大数据应该学习哪些算法相关课程
  • 大数据热门技术Spark+机器学习+贝叶斯算法第5季

    高级课

    大数据热门技术Spark+机器学习+贝叶斯算法第5季
    20课时 387分钟 张长志
    本套大数据热门技术Spark+机器学习+贝叶斯算法系列课程,历经5年沉淀,调研企业上百家,通过上万学员汇总,保留较为完整的知识体系的同时,让每个模块看起来小而精,碎而不散。在本课程中基于大量案例实战,深度剖析和讲解Spark2.4原理和新特性,且会包含完全从企业真实业务需求中抽取出的案例实战。内容涵盖Spark核心编程、Spark SQL和Spark Streaming、Spark内核以及源码剖析、推荐系统、Kafka消费机制、Spark机器学习、朴素贝叶斯算法、企业级实战案例等。 通过理论和实际的紧密结合,可以使学员对大数据Spark技术栈有充分的认识和理解,在项目实战中对Spark和流式处理应用的场景、以及大数据开发有更深刻的认识;并且通过对流处理原理的学习和与批处理架构的对比,可以对大数据处理架构有更全面的了解,为日后成长为架构师打下基础。 本套教程可以让学员熟练掌握Spark技术栈,提升自己的职场竞争力,实现更好的升职或者跳槽,或者从J2EE等传统软件开发工程师转型为Spark大数据开发工程师,或是对于正在从事Hadoop大数据开发的朋友可以拓宽自己的技术能力栈,提升自己的价值。 Spark应用场景 Yahoo将Spark用在Audience Expansion中的应用,进行点击预测和即席查询等。 淘宝技术团队使用了Spark来解决多次迭代的机器学习算法、高计算复杂度的算法等。应用于内容推荐、社区发现等。 腾讯大数据精准推荐借助Spark快速迭代的优势,实现了在“数据实时采集、算法实时训练、系统实时预测”的全流程实时并行高维算法,最终成功应用于广点通pCTR投放系统上。 优酷土豆将Spark应用于视频推荐(图计算)、广告业务,主要实现机器学习、图计算等迭代计算。 本套大数据热门技术Spark+机器学习+贝叶斯算法共计13季,本套为第5季。
    免费试看
  • 大数据热门技术Spark+机器学习+贝叶斯算法第12季

    高级课

    大数据热门技术Spark+机器学习+贝叶斯算法第12季
    19课时 365分钟 张长志
    本套大数据热门技术Spark+机器学习+贝叶斯算法系列课程,历经5年沉淀,调研企业上百家,通过上万学员汇总,保留较为完整的知识体系的同时,让每个模块看起来小而精,碎而不散。在本课程中基于大量案例实战,深度剖析和讲解Spark2.4原理和新特性,且会包含完全从企业真实业务需求中抽取出的案例实战。内容涵盖Spark核心编程、Spark SQL和Spark Streaming、Spark内核以及源码剖析、推荐系统、Kafka消费机制、Spark机器学习、朴素贝叶斯算法、企业级实战案例等。 通过理论和实际的紧密结合,可以使学员对大数据Spark技术栈有充分的认识和理解,在项目实战中对Spark和流式处理应用的场景、以及大数据开发有更深刻的认识;并且通过对流处理原理的学习和与批处理架构的对比,可以对大数据处理架构有更全面的了解,为日后成长为架构师打下基础。 本套教程可以让学员熟练掌握Spark技术栈,提升自己的职场竞争力,实现更好的升职或者跳槽,或者从J2EE等传统软件开发工程师转型为Spark大数据开发工程师,或是对于正在从事Hadoop大数据开发的朋友可以拓宽自己的技术能力栈,提升自己的价值。 Spark应用场景 Yahoo将Spark用在Audience Expansion中的应用,进行点击预测和即席查询等。 淘宝技术团队使用了Spark来解决多次迭代的机器学习算法、高计算复杂度的算法等。应用于内容推荐、社区发现等。 腾讯大数据精准推荐借助Spark快速迭代的优势,实现了在“数据实时采集、算法实时训练、系统实时预测”的全流程实时并行高维算法,最终成功应用于广点通pCTR投放系统上。 优酷土豆将Spark应用于视频推荐(图计算)、广告业务,主要实现机器学习、图计算等迭代计算。 本套大数据热门技术Spark+机器学习+贝叶斯算法共计13季,本套为第12季。
    免费试看
  • 大数据热门技术Spark+机器学习+贝叶斯算法第7季

    高级课

    大数据热门技术Spark+机器学习+贝叶斯算法第7季
    17课时 197分钟 张长志
    本套大数据热门技术Spark+机器学习+贝叶斯算法系列课程,历经5年沉淀,调研企业上百家,通过上万学员汇总,保留较为完整的知识体系的同时,让每个模块看起来小而精,碎而不散。在本课程中基于大量案例实战,深度剖析和讲解Spark2.4原理和新特性,且会包含完全从企业真实业务需求中抽取出的案例实战。内容涵盖Spark核心编程、Spark SQL和Spark Streaming、Spark内核以及源码剖析、推荐系统、Kafka消费机制、Spark机器学习、朴素贝叶斯算法、企业级实战案例等。 通过理论和实际的紧密结合,可以使学员对大数据Spark技术栈有充分的认识和理解,在项目实战中对Spark和流式处理应用的场景、以及大数据开发有更深刻的认识;并且通过对流处理原理的学习和与批处理架构的对比,可以对大数据处理架构有更全面的了解,为日后成长为架构师打下基础。 本套教程可以让学员熟练掌握Spark技术栈,提升自己的职场竞争力,实现更好的升职或者跳槽,或者从J2EE等传统软件开发工程师转型为Spark大数据开发工程师,或是对于正在从事Hadoop大数据开发的朋友可以拓宽自己的技术能力栈,提升自己的价值。 Spark应用场景 Yahoo将Spark用在Audience Expansion中的应用,进行点击预测和即席查询等。 淘宝技术团队使用了Spark来解决多次迭代的机器学习算法、高计算复杂度的算法等。应用于内容推荐、社区发现等。 腾讯大数据精准推荐借助Spark快速迭代的优势,实现了在“数据实时采集、算法实时训练、系统实时预测”的全流程实时并行高维算法,最终成功应用于广点通pCTR投放系统上。 优酷土豆将Spark应用于视频推荐(图计算)、广告业务,主要实现机器学习、图计算等迭代计算。 本套大数据热门技术Spark+机器学习+贝叶斯算法共计13季,本套为第7季。
    免费试看
  • 大数据热门技术Spark+机器学习+贝叶斯算法第13季

    高级课

    大数据热门技术Spark+机器学习+贝叶斯算法第13季
    17课时 347分钟 张长志
    本套大数据热门技术Spark+机器学习+贝叶斯算法系列课程,历经5年沉淀,调研企业上百家,通过上万学员汇总,保留较为完整的知识体系的同时,让每个模块看起来小而精,碎而不散。在本课程中基于大量案例实战,深度剖析和讲解Spark2.4原理和新特性,且会包含完全从企业真实业务需求中抽取出的案例实战。内容涵盖Spark核心编程、Spark SQL和Spark Streaming、Spark内核以及源码剖析、推荐系统、Kafka消费机制、Spark机器学习、朴素贝叶斯算法、企业级实战案例等。 通过理论和实际的紧密结合,可以使学员对大数据Spark技术栈有充分的认识和理解,在项目实战中对Spark和流式处理应用的场景、以及大数据开发有更深刻的认识;并且通过对流处理原理的学习和与批处理架构的对比,可以对大数据处理架构有更全面的了解,为日后成长为架构师打下基础。 本套教程可以让学员熟练掌握Spark技术栈,提升自己的职场竞争力,实现更好的升职或者跳槽,或者从J2EE等传统软件开发工程师转型为Spark大数据开发工程师,或是对于正在从事Hadoop大数据开发的朋友可以拓宽自己的技术能力栈,提升自己的价值。 Spark应用场景 Yahoo将Spark用在Audience Expansion中的应用,进行点击预测和即席查询等。 淘宝技术团队使用了Spark来解决多次迭代的机器学习算法、高计算复杂度的算法等。应用于内容推荐、社区发现等。 腾讯大数据精准推荐借助Spark快速迭代的优势,实现了在“数据实时采集、算法实时训练、系统实时预测”的全流程实时并行高维算法,最终成功应用于广点通pCTR投放系统上。 优酷土豆将Spark应用于视频推荐(图计算)、广告业务,主要实现机器学习、图计算等迭代计算。 本套大数据热门技术Spark+机器学习+贝叶斯算法共计13季,本套为第13季。
    免费试看
  • 人工智能之机器学习算法的介绍

    高级课

    人工智能之机器学习算法的介绍
    2课时 45分钟 CSDN讲师
    机器学习算法入门教程,主要介绍人工智障机器学习常见算法,包括决策树、基于概率论的分类方法:朴素贝叶斯、Logistic回归、支持向量机、第利用AdaBoost元算法提高分类性能。
    免费试看
  • 大数据热门技术Spark+机器学习+贝叶斯算法第6季

    高级课

    大数据热门技术Spark+机器学习+贝叶斯算法第6季
    18课时 348分钟 张长志
    本套大数据热门技术Spark+机器学习+贝叶斯算法系列课程,历经5年沉淀,调研企业上百家,通过上万学员汇总,保留较为完整的知识体系的同时,让每个模块看起来小而精,碎而不散。在本课程中基于大量案例实战,深度剖析和讲解Spark2.4原理和新特性,且会包含完全从企业真实业务需求中抽取出的案例实战。内容涵盖Spark核心编程、Spark SQL和Spark Streaming、Spark内核以及源码剖析、推荐系统、Kafka消费机制、Spark机器学习、朴素贝叶斯算法、企业级实战案例等。 通过理论和实际的紧密结合,可以使学员对大数据Spark技术栈有充分的认识和理解,在项目实战中对Spark和流式处理应用的场景、以及大数据开发有更深刻的认识;并且通过对流处理原理的学习和与批处理架构的对比,可以对大数据处理架构有更全面的了解,为日后成长为架构师打下基础。 本套教程可以让学员熟练掌握Spark技术栈,提升自己的职场竞争力,实现更好的升职或者跳槽,或者从J2EE等传统软件开发工程师转型为Spark大数据开发工程师,或是对于正在从事Hadoop大数据开发的朋友可以拓宽自己的技术能力栈,提升自己的价值。 Spark应用场景 Yahoo将Spark用在Audience Expansion中的应用,进行点击预测和即席查询等。 淘宝技术团队使用了Spark来解决多次迭代的机器学习算法、高计算复杂度的算法等。应用于内容推荐、社区发现等。 腾讯大数据精准推荐借助Spark快速迭代的优势,实现了在“数据实时采集、算法实时训练、系统实时预测”的全流程实时并行高维算法,最终成功应用于广点通pCTR投放系统上。 优酷土豆将Spark应用于视频推荐(图计算)、广告业务,主要实现机器学习、图计算等迭代计算。 本套大数据热门技术Spark+机器学习+贝叶斯算法共计13季,本套为第6季。
    免费试看
  • 大数据热门技术Spark+机器学习+贝叶斯算法第11季

    高级课

    大数据热门技术Spark+机器学习+贝叶斯算法第11季
    14课时 261分钟 张长志
    本套大数据热门技术Spark+机器学习+贝叶斯算法系列课程,历经5年沉淀,调研企业上百家,通过上万学员汇总,保留较为完整的知识体系的同时,让每个模块看起来小而精,碎而不散。在本课程中基于大量案例实战,深度剖析和讲解Spark2.4原理和新特性,且会包含完全从企业真实业务需求中抽取出的案例实战。内容涵盖Spark核心编程、Spark SQL和Spark Streaming、Spark内核以及源码剖析、推荐系统、Kafka消费机制、Spark机器学习、朴素贝叶斯算法、企业级实战案例等。 通过理论和实际的紧密结合,可以使学员对大数据Spark技术栈有充分的认识和理解,在项目实战中对Spark和流式处理应用的场景、以及大数据开发有更深刻的认识;并且通过对流处理原理的学习和与批处理架构的对比,可以对大数据处理架构有更全面的了解,为日后成长为架构师打下基础。 本套教程可以让学员熟练掌握Spark技术栈,提升自己的职场竞争力,实现更好的升职或者跳槽,或者从J2EE等传统软件开发工程师转型为Spark大数据开发工程师,或是对于正在从事Hadoop大数据开发的朋友可以拓宽自己的技术能力栈,提升自己的价值。 Spark应用场景 Yahoo将Spark用在Audience Expansion中的应用,进行点击预测和即席查询等。 淘宝技术团队使用了Spark来解决多次迭代的机器学习算法、高计算复杂度的算法等。应用于内容推荐、社区发现等。 腾讯大数据精准推荐借助Spark快速迭代的优势,实现了在“数据实时采集、算法实时训练、系统实时预测”的全流程实时并行高维算法,最终成功应用于广点通pCTR投放系统上。 优酷土豆将Spark应用于视频推荐(图计算)、广告业务,主要实现机器学习、图计算等迭代计算。 本套大数据热门技术Spark+机器学习+贝叶斯算法共计13季,本套为第11季。
    免费试看
  • 大数据热门技术Spark+机器学习+贝叶斯算法第3季

    高级课

    大数据热门技术Spark+机器学习+贝叶斯算法第3季
    12课时 331分钟 张长志
    本套大数据热门技术Spark+机器学习+贝叶斯算法系列课程,历经5年沉淀,调研企业上百家,通过上万学员汇总,保留较为完整的知识体系的同时,让每个模块看起来小而精,碎而不散。在本课程中基于大量案例实战,深度剖析和讲解Spark2.4原理和新特性,且会包含完全从企业真实业务需求中抽取出的案例实战。内容涵盖Spark核心编程、Spark SQL和Spark Streaming、Spark内核以及源码剖析、推荐系统、Kafka消费机制、Spark机器学习、朴素贝叶斯算法、企业级实战案例等。 通过理论和实际的紧密结合,可以使学员对大数据Spark技术栈有充分的认识和理解,在项目实战中对Spark和流式处理应用的场景、以及大数据开发有更深刻的认识;并且通过对流处理原理的学习和与批处理架构的对比,可以对大数据处理架构有更全面的了解,为日后成长为架构师打下基础。 本套教程可以让学员熟练掌握Spark技术栈,提升自己的职场竞争力,实现更好的升职或者跳槽,或者从J2EE等传统软件开发工程师转型为Spark大数据开发工程师,或是对于正在从事Hadoop大数据开发的朋友可以拓宽自己的技术能力栈,提升自己的价值。 Spark应用场景 Yahoo将Spark用在Audience Expansion中的应用,进行点击预测和即席查询等。 淘宝技术团队使用了Spark来解决多次迭代的机器学习算法、高计算复杂度的算法等。应用于内容推荐、社区发现等。 腾讯大数据精准推荐借助Spark快速迭代的优势,实现了在“数据实时采集、算法实时训练、系统实时预测”的全流程实时并行高维算法,最终成功应用于广点通pCTR投放系统上。 优酷土豆将Spark应用于视频推荐(图计算)、广告业务,主要实现机器学习、图计算等迭代计算。 本套大数据热门技术Spark+机器学习+贝叶斯算法共计13季,本套为第3季。
    免费试看
  • 大数据热门技术Spark+机器学习+贝叶斯算法第4季

    高级课

    大数据热门技术Spark+机器学习+贝叶斯算法第4季
    17课时 282分钟 张长志
    本套大数据热门技术Spark+机器学习+贝叶斯算法系列课程,历经5年沉淀,调研企业上百家,通过上万学员汇总,保留较为完整的知识体系的同时,让每个模块看起来小而精,碎而不散。在本课程中基于大量案例实战,深度剖析和讲解Spark2.4原理和新特性,且会包含完全从企业真实业务需求中抽取出的案例实战。内容涵盖Spark核心编程、Spark SQL和Spark Streaming、Spark内核以及源码剖析、推荐系统、Kafka消费机制、Spark机器学习、朴素贝叶斯算法、企业级实战案例等。 通过理论和实际的紧密结合,可以使学员对大数据Spark技术栈有充分的认识和理解,在项目实战中对Spark和流式处理应用的场景、以及大数据开发有更深刻的认识;并且通过对流处理原理的学习和与批处理架构的对比,可以对大数据处理架构有更全面的了解,为日后成长为架构师打下基础。 本套教程可以让学员熟练掌握Spark技术栈,提升自己的职场竞争力,实现更好的升职或者跳槽,或者从J2EE等传统软件开发工程师转型为Spark大数据开发工程师,或是对于正在从事Hadoop大数据开发的朋友可以拓宽自己的技术能力栈,提升自己的价值。 Spark应用场景 Yahoo将Spark用在Audience Expansion中的应用,进行点击预测和即席查询等。 淘宝技术团队使用了Spark来解决多次迭代的机器学习算法、高计算复杂度的算法等。应用于内容推荐、社区发现等。 腾讯大数据精准推荐借助Spark快速迭代的优势,实现了在“数据实时采集、算法实时训练、系统实时预测”的全流程实时并行高维算法,最终成功应用于广点通pCTR投放系统上。 优酷土豆将Spark应用于视频推荐(图计算)、广告业务,主要实现机器学习、图计算等迭代计算。 本套大数据热门技术Spark+机器学习+贝叶斯算法共计13季,本套为第4季。
    免费试看
  • 大数据热门技术Spark+机器学习+贝叶斯算法第10季

    高级课

    大数据热门技术Spark+机器学习+贝叶斯算法第10季
    14课时 275分钟 张长志
    本套大数据热门技术Spark+机器学习+贝叶斯算法系列课程,历经5年沉淀,调研企业上百家,通过上万学员汇总,保留较为完整的知识体系的同时,让每个模块看起来小而精,碎而不散。在本课程中基于大量案例实战,深度剖析和讲解Spark2.4原理和新特性,且会包含完全从企业真实业务需求中抽取出的案例实战。内容涵盖Spark核心编程、Spark SQL和Spark Streaming、Spark内核以及源码剖析、推荐系统、Kafka消费机制、Spark机器学习、朴素贝叶斯算法、企业级实战案例等。 通过理论和实际的紧密结合,可以使学员对大数据Spark技术栈有充分的认识和理解,在项目实战中对Spark和流式处理应用的场景、以及大数据开发有更深刻的认识;并且通过对流处理原理的学习和与批处理架构的对比,可以对大数据处理架构有更全面的了解,为日后成长为架构师打下基础。 本套教程可以让学员熟练掌握Spark技术栈,提升自己的职场竞争力,实现更好的升职或者跳槽,或者从J2EE等传统软件开发工程师转型为Spark大数据开发工程师,或是对于正在从事Hadoop大数据开发的朋友可以拓宽自己的技术能力栈,提升自己的价值。 Spark应用场景 Yahoo将Spark用在Audience Expansion中的应用,进行点击预测和即席查询等。 淘宝技术团队使用了Spark来解决多次迭代的机器学习算法、高计算复杂度的算法等。应用于内容推荐、社区发现等。 腾讯大数据精准推荐借助Spark快速迭代的优势,实现了在“数据实时采集、算法实时训练、系统实时预测”的全流程实时并行高维算法,最终成功应用于广点通pCTR投放系统上。 优酷土豆将Spark应用于视频推荐(图计算)、广告业务,主要实现机器学习、图计算等迭代计算。 本套大数据热门技术Spark+机器学习+贝叶斯算法共计13季,本套为第10季。
    免费试看
更多
免费试看
8504人学习 2704课时
介绍大数据技术生态圈主流技术框架的应用与发展,介绍如何搭建Hadoop大数据分布式系统集群平台、大数据分布式文件系统HDFS 、大数据分布式并行计算框架MapReduce。 本课程介绍大数据的学习基础。 本课程介绍大数据的背景。 带你深入了解大数据,对大数据有不同的认识。 介绍大数据的基本概念和技术生态圈。 本课程以杨力老师主编的《Hadoop大数据开发实战》为参考,书中详细的介绍了各个步骤,有需要的同学可以留意一下。 该课程的后续课程为杨力老师主讲的《hive大数据离线应用开发》,想要更进一步的同学可以继续观看杨老师的系列视频。
免费
免费试看
8482人学习 286课时
大数据技术在金融领域的应用与实战视频培训教程,系列课程是CSDN学院主题月专属视频,本期主题为 “金融大数据 ”,内容秉承干货实料的原则,邀请业内顶尖的数据技术讲师,共话大数据平台、Spark部署实践以及实现应用大数据支持业务发展等核心话题,旨在通过来自国内一线互联网公司的实践案例,为开发者提供一个有价值的高效技术交流平台,带你全面了解大数据在金融行业的应用与实战。
¥39.00 免费
免费试看
13160人学习 65课时
Hadoop入门和大数据应用视频教程,该课程主要分享Hadoop基础及大数据方面的基础知识。 讲师介绍:翟周伟,就职于百度,Hadoop技术讲师,专注于Hadoop&大数据、数据挖掘、自然语言处理等领域。2009年便开始利用Hadoop构建商业级大数据系统,是国内该领域早的一批人之一,负责设计过多个基于Hadoop的大数据平台和分析系统。2011年合著出版《Hadoop开源云计算平台》。在自然语言处理领域申请过一项发明专利。新出版书籍 《Hadoop核心技术》 。
会员免费
免费试看
35260人学习 2477课时
大数据Spark实战视频培训教程:本课程内容涉及,Spark虚拟机安装、Spark表配置、平台搭建、快学Scala入门、Spark集群通信、任务调度、持久化等实战内容。Spark是UC Berkeley AMP lab (加州大学伯克利分校的AMP实验室)所开源的类Hadoop MapReduce的通用并行框架,Spark,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法。
¥208.00 拼团
免费试看
297人学习 718课时
    本课程中,你将学习到,项目架构搭建,数据生产,数据消费,数据分析,以及数据展示等项目核心业务功能的实现。学习过程中,我们将使用Flume,Kafka,HBase,Hadoop,Echarts,Crontab等大数据框架完成整个业务的实现,并在学习过程中对各个框架的应用和原理进行梳理和剖析。 【视频特点】 通信运营商每时每刻会产生大量的通信数据,例如通话记录,短信记录,彩信记录,第三方服务资费等等繁多信息。数据量如此巨大,除了要满足用户的实时查询和展示之外,还需要定时定期的对已有数据进行离线的分析处理。 电信客服综合案例就是以此为切入点所开发的大数据实战案例。  在本课程中,你将学习到,项目架构搭建,数据生产,数据消费,数据分析,以及数据展示等项目核心业务功能的实现。学习过程中,我们将使用Flume,Kafka,HBase,Hadoop,Echarts,Crontab等大数据框架完成整个业务的实现,并在学习过程中对各个框架的应用和原理进行梳理和剖析。
¥199.00 拼团
免费试看
1609人学习 1721课时
本课程以CDH作为大数据平台,详细介绍CDH平台各个组件在生产环境的应用及开发,并结合实际的业务场景,离线数仓,实时数仓,构建企业核心的数据架构。 在实际的工作当中,大数据架构,运维或者开发人员会与多个公司团队合作,ETL团队,爬虫团队,算法团队,运营团队等等,指导大家如何与个个团队打交道,提升工作效率。减少团队之间不愉快的沟通。 希望学习者最好从事过数据库相关工作,有一些 JAVA开发基础,或者有其他工作经验,想学习大数据及数据仓库的同学,对于没有工作经验,或者对开发,数据完全小白的同学,建议先了解相关知识再学习。 本课程的宗旨只有一条,任何学习完本课程的同学,都能熟悉企业主流的数据架构,都有能力维护一个中等HADOOP集群,也就是1P左右的数据的集群或者多个集群。
¥800.00
免费试看
2655人学习 606课时
本课程主要讲解在实际项目开发中,企业构建大数据平台的方案及实战。详细阐述企业级大数据平台的架构设计、机器选型、集群规划、技术选型、资源规划等技术方案。实战演练基于Cloudera Manager(CDH6)安装部署、监控管理、运营维护大数据平台的各个服务组件。从理论经验到实战演练,从设计思想到流程实施,亲力亲测,你也绝对可以。推荐进阶课程:大数据运维尖刀班
¥99.00
免费试看
209人学习 253课时
课程由猎豹移动大数据架构师,根据Java在公司大数据开发中的实际应用,精心设计和打磨的大数据必备Java课程。通过本课程学习大数据新手能够少走弯路,以最短的时间系统掌握大数据开发必备语言Java,为后续大数据课程的学习奠定了坚实的语言基础。 课程特色 1.课程是由猎豹移动大数据架构师亲自授课 2.课程理论讲解透彻形象,手把手实战操作 3.课程包含大数据开发必备的所有Java知识 4.课程前后连贯、系统完整,不会出现跳讲和断讲 技术说明 1. 语言版本:JDK1.8 2. 开发工具:Eclipse 课程资料 免费提供完整的PPT资料 免费提供完整的Word文档 免费提供完整的随堂笔记 免费提供完整的课程代码 免费提供完整的软件包
¥12.00
免费试看
263人学习 549课时
如今大数据已经成了各大互联网公司工作的重点方向,而推荐系统可以说就是大数据最好的落地应用之一,已经为企业带来了可观的用户流量和销售额。特别是对于电商,好的推荐系统可以大大提升电商企业的销售业绩。国内外的知名电商,如亚马逊、淘宝、京东等公司,都在推荐系统领域投入了大量研发力量,也在大量招收相关的专业人才。打造的电商推荐系统项目,就是以经过修改的中文亚马逊电商数据集作为依托,并以某电商网站真实的业务架构作为基础来实现的,其中包含了离线推荐与实时推荐体系,综合利用了协同过滤算法以及基于内容的推荐方法来提供混合推荐。具体实现的模块主要有:基于统计的离线推荐、基于隐语义模型的离线推荐、基于自定义模型的实时推荐,以及基于内容的、和基于Item-CF的离线相似推荐。整个项目具有很强的实操性和综合性,对已有的大数据和机器学习相关知识是一个系统性的梳理和整合,通过学习,同学们可以深入了解推荐系统在电商企业中的实际应用,可以为有志于增加大数据项目经验的开发人员、特别是对电商业务领域感兴趣的求职人员,提供更好的学习平台。适合人群:1.有一定的 Java、Scala 基础,希望了解大数据应用方向的编程人员2.有 Java、Scala 开发经验,了解大数据相关知识,希望增加项目经验的开发人员3.有电商领域开发经验,希望拓展电商业务场景、丰富经验的开发人员4.有较好的数学基础,希望学br习机器学习和推荐系统相关算法的求职人员
¥128.00 拼团
免费试看
701人学习 20课时
购买课程后,可扫码进入学习群,获取赵强老师答疑 本系列课程,完全免费,旨在帮助更多的学员了解大数据,包括:基本思想、Hadoop和Spark的基础知识,为进一步学习大数据奠定基础。
会员免费
免费试看
197人学习 804课时
通过此案例可以学习大数据整体开发流程,课程是围绕一个大数据整理流程而做的教学课程,让大家明白大数据不同技术的相互协调,从收集数据,过滤数据,数据分析,数据展示,调度的使用而开发的课程,而且怎么从hadoop,hive应用快速的过度到spark上面而做的整套流程。学完此课程可以企业流程做一个整体的认识。 配套资料-答疑专属答疑群 购买课程后加入qq群 951117762 (备注订单号后四位)
¥198.00 拼团
免费试看
675人学习 188课时
Spark大数据实时分析系统课程旨在帮助同学们收获一份有含金量、能写在简历上的项目经验,课程无死角讲解项目每个环节。课程内容涉及项目业务介绍、技术选型与架构设计、项目的架构演进、手机端到服务端数据流程、日志采集设计与要求、日志采集拓扑结构、线上和本地集群资源规划、项目全流程开发、项目总结、项目面试21问。项目内容比较丰满,零基础的同学可以从基础学到项目,有基础的同学可以直接选择项目学习。
免费
免费试看
418人学习 832课时
随着大数据技术的不断发展壮大, Hive不再是大数据技术生态圈中一个普通的工具,而是在大数据分析和大数据仓库中占据着几乎不可替代的重要作用,大数据分析中Hive和Hbase、Hive和Spark SQL、Hive和Impala的结合使用愈加紧密,大数据仓库中Hive在数据仓库建模模块的作用暂时无可替代。所以,深入学好Hive是入门大数据分析、大数据仓库最好的选择。
¥199.00
免费试看
1026人学习 1694课时
该课程采用时下后的编程语言Python讲解,囊括了当前火的大数据技术Spark/Hadoop/Hive知识,学习环境是基于Docker搭建的5个容器。通过这门课程不仅可以学到Spark/Hadoop/Hive大数据知识,还可以学到当下后的云计算技术Docker. 任务作业: 很多人都想入门机器学习和人工智能,挑战高薪!殊不知人工智能和机器学习的基础是数据及数学,特别是在大数据时代,90%以上的公司不单单是招聘算法工程师,到猎聘Boss直聘上查找算法岗位,查看其招聘条件往往都需要熟练使用大数据平台。这门课程涵盖Docker云计算容器技术,要求学员学完本门课程能够使用Docker容器部署4个容器的Spark集群并能用学到的Docker技术制作一个微服务镜像并对外提供服务;本课程全面讲解了Spark原理及接口,要求学员学完本课程能用网络爬虫爬取全国各地的房价数据,并用Spark编写mapreduce程序分析房价分布情况;本课程涉及分布式机器学习SparkML,要求学员学完本课程,能用SVR,LinearRegreesion,多层感知机算法,决策树回归算法等算法进行房价预测。 人人都想入门人工智能,殊不知人工智能的入门准则是基础的算法和数据处理的能力,学完本课程希望人人拿高薪! (注意: 作业需写在CSDN博客中,请把作业链接贴在评论区,老师会定期逐个批改~~)
¥399.00 拼团
免费试看
555人学习 294课时
购买课程后,可扫码进入学习群,获取赵强老师答疑 本系列课程将基于RedHat Linux 7.4版本、Hadoop 2.7.3、Spark 2 版本全面介绍大数据的整体内容,让学员深入理解并掌握运行机制和原理,从而进一步掌握大数据的相关内容。
¥181.00
免费试看
517人学习 40课时
随着大数据与人工智能技术的应用普及,海量多源异构数据急剧增加。传统大数据平台在面临多源异构数据处理时,面临数据采集处理能力不足、数据结构难以统一,数据运维困难等挑战,为企业探索数据价值带来了层层阻碍。那么,有没有办法解决上述问题呢?答案是肯定的,浪潮商用机器有限公司推出的基于POWER9架构的Hadoop+Spark的异构大数据平台,将能轻松应对多样化并发处理任务,实现异构资源灵活调配,为企业提供一个完美的异构大数据解决方案。本次公开课力邀浪潮商用机器的资深专家——刘长生先生,为您带来《异构大数据平台,让多源异构数据融合贯通!》主题分享,详细解读该异构大数据解决方案,诚邀您参加!
免费
猜你喜欢