• 1)深度学习(Deep Learning)只是机器学习(Machine Learning)的一种类别,一个子领域。机器学习 > 深度学习 2)大数据(Big Data)不是具体的方法,甚至不算具体的研究学科,而只是对某一类问题,或需处理的数据...
    作者:Bihan Wen
    来源:知乎

    简单来说:
    1)深度学习(Deep Learning)只是机器学习(Machine Learning)的一种类别,一个子领域。机器学习 > 深度学习
    2)大数据(Big Data)不是具体的方法,甚至不算具体的研究学科,而只是对某一类问题,或需处理的数据的描述。

    具体来说:
    1)机器学习(Machine Learning)是一个大的方向,里面包括了很多种approach。
    任务也可以不同,可以是预测(prediction),分类(classification),聚类(clustering),识别(recognition),重建(reconstruction),约束(regularization),甚至降噪(denoising),超分辨(super-resolution),除马赛克(Demosaicing)等等....

    2)深度学习(Deep Learning)是机器学习的一个子类,一般特指学习高层数的网络结构。这个结构中通常会结合线性和非线性的关系。

    3)大数据(Big Data,我们也叫他逼格数据....)是对数据和问题的描述。通常被广泛接受的定义是3个V上的“大”:Volume(数据量), Velocity(数据速度)还有variety(数据类别)。大数据问题(Big-data problem)可以指那种在这三个V上因为大而带来的挑战。

    Volume很好理解。一般也可以认为是Large-scale data。“大”可以是数据的维度,也可以是数据的size。一般claim自己是big-data的算法会比较scalable,复杂度上对这两个不敏感。

    Velocity就是数据到达的速度。对于数据高速到达的情况,需要对应的算法或者系统要有效的处理。

    Variaty指的是数据的类别。以往的算法或者系统往往针对某一种已知特定类别的数据来适应。而一般大数据也会指针对处理那些unstructured data或者multi-modal data,这就对传统的处理方法带来了挑战。
    展开全文
  • 1)深度学习(Deep Learning)只是机器学习(Machine Learning)的一种类别,一个子领域。机器学习 > 深度学习 2)大数据(Big Data)不是具体的方法,甚至不算具体的研究学科,而只是对某一类问题,或需处理...

    简单来说:
    1)深度学习(Deep Learning)只是机器学习(Machine Learning)的一种类别,一个子领域。机器学习 > 深度学习
    2)大数据(Big Data)不是具体的方法,甚至不算具体的研究学科,而只是对某一类问题,或需处理的数据的描述。

    具体来说:
    1)机器学习(Machine Learning)是一个大的方向,里面包括了很多种approach,比如deep learning, GMM, SVM, HMM, dictionary learning, knn, Adaboosting...不同的方法会使用不同的模型,不同的假设,不同的解法。这些模型可以是线性,也可以是非线性的。他们可能是基于统计的,也可能是基于稀疏的....

    推荐一个大数据学习群 119599574每天晚上20:10都有一节【免费的】大数据直播课程,专注大数据分析方法,大数据编程,大数据仓库,大数据案例,人工智能,数据挖掘都是纯干货分享,


    不过他们的共同点是:都是data-driven的模型,都是学习一种更加abstract的方式来表达特定的数据,假设和模型都对特定数据广泛适用。好处是,这种学习出来的表达方式可以帮助我们更好的理解和分析数据,挖掘数据隐藏的结构和关系。
    Machine Learning的任务也可以不同,可以是预测(prediction),分类(classification),聚类(clustering),识别(recognition),重建(reconstruction),约束(regularization),甚至降噪(denoising),超分辨(super-resolution),除马赛克(Demosaicing)等等....

    2)深度学习(Deep Learning)是机器学习的一个子类,一般特指学习高层数的网络结构。这个结构中通常会结合线性和非线性的关系。
    Deep Learning也会分各种不同的模型,比如CNN, RNN, DBN...他们的解法也会不同。
    Deep Learning目前非常流行,因为他们在图像,视觉,语音等各种应用中表现出了很好的empirical performance。并且利用gpu的并行运算,在模型相当复杂,数据特别大量的情况下,依然可以达到很理想的学习速度。


    因为Deep Learning往往会构建多层数,多节点,多复杂度的模型,人们依然缺乏多里面学习的结构模型的理解。很多时候,Deep Learning甚至会被认为拥有类似于人类神经网络的结构,并且这种类似性被当做deep learning居然更大potential的依据。但答主个人认为,其实这略有些牵强...听起来更像是先有了这种network的结构,再找一个类似性。当然,这仅仅是个人观点...(私货私货)

    3)大数据(Big Data,我们也叫他逼格数据....)是对数据和问题的描述。通常被广泛接受的定义是3个V上的“大”:Volume(数据量), Velocity(数据速度)还有variety(数据类别)。大数据问题(Big-data problem)可以指那种在这三个V上因为大而带来的挑战。

    Volume很好理解。一般也可以认为是Large-scale data(其实学术上用这个更准确,只是我们出去吹逼的时候就都叫big data了...)。“大”可以是数据的维度,也可以是数据的size。一般claim自己是big-data的算法会比较scalable,复杂度上对这两个不敏感。算法和系统上,人们喜欢选择并行(Parallel),分布(distributed)等属性的方法来增加capability。

    Velocity就是数据到达的速度。对于数据高速到达的情况,需要对应的算法或者系统要有效的处理。而且数据在时间上可能存在变化,对应的算法或者系统居然做出调整和即时判断,以适应新的数据。这就要求我们提出高效(Efficiency),即时(real-time),动态(dynamic),还有有预测性(predictive)等等....

    Variaty指的是数据的类别。以往的算法或者系统往往针对某一种已知特定类别的数据来适应。而一般大数据也会指针对处理那些unstructured data或者multi-modal data,这就对传统的处理方法带来了挑战。

    展开全文
  • 大数据深度学习

    2018-06-01 15:03:33
    大数据是我们现在经常听到的一个词,在互联网时代迅速发展的今天,大数据的应用范围越来越广,但是深度学习这个词对于很多人来说是比较陌生的,深度学习是什么,是一种要求还是一种技术,这种技术与我们日常可能听到...
    大数据与深度学习

          大数据是我们现在经常听到的一个词,在互联网时代迅速发展的今天,大数据的应用范围越来越广,但是深度学习这个词对于很多人来说是比较陌生的,深度学习是什么,是一种要求还是一种技术,这种技术与我们日常可能听到的词例如机器人、人工智能都是息息相关的,在现在为什么深度学习会受到重视,这也是得益于人工智能以及大数据等技术受到的重视,很多做的比较成功的互联网公司在深度学习上也做的很好,投入的精力也处于行业的领先地位。

    关注作者:需要系统学习,零基础和实战视频资料,其他文章会找到大神组织

    第一、深度学习是一种模拟大脑的行为

    这是一种新的技术,可以从所学习对象的机制以及行为等等很多相关联的方面进行学习研究,这就是为什么深度学习和人工智能有关系的原因,人工智能说到底是一种模仿类型行为以及思维的技术。

    第二、深度学习对于大数据的发展有帮助

    在深度学习的过程中才会产生启发,为什么以前的数据只是数据,后来的数据就可以成为大数据,这都是因为深度学习对于大数据技术开发的每一个阶段都是有帮助的,不管是数据的分析还是挖掘还是建模,只有深度学习,这些工作才会有可能一一得到实现。

    第三、深度学习转变了解决问题的思维

    很多时候发现问题到解决问题,走一步看一步不是一个主要的解决问题的方式了,在深度学习的基础上,要求我们从开始到最后都要基于哦那个一个目标,为了需要优化的那个最终目的去进行处理数据以及将数据放入到数据应用平台上去。

    第四、大数据的深度学习需要一个框架

    深度学习不是有针对性的,和机器学习一样,特别是在大数据方面的应用,它也是需要一个框架或者一个系统的,就和做大数据分析的过程中,企业不仅仅只是要创建一个大数据平台,还要有能力驾驭它,并且对于各个方面都要有全面的了解。在大数据方面的深度学习都是从基础的角度出发的,总而言之,将你的大数据通过深度分析变为现实这就是深度学习和大数据的最直接关系。

    展开全文
  • 1)深度学习(DeepLearning)只是机器学习(MachineLearning)的一种类别,一个子领域。机器学习>深度学习 2)大数据(BigData)不是具体的方法,甚至不算具体的研究学科,而只是对某一类问题,或需处理的数据的描述。 ...

    简单来说:

    1)深度学习(DeepLearning)只是机器学习(MachineLearning)的一种类别,一个子领域。机器学习>深度学习

    2)大数据(BigData)不是具体的方法,甚至不算具体的研究学科,而只是对某一类问题,或需处理的数据的描述。

    具体来说:

    1)机器学习(MachineLearning)是一个大的方向,里面包括了很多种approach。

    任务也可以不同,可以是预测(prediction),分类(classification),聚类(clustering),识别(recognition),重建(reconstruction),约束(regularization),甚至降噪(denoising),超分辨(super-resolution),除马赛克(Demosaicing)等等…

    2)深度学习(DeepLearning)是机器学习的一个子类,一般特指学习高层数的网络结构。这个结构中通常会结合线性和非线性的关系。

    3)大数据(BigData,我们也叫他逼格数据…)是对数据和问题的描述。通常被广泛接受的定义是3个V上的“大”:Volume(数据量),Velocity(数据速度)还有variety(数据类别)。大数据问题(Big-dataproblem)可以指那种在这三个V上因为大而带来的挑战。

    Volume很好理解。一般也可以认为是Large-scaledata。“大”可以是数据的维度,也可以是数据的size。一般claim自己是big-data的算法会比较scalable,复杂度上对这两个不敏感。

    Velocity就是数据到达的速度。对于数据高速到达的情况,需要对应的算法或者系统要有效的处理。

    Variaty指的是数据的类别。以往的算法或者系统往往针对某一种已知特定类别的数据来适应。而一般大数据也会指针对处理那些unstructureddata或者multi-modaldata,这就对传统的处理方法带来了挑战。
      人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,多智时代专注于人工智能和大数据的入门和科谱,在此为你推荐几篇优质好文:
        请问大数据需要学什么?
    http://www.duozhishidai.com/article-15279-1.html
    自己规划的大数据学习路线
    http://www.duozhishidai.com/article-14674-1.html
    大数据技术怎么学习,在学习大数据之前,需要具备什么基础?
    http://www.duozhishidai.com/article-12916-1.html


    多智时代-人工智能大数据学习入门网站|人工智能、大数据、物联网云计算的学习交流网站

    多智时代-人工智能大数据学习入门网站|人工智能、大数据、云计算、物联网的学习服务的好平台
    展开全文
  • 1)深度学习(Deep Learning)只是机器学习(Machine Learning)的一种类别,一个子领域。机器学习 > 深度学习 2)大数据(Big Data)不是具体的方法,甚至不算具体的研究学科,而只是对某一类问题,或需处理的数据的...

    简单来说:

    1)深度学习(Deep Learning)只是机器学习(Machine Learning)的一种类别,一个子领域。机器学习 > 深度学习

    2)大数据(Big Data)不是具体的方法,甚至不算具体的研究学科,而只是对某一类问题,或需处理的数据的描述
     

    具体来说:

    1)机器学习(Machine Learning)是一个大的方向,里面包括了很多种 approach,比如 deep learning, GMM, SVM, HMM, dictionary learning, knn, Adaboosting...不同的方法会使用不同的模型,不同的假设,不同的解法。这些模型可以是线性,也可以是非线性的。他们可能是基于统计的,也可能是基于稀疏的....

    不过他们的共同点是:都是 data-driven 的模型,都是学习一种更加 abstract 的方式来表达特定的数据,假设和模型都对特定数据广泛适用。好处是,这种学习出来的表达方式可以帮助我们更好的理解和分析数据,挖掘数据隐藏的结构和关系。

    Machine Learning 的任务也可以不同,可以是预测(prediction),分类(classification),聚类(clustering),识别(recognition),重建(reconstruction),约束(regularization),甚至降噪(denoising),超分辨(super-resolution),除马赛克(Demosaicing)等等....

    2)深度学习(Deep Learning)是机器学习的一个子类,一般特指学习高层数的网络结构。这个结构中通常会结合线性和非线性的关系。

    Deep Learning 也会分各种不同的模型,比如 CNN, RNN, DBN...他们的解法也会不同。

    Deep Learning 目前非常流行,因为他们在图像,视觉,语音等各种应用中表现出了很好的 empirical performance。并且利用 gpu 的并行运算,在模型相当复杂,数据特别大量的情况下,依然可以达到很理想的学习速度。

    因为 Deep Learning 往往会构建多层数,多节点,多复杂度的模型,人们依然缺乏多里面学习的结构模型的理解。很多时候,Deep Learning 甚至会被认为拥有类似于人类神经网络的结构,并且这种类似性被当做 deep learning 居然更大 potential 的依据。但答主个人认为,其实这略有些牵强...听起来更像是先有了这种 network 的结构,再找一个类似性。当然,这仅仅是个人观点...(私货私货)

    3)大数据(Big Data,我们也叫他逼格数据....)是对数据和问题的描述。通常被广泛接受的定义是 3 个 V 上的“大”:Volume(数据量), Velocity(数据速度)还有 variety(数据类别)。大数据问题(Big-data problem)可以指那种在这三个 V 上因为大而带来的挑战。

    Volume 很好理解。一般也可以认为是 Large-scale data(其实学术上用这个更准确,只是我们出去吹逼的时候就都叫 big data 了...)。“大”可以是数据的维度,也可以是数据的 size。一般 claim 自己是 big-data 的算法会比较 scalable,复杂度上对这两个不敏感。算法和系统上,人们喜欢选择并行(Parallel),分布(distributed)等属性的方法来增加 capability。

    Velocity 就是数据到达的速度。对于数据高速到达的情况,需要对应的算法或者系统要有效的处理。而且数据在时间上可能存在变化,对应的算法或者系统居然做出调整和即时判断,以适应新的数据。这就要求我们提出高效(Efficiency),即时(real-time),动态(dynamic),还有有预测性(predictive)等等....

    Variaty 指的是数据的类别。以往的算法或者系统往往针对某一种已知特定类别的数据来适应。而一般大数据也会指针对处理那些 unstructured data 或者 multi-modal data,这就对传统的处理方法带来了挑战。

    推荐阅读文章

    大数据工程师在阿里面试流程是什么?

    学习大数据需要具备怎么样基础?

    年薪30K的大数据开发工程师的工作经验总结?

     

    展开全文
  • 大数据时代改变了基于数理统计的传统数据科学,促进了数据分析方法的创新,从机器学习和多层神经网络演化而来的深度学习是当前大数据处理与分析的研究前沿。从机器学习到深度学习,经历了早期的符号归纳机器学习、统计...
  • 需要告诉大家的是,大数据中的热词都是从以前的基础技术经过发展形成的,虽然内容不是新颖的,但是只有掌握了这些知识我们能够更好的应对大数据处理的工作,下面我们就给大家介绍一下大数据中的算法和深度学习。...
  • 深度学习大数据

    2019-09-13 14:59:14
    在数据呈指数增长的这个数字世界中,深度学习大数据是最为热门的两个技术趋势。深度学习大数据是数据科学领域相互关联的两个话题,而在技术发展方面,两者紧密关联且同样重要。 数字数据和云存储遵循名为摩尔...
  • 本压缩包是 白话大数据和机器学习 书籍的pdf版本,非常适合作为想要学习机器学习的入门书籍
  • 1)深度学习(Deep Learning)只是机器学习(Machine Learning)的一种类别,一个子领域。机器学习 > 深度学习 2)大数据(Big Data)不是具体的方法,甚至不算具体的研究学科,而只是对某一类问题,或需处理的数据的描述...
  • 人工智能视频学习 链接:... 提取码:n6et 复制这段内容后打开百度网盘手机App,操作更方便哦 机器学习 ...复制这段内容后打开百度网盘手机App,操作更方便哦 ...大数据深度学习课程 链接:...
  • 浅谈大数据深度学习和计算数学的一点关系 专业介绍 计算数学是数学的一个分支,研究的内容包括设计和分析算法以及数学建模等,目的是为了在实际工程中利用快速稳定的算法得到精确值的近似值。在计算机科学高度...
  • 公安基于大数据深度学习视频解析方案公安基于大数据深度学习视频解析方案公安基于大数据深度学习视频解析方案公安基于大数据深度学习视频解析方案公安基于大数据深度学习视频解析方案公安基于大数据深度...
  • 嘉宾介绍:谷俊丽,博士学历,毕业于清华大学-美国University of Illinois Urbana-champaign大学,在清华期间作为核心人员研发过超长指令字数字信号处理器,在美期间曾参与UIUC超级计算机上的研究工作,并工作实习于...
  • 这是深度学习500问系列笔记之一,帮助我深入记忆知识,如有不足,随时欢迎交流和探讨。 5.大数据深度学习的关系? 大数据通常被定义为“超出常用软件工具捕获,管理和处理能力”的数据集。 机器学习关心的问题...
  • 每周荐书:大数据深度学习、架构(评论送书) 感谢大家对每周荐书栏目的支持,先公布下上周中奖名单 KdanMin 镜花-水月 Android进阶之光   凌峯 叫我King 深度学习:Keras快速开发...
1 2 3 4 5 ... 20
收藏数 68,705
精华内容 27,482