大量数据资产,通过restful API提供给用户?或者提供流式引擎 KAFKA 给应用消费? 或者直接组成专题数据,供自己的应用查询?这里对数据资产的要求比较高,所以前期的工作做好了,这里的自由度很高。

    大数据开发的难点主要是监控,怎么样规划开发人员的工作?开发人员随随便便采集了一堆垃圾数据,并且直连数据库。 短期来看,这些问题比较小,可以矫正。 如果你对大数据开发感兴趣,想系统学习大数据的话,可以加入大数据技术学习交流扣群:458数字345数字782获取学习资源,但是在资产的量不断增加的时候,这就是一颗定时炸弹,随时会引爆,然后引发一系列对数据资产的影响,例如数据混乱带来的就是数据资产的价值下降,客户信任度变低。

    大数据学习路线

    java(Java se,javaweb)
    Linux(shell,高并发架构,lucene,solr)
    Hadoop(Hadoop,HDFS,Mapreduce,yarn,hive,hbase,sqoop,zookeeper,flume)
    机器学习(R,mahout)
    Storm(Storm,kafka,redis)
    Spark(scala,spark,spark core,spark sql,spark streaming,spark mllib,spark graphx)
    Python(python,spark python) 
    云计算平台(docker,kvm,openstack)

    名词解释

    一、Linux
    lucene: 全文检索引擎的架构
    solr: 基于lucene的全文搜索服务器,实现了可配置、可扩展并对查询性能进行了优化,并且提供了一个完善的功能管理界面。

    二、Hadoop
    HDFS: 分布式存储系统,包含NameNode,DataNode。NameNode:元数据,DataNode。DataNode:存数数据。
    yarn: 可以理解为MapReduce的协调机制,本质就是Hadoop的处理分析机制,分为ResourceManager NodeManager。
    MapReduce: 软件框架,编写程序。
    Hive: 数据仓库 可以用SQL查询,可以运行Map/Reduce程序。用来计算趋势或者网站日志,不应用于实时查询,需要很长时间返回结果。
    HBase: 数据库。非常适合用来做大数据的实时查询。Facebook用Hbase存储消息数据并进行消息实时的分析
    ZooKeeper: 针对大型分布式的可靠性协调系统。Hadoop的分布式同步等靠Zookeeper实现,例如多个NameNode,active standby切换。
    Sqoop: 数据库相互转移,关系型数据库和HDFS相互转移
    Mahout: 可扩展的机器学习和数据挖掘库。用来做推荐挖掘,聚集,分类,频繁项集挖掘。
    Chukwa: 开源收集系统,监视大型分布式系统,建立在HDFS和Map/Reduce框架之上。显示、监视、分析结果。
    Ambari: 用于配置、管理和监视Hadoop集群,基于Web,界面友好。

    二、Cloudera
    Cloudera Manager: 管理 监控 诊断 集成
    Cloudera CDH:(Cloudera's Distribution,including Apache Hadoop) Cloudera对Hadoop做了相应的改变,发行版本称为CDH。
    Cloudera Flume: 日志收集系统,支持在日志系统中定制各类数据发送方,用来收集数据。
    Cloudera Impala: 对存储在Apache Hadoop的HDFS,HBase的数据提供直接查询互动的SQL。
    Cloudera hue: web管理器,包括hue ui,hui server,hui db。hue提供所有CDH组件的shell界面的接口,可以在hue编写mr。

    三、机器学习/R
    R: 用于统计分析、绘图的语言和操作环境,目前有Hadoop-R
    mahout: 提供可扩展的机器学习领域经典算法的实现,包括聚类、分类、推荐过滤、频繁子项挖掘等,且可通过Hadoop扩展到云中。

    四、storm
    Storm: 分布式,容错的实时流式计算系统,可以用作实时分析,在线机器学习,信息流处理,连续性计算,分布式RPC,实时处理消息并更新数据库。
    Kafka: 高吞吐量的分布式发布订阅消息系统,可以处理消费者规模的网站中的所有动作流数据(浏览,搜索等)。相对Hadoop的日志数据和离线分析,可以实现实时处理。目前通过Hadoop的并行加载机制来统一线上和离线的消息处理
    Redis: 由c语言编写,支持网络、可基于内存亦可持久化的日志型、key-value型数据库。

    五、Spark
    Scala: 一种类似java的完全面向对象的编程语言。

    jblas: 一个快速的线性代数库(JAVA)。基于BLAS与LAPACK,矩阵计算实际的行业标准,并使用先进的基础设施等所有的计算程序的ATLAS艺术的实现,使其非常快。

    Spark: Spark是在Scala语言中实现的类似于Hadoop MapReduce的通用并行框架,除了Hadoop MapReduce所具有的优点,但不同于MapReduce的是job中间输出结果可以保存在内存中,从而不需要读写HDFS,因此Spark能更好的适用于数据挖掘与机器学习等需要迭代的MapReduce算法。可以和Hadoop文件系统并行运作,用过Mesos的第三方集群框架可以支持此行为。
    Spark SQL: 作为Apache Spark大数据框架的一部分,可用于结构化数据处理并可以执行类似SQL的Spark数据查询
    Spark Streaming: 一种构建在Spark上的实时计算框架,扩展了Spark处理大数据流式数据的能力。
    Spark MLlib: MLlib是Spark是常用的机器学习算法的实现库,目前(2014.05)支持二元分类,回归,聚类以及协同过滤。同时也包括一个底层的梯度下降优化基础算法。MLlib以来jblas线性代数库,jblas本身以来远程的Fortran程序。

    Spark GraphX: GraphX是Spark中用于图和图并行计算的API,可以在Spark之上提供一站式数据解决方案,可以方便且高效地完成图计算的一整套流水作业。

    Fortran: 最早出现的计算机高级程序设计语言,广泛应用于科学和工程计算领域。

    BLAS: 基础线性代数子程序库,拥有大量已经编写好的关于线性代数运算的程序。
    LAPACK: 著名的公开软件,包含了求解科学与工程计算中最常见的数值线性代数问题,如求解线性方程组、线性最小二乘问题、特征值问题和奇异值问题等。
    ATLAS: BLAS线性算法库的优化版本。
    Spark Python: Spark是由scala语言编写的,但是为了推广和兼容,提供了java和python接口。

    六、Python
    Python: 一种面向对象的、解释型计算机程序设计语言。

    七、云计算平台
    Docker: 开源的应用容器引擎
    kvm: (Keyboard Video Mouse)

    openstack:  开源的云计算管理平台项目

    展开全文
  • 离线数据分析的总结,分享出来给大家。 先上图,手绘有点丑,请关注内容即可。 大数据离线处理技术学习要点图: ...我在学习大数据的过程中,学习的准备部分主要包括Java,Linux和MySQL的学习。具体的学习...
  • 大数据基本是在Linux系统下操作,所以,学习大数据首先学的是Linux1.Linux学习(首先认识Linux):如何使用vmware安装linux镜像认识linux的桌面环境、shell环境在shell环境下进行文件系统的操作,掌握more、touch、...
  • 并邀请专家陈星星撰写了《大数据时代背景教育企业的精准化和个性化管理及服务实践》(点击标题可阅读),为广大会员提供大数据应用相关实践借鉴,以下由陈星星将活动中提出的难点问题及解答进行总结,供更多读者参考...
  • 在这里还是要推荐下我自己建的大数据学习交流群:199427210,群里都是学大数据开发的,如果你正在学习大数据 ,小编欢迎你加入,大家都是软件开发党,不定期分享干货(只有大数据软件开发相关的),包括我自己整理的一...
  • 近些年,大数据的火热可谓是技术人都知道啊,很多人呢,也想学习大数据相关,但是又不知道从何下手,所以今天柠檬这里分享几个大数据脑图,希望可以让你清楚明白从哪里入门大数据,知道该学习以及掌握哪些知识点。...
  • 大数据所需学习的内容纷繁复杂,难度较大,有一个合理的大数据学习路线图帮忙理清思路就显得尤为必要。  一、Java语言以java语言为基础掌握面向对象编程思想所涉及的知识,以及该知识在面向对象编程思想中的应用,...
  • 大数据下的机器学习

    2016-08-16 11:02:46
    大数据下的机器学习目前的数据可谓是呈指数级增长,在这样的大数据氛围下,机器学习反而会表现得更好,毕竟有一句话是这么说的”It’s not who has the best algorithm that wins. It’s who has the most data.”。...
  • 大数据所需学习的内容纷繁复杂,难度较大,有一个合理的大数据学习路线图帮忙理清思路就显得尤为必要。互联网科技发展蓬勃兴起,人工智能时代来临,抓住下一个风口。为帮助那些往想互联网方向转行想学习,却因为时间...
  • 深度学习算法的几个难点 1、局部最优问题。 深度学习算法的目标函数,几乎全都是非凸的。而目前寻找最优解的方法,都是基于梯度下降的。稍微有点背景知识的人都知道,梯度下降方法是解决不了非凸问题的。...
  • 大数据开发的难点主要是监控,怎么样规划开发人员的工作?开发人员随随便便采集了一堆垃圾数据,并且直连数据库。短期来看,这些问题比较小,可以矫正。但是在资产的量不断增加的时候,这就是一颗定时炸弹,随时会...
  • 近些年,大数据的火热可谓是技术人都知道啊,很多人呢,也想学习大数据相关,但是又不知道从何下手,所以今天在这里分享几个大数据脑图,希望可以让你清楚明白从哪里入门大数据,知道该学习以及掌握哪些知识点;...
  • 时间当然来的及,最不缺乏的就是视频,关键你能否在自学的过程中去解决遇到的难点,这个是最重要的。大数据基于java,你有很好的java基础,所以入门是比较容易的,接下来我给你说下学习路线吧。 因为笔者本身是偏...
  • 将给各位大佬分享真正关于大数据的干货,小编目前也在学习中,希望和大家共勉吧! 大数据的话题近几年是越来越火了,马云曾说:21世纪的竞争是数据的竞争,谁掌握数据,谁就掌握未来!多么痛的领悟。大数据是一...
  • 懒惰让我变得更焦虑,焦虑促使我进步,程序员的焦虑大家应该都有共同的感觉,时代的步伐太快了,在这个环境下的软件开发一定会淘汰掉那些不懂得学习,懒惰的人。 希望跟大家共勉。 今天呢,博主主要回顾这两年来,...
1 2 3 4 5 ... 20
收藏数 9,407
精华内容 3,762
热门标签