2018-07-21 11:42:45 baidu_36984161 阅读数 156
  • OpenCV3.2 Java图像处理视频学习教程

    OpenCV3.2 Java图像处理视频培训课程:基于OpenCV新版本3.2.0详细讲述Java OpenCV图像处理部分内容,包括Mat对象使用、图像读写、 基于常用核心API讲述基本原理、使用方法、参数、代码演示、图像处理思路与流程讲授。主要内容包括opencv像素操作、滤波、边缘提取、直线与圆检测、形态学操作与分水岭、图像金子塔融合重建、多尺度模板匹配、opencv人脸检测、OpenCV跟Tomcat使用实现服务器端图像处理服务。

    4098 人正在学习 去看看 贾志刚

       研究生方向准备选择图像方向,现阶段对图像这一块儿还没有一个准确的认知,只知道大致方向是学好图像处理基础之后往计算机视觉上发展。由于本科是软件工程,并没有接触过这方面的课程,一开始对于数字图像处理这门课真的是无从下手,打算利用暑假这段时间把基础课程给学好,在网上看了各种经验帖,总结和计划了一波自己的学习计划,首先把《数字图像处理》刚萨雷西第三版的数字图像基础部分看完,然后配合《数字图像处理matlab》第二版进行实战操作,仿真书上最基本的算法,一步一步慢慢来,把基础给打扎实。然后再去学习和了解一下OpenCV,并且再回顾和学习c++,正好学校要求要考ccf,就多刷刷题,始终认为刷算法题是学好c++的不二选择,后续的学习笔记和经验总结我会及时总结到博客上,给刚刚入门图像的小白们提供思路,一路与君共勉。

2013-01-12 10:52:56 hbbd219219 阅读数 1133
  • OpenCV3.2 Java图像处理视频学习教程

    OpenCV3.2 Java图像处理视频培训课程:基于OpenCV新版本3.2.0详细讲述Java OpenCV图像处理部分内容,包括Mat对象使用、图像读写、 基于常用核心API讲述基本原理、使用方法、参数、代码演示、图像处理思路与流程讲授。主要内容包括opencv像素操作、滤波、边缘提取、直线与圆检测、形态学操作与分水岭、图像金子塔融合重建、多尺度模板匹配、opencv人脸检测、OpenCV跟Tomcat使用实现服务器端图像处理服务。

    4098 人正在学习 去看看 贾志刚
我是研一新生,学的是图像工程,半个学期过去了,自己没看论文,反而把网上所有关于图像处理方面的网站、论坛浏览了一遍,目的是想到找个学习这个方向的方法和研究的重点,以便从整体上把握这个方向。下面我就分享一下这个学期关于图像工程的所感所得。
    首先介绍一个我经常上的论坛,我认为比较好的论坛有三个,分别是小木虫、博客园、最后一个当然是csdn。这三个论坛里面都有关于图像处理的研究,个人认为小木虫更新比较慢,以问答形式为主;博客园和csdn是以作者学习的心得体会为主,要求读者的专业性比较强,但是对于研究图像工程的学者,这两个论坛是发现新思路的好去处。
    再次,我想谈谈我将来怎样学习图像处理。我个人认为搞图像处理就是研究算法,并且对编程的要求比较高。所以我要补补编程。如果编程学的好的话,对将来就业也是很有帮助的。最佳的学习模式是编程能力加上专业知识的背景,如果这两个方面掌握的很好,工作是不用担心的。我打算在这暑假把编程能力提高上去,在图书馆借了一本《大学算法教程》,另外还借了一本《Visual C++数字图像处理典型算法及实现》。
     以上只是我个人的学习观点,请问图像工程的大牛们,你们是怎么学习图像处理的呢?
2017-12-03 17:28:28 arryCC 阅读数 3308
  • OpenCV3.2 Java图像处理视频学习教程

    OpenCV3.2 Java图像处理视频培训课程:基于OpenCV新版本3.2.0详细讲述Java OpenCV图像处理部分内容,包括Mat对象使用、图像读写、 基于常用核心API讲述基本原理、使用方法、参数、代码演示、图像处理思路与流程讲授。主要内容包括opencv像素操作、滤波、边缘提取、直线与圆检测、形态学操作与分水岭、图像金子塔融合重建、多尺度模板匹配、opencv人脸检测、OpenCV跟Tomcat使用实现服务器端图像处理服务。

    4098 人正在学习 去看看 贾志刚

数字图像处理


一、学习内容总结

1. 第一章 绪论

本章主要有几个目的:

  1. 定义我们称之为数字图像处理领域的范围;
  2. 通过考察几个领域,给出图像处理技术状况的概念;
  3. 讨论图像处理用到的几种方法;
  4. 概述通用目的的典型图像处理系统的组成。

1.1 什么是数字图像处理

我们给出一些定义:

  • 强度灰度:一幅图像可以被定义为一个二维函数 f(x,y),其中 x,y 是空间(平面)坐标,而在任何一处的幅值 f 被称为在该点的灰度或强度。
  • 数字图像:当 x,y 或灰度值 f有限的离散数值时,称该图像为数字图像。也就是说数字图像是由有限数量的元素组成,每个元素都有特定的位置和幅值。这些元素被称为图画元素图像元素像素
  • 数字图像处理 : 指用特定的计算机来处理数字图像。

本书中将数字图像处理界定为其输入和输出都是图像的处理。

1.2 使用数字图像处理领域的实例

  • 伽马射线成像:医学和天文。
  • X射线成像:最早用于成像的电磁辐射源之一,医学诊断。
  • 紫外波段成像 :荧光显微镜。
  • 可见光及红外线成像 :可见显微镜技术,遥感,天气预测和预报,红外卫星图像,自动视觉检测,检测丢失的部件,指纹图像。
  • 微波波段成像 :雷达。
  • 无线电波段成像 :天文学和医学(核磁共振)。
  • 其他方式 :声波成像,电子显微镜方法,(由计算机产生的)合成图像。

1.3 数字图像处理的基本步骤

这里写图片描述

1.4 图像处理系统的组成

这里写图片描述

2. 第二章 数字图像处理基础

本章主要介绍数字图像处理一些基本概念

2.1 视觉感知要素

  • 人眼的结构

    重点介绍视网膜里的两类光感受器

    • 锥状体 :对颜色高度敏感,这种视觉称为白昼视觉或者亮视觉。高照明水平下执行。
    • 杆状体 :没有彩色感觉,对低照明度敏感,称为暗视觉或微光视觉。低照明水平下执行。
  • 亮度适应与辨别

    • 亮度适应现象 :视觉系统不能同时在一个范围内工作,它是通过改变其整个灵敏度来完成这一较大变动的。
    • 韦伯比 :较大:亮度辨别能力较差;反之,较好。
  • 感知亮度 不是简单的强度的函数

    • 视觉系统往往会在不同强度区域的边界处出现“下冲”或“上冲”现象。
    • 同时对比、错觉

2.2 光和电磁波谱

  • 电磁波是能量的一种,任何有能量的物体都会释放电磁波谱。它可以用 波长 (λ)、频率(v)或能量(E) 来描述,其中

λ=c/v

E=hv

  • 光是一种特殊的电磁辐射,可以被人眼感知。
    • 单色光 是没有颜色的光,也成为无色光。唯一属性就是它的强度或者大小,用 灰度级 来表示。单色图像常被称为 灰度图像
    • 彩色光源 的质量可以用发光强度、光通量和亮度 来表示。

2.3 图像感知和获取

  • 图像获取方式

    • 使用单个传感器来获取图像
    • 使用条带传感器获取图像
    • 使用传感器阵列获取图像
  • 简单的图像形成模型

    用形如 f(x,y) 的二维函数来表示图像,那么:

    0<f(x,y)<

    f(x,y) 可以用两个分量来表征:

    • 入射分量 入射到被观察场景的光源照射总量,用i(x,y) 表示;
    • 反射分量 场景中物体所反射的光照总量,用r(x,y) 表示。

    所以有:

    f(x,y)=i(x,y)r(x,y),0<i(x,y)<,0<r(x,y)<1

2.4 图像取样和量化

  • 取样和量化的基本概念

    • 取样 :对坐标值进行数字化
    • 量化 : 对幅值数字化

    数字图像的质量在很大程度上取决于取样和量化中所用的样本数灰度级

  • 数字图像表示

    用数列矩阵来表示一幅数字图像。在实数矩阵中,每个元素称为图像单元、图像元素或像素。

    对比度 一幅图像最高和最低灰度级间的灰度差为对比度。

    存储数字图像所用的比特数为:

    b=M×N×k,M=Nb=N2k

    灰度级数L=2k

  • 空间和灰度分辨率

    • 空间分辨率 :图像中可辨别的最小细节的度量。在数量上,表示每单位距离线对数和每单位距离点数是最通用的度量(必须针对空间单位来规定才有意义)。
    • 灰度分辨率 :指在灰度级中可分辨的最小变化。
  • 图像内插

    用已知数据来估计未知位置的数据处理。是基本的图像重取样方法。可以处理图像的放大和缩小。

2.5 像素间的基本关系

  • 相邻像素

    位于坐标 (x,y) 处的像素 p 有4个水平和垂直上的相邻像素,用 N4(p) 表示;有四个对角相邻像素,用 ND(p) 表示。如果 p 位于图像边界,则某些邻点可能 落在图像外边。

  • 邻接性、连通性、区域和边界

    • 4邻接、8邻接、混合邻接
  • 距离度量

    • 欧氏距离(圆)
    • D4 城市街区距离(菱形)
    • 棋盘距离(正方形)

2.6 常用数学工具介绍

  • 阵列和矩阵操作
  • 线性操作和非线性操作
  • 算术操作
  • 集合和逻辑操作
    • 基本集合操作
    • 逻辑操作
    • 模糊集合
  • 空间操作
    • 单像素操作
    • 邻域操作
    • 几何空间变换与图像配准
  • 向量和矩阵操作
  • 图像变换

3.第三章

3.1 背景知识

  • 空间域 就是简单的包含图像像素的平面。空间域处理可用以下方式表示:

g(x,y)=T[f(x,y)],T(x,y)

  • 灰度变换函数
    s=T(r),r,s

3.2 基本灰度变换函数

  • 图像反转

    得到灰度范围为 [0,L1] 的一幅图像的反转图像:(得到等效的照片底片)

    s=L1r

  • 对数变换

    对数变换的通用形式:

    s=clog(1+r)

    扩展图像中暗像素的值,同时压缩更高灰度级的值。反对数变换的作用与此相反。

这里写图片描述

  • 幂律变换(伽马)变换

    基本形式:

    s=crγ

    γ<1 变亮,大于1变暗,c=γ=1 恒等变换。

这里写图片描述
* 分段线性变换函数
* 对比度拉伸:扩展图像灰度级动态范围处理,因此它可以跨越记录介质和显示装置的全部灰度范围。

根据$r,s$ 的取值,变换可以为线性函数和阈值处理函数。
  • 灰度级分层:突出特定图像灰度范围的亮度。有两种方法:

    • 突出范围 [A,B] 内的灰度,并将所有其他灰度降低到一个更低的级别;
    • 突出范围[A,N] 内的灰度,并保持所有其他灰度级不变。
  • 比特平面分层:突出特定比特为整个图像外观作贡献。

    • 4个高阶比特平面,特别是最后两个比特平面,包含了在视觉上很重要的大多数数据。
    • 低阶比特平面在图像中贡献更精细的灰度细节。

    得出结论:储存四个高阶比特平面将允许我们以可接受的细节来重建原图像。这样可减少50%的存储量。

3.3 直方图的处理

  • 理论基础:若一幅图像的像素倾向于占据可能的灰度级并且分布均匀,则该图像会有高对比度的外观并展示灰色调的较大变化。

  • 直方图均衡:

    • 灰度范围为 [0,L1] 的数字图像的直方图是离散函数 h(rk)=nk,其中 rk 是第 k 级灰度值,nk 是图像中灰度为rk 的像素的个数。
    • 通过转换函数T(rk)变换,得到直方图均衡化。
    • 应用:自适应对比度增强。
  • 直方图匹配:用于处理后有特殊直方图的方法。

  • 局部直方图处理:以图像中每个像素邻域中的灰度分布为基础设计变换函数,来增强图像中小区域的细节。

  • 在图像增强中使用直方图统计:提供这样一种增强图像的方法:

    在仅处理均值和方差时,实际上直接从取样值来估计它们,不必计算直方图。这些估计被称为取样均值和取样方差。

3.4 空间滤波基础

  • 空间滤波机理

    • 空间滤波器的组成:
    • 一个邻域
    • 对该邻域包围的图像像素执行的预定义操作

    滤波产生的是一个新像素,新像素的坐标等于邻域中心的坐标,像素的值是滤波操作的结果。

  • 空间相关与卷积

    • 相关:滤波器模板移过图像并计算每个位置乘积之和的处理。一个大小为m×n 的滤波器与一幅图像 f(x,y) 做相关操作,可表示为w(x,y)f(x,y)
    • 卷积:与相关机理相似,但滤波器首先要旋转180o 一个大小为m×n 的滤波器与一幅图像 f(x,y) 做j卷积操作,可表示为w(x,y)f(x,y)

3.5 平滑空间滤波器

用于模糊处理和降低噪声。

  • 平滑线性滤波器(均值滤波器)

    它使用滤波器确定的邻域内像素的平均灰度值代替图像中每个像素的值。应用:

    • 降低噪声
    • 灰度级数量不足而引起的伪轮廓效应的平滑处理
    • 去除图像的不相关细节
  • 统计排序(非线性)滤波器

    最有代表性的是中值滤波器 ,特点:

    • 将像素邻域内灰度的中值(在中值计算中,包括原像素值)代替该像素的值;
    • 对处理脉冲噪声(椒盐噪声)非常有效。

3.6 锐化空间滤波器

  • 拉普拉斯算子:最简单的各向同性微分算子,是一个线性算子。因其为微分算子,因此强调的是图像中灰度的 突变而不是灰度级缓慢变换的区域。

  • 非锐化隐蔽和高提升滤波:从原图像中减去一部分非锐化的版本。步骤:

    • 模糊原图像
    • 从原图像减去模糊图像
    • 将模板加到原图像上
  • 梯度:图像处理中的一阶微分用梯度实现。对于函数f(x) ,在坐标(x,y) 处的梯度定义为二维列向量。它指出在位置f(x,y)f的最大变化率方向。

    应用:边缘增强。

4.第四章

本章主要为傅里叶变换的原理打一个基础,并介绍在基本的图像滤波中如何使用傅里叶变换。

4.1. 基本概念

  • 傅里叶概念:任何周期函数都可以表示为不同频率的正弦和或余弦和的形式,每个正弦项和或余弦项乘以不同的系数(傅里叶级数)。
  • 傅里叶变换:在非周期函数用正弦和或余弦和乘以加权函数的积分来表示的公式。
  • 介绍复数、傅里叶级数、冲击及其取样特征、连续函数的傅里叶变换以及之前提过的卷积。

4.2. 取样与取样函数中的傅里叶变换

  • 取样

    在连续函数f(x,y) 中模拟取样的一种方法是:用一个ΔT 单位间隔的冲击串作为取样函数去乘以f(t) .

  • 取样函数的傅里叶变换

    空间域来两个函数乘积的傅里叶变换是两个函数在频率域的卷积。

  • 取样定理

    如果以超过函数最高频率的两倍的取样来获取样本,连续的带限函数可以完全从它的样本集来恢复。

4.3. DFT小结

在课本上,作者给了我们详细的总结:

这里写图片描述
这里写图片描述
这里写图片描述

4.4. 频率域滤波

  • 步骤
    • 等到填充参数PQ
    • 形成大小为P×Q 的填充后的图像fp(x,y)
    • (1)x+y 乘以fp(x,y)移到其变换中心
    • 计算上一步骤的DTF,得到F(u,v)
    • 生成实的、对称的滤波函数H(u,v)
    • 得到处理后的图像gp(x,y)
    • gp(x,y) 的做上限提取M×N区域 ,得到最终的处理结果g(x,y)
  • 空间域与频率域间的纽带是卷积定理。

4.5. 使用频率域滤波器平滑图像

三种低通滤波器来平滑图像

  • 定义总结

这里写图片描述

  • 特性
    • 理想低通滤波器(ILFP)
    • 特性:模糊和振铃。
    • 布特沃斯低通滤波器(BLPF)
    • 特性:随着阶数增高,其振铃和负值变明显。(一阶时无)
    • 高斯低通滤波器(GLPF)
    • 特性:无振铃

4.6. 使用频率域滤波器锐化图像

  • 三种高通滤波器来锐化图像
    • 定义总结

这里写图片描述
* 特性

* 理想高通滤波器(IHPF)
  * 有振铃
* 布特沃斯高通滤波器(BHPF)
  * 比IHPF更平滑
* 高斯低通滤波器(GHPF)
  * 比前两个更平滑,即使微小物体和细线条得到的结果也比较其清晰
  • 其他方式

    • 拉普拉斯算子
    • 钝化模板、高提升滤波和高频强调滤波
    • 同态滤波

4.7.选择性滤波器

处理指定频段或者频率域的小区域

  • 带阻滤波器和带通滤波器

    • 带阻滤波器
      这里写图片描述

    • 带通滤波器

    • 通过1减去带阻得到。

  • 陷波滤波器:拒绝事先定义的关于频率矩形中心的一个邻域的频率。

    • 陷波带阻滤波器

    用中心已被平移到陷波滤波中心的高通滤波器的乘积来构造。

    • 陷波带通滤波器

    通过1减去带阻得到。

2016-04-11 12:28:58 qq_20823641 阅读数 7933
  • OpenCV3.2 Java图像处理视频学习教程

    OpenCV3.2 Java图像处理视频培训课程:基于OpenCV新版本3.2.0详细讲述Java OpenCV图像处理部分内容,包括Mat对象使用、图像读写、 基于常用核心API讲述基本原理、使用方法、参数、代码演示、图像处理思路与流程讲授。主要内容包括opencv像素操作、滤波、边缘提取、直线与圆检测、形态学操作与分水岭、图像金子塔融合重建、多尺度模板匹配、opencv人脸检测、OpenCV跟Tomcat使用实现服务器端图像处理服务。

    4098 人正在学习 去看看 贾志刚

         经过上一篇文章的《matlab GUI图像图像基础》,我们可以知道说是入门了GUI,对于GUI图像图形还可以调用函数形成,但是对于学习图像处理来说,感觉没有那个必要去学,会了基础,就可以自己GUI图像处理功能了,主要还是算法和功能,所以我就没有写函数调用创建GUI,然后直接写了一篇关于GUI图像处理(根据matlab GUI编写),里面包括打开文件、保存文件灰度转换 、傅立叶变换 、颗粒面积的分布、 二维三维化、 图像融合几个功能,相信他们看就会明白怎么创建自己的功能,让界面更加好看,功能更加的多。完全可以自己DIY一个。

        因为回调函数的代码比较长,所以上传到资源,可以下载下来,对比添加,下载地址http://download.csdn.net/user/qq_20823641

        还是想给一张总图,一个是界面图,一个是菜单,对于控件回调函数不再这里多说了,主要的功能添加基本都在菜单和子菜单上面。

                                    

现在说一下过程

1.     看图上的坐标轴和按钮,添加三个坐标轴,2个按钮,2个可编辑文本

2.     菜单编辑上增加,如图


3.     添加各自的回调函数,会的可以参考下载的代码添加,不会的可以看上一篇学习。



2016-10-17 17:28:54 qq_23225317 阅读数 571
  • OpenCV3.2 Java图像处理视频学习教程

    OpenCV3.2 Java图像处理视频培训课程:基于OpenCV新版本3.2.0详细讲述Java OpenCV图像处理部分内容,包括Mat对象使用、图像读写、 基于常用核心API讲述基本原理、使用方法、参数、代码演示、图像处理思路与流程讲授。主要内容包括opencv像素操作、滤波、边缘提取、直线与圆检测、形态学操作与分水岭、图像金子塔融合重建、多尺度模板匹配、opencv人脸检测、OpenCV跟Tomcat使用实现服务器端图像处理服务。

    4098 人正在学习 去看看 贾志刚

什么是数字图像处理?历史、以及它所研究的内容。


说起图像处理,你会想到什么?你是否真的了解这个领域所研究的内容。纵向来说,数字图像处理研究的历史相当悠久;横向来说,数字图像处理研究的话题相当广泛。

数字图像处理的历史可以追溯到近百年以前,大约在1920年的时候,图像首次通过海底电缆从英国伦敦传送到美国纽约。图像处理的首次应用是为了改善伦敦和纽约之间海底电缆发送的图片质量,那时就应用了图像编码,被编码后的图像通过海底电缆传送至目的地,再通过特殊设备进行输出。这是一次历史性的进步,传送一幅图片的时间从原来的一个多星期减少到了3小时。

1950年,美国的麻省理工学院制造出了第一台配有图形显示器的电子计算机——旋风I号(Whirlwind I)。旋风I号的显示器使用一个类似于示波器的阴极射线管(Cathode Ray Tube,CRT)来显示一些简单的图形。1958年美国Calcomp公司研制出了滚筒式绘图仪,GerBer公司把数控机床发展成为平板式绘图仪。在这一时期,电子计算机都主要应用于科学计算,而为这些计算机配置的图形设备也仅仅是作为一种简单的输出设备。

随着计算机技术的进步,数字图像处理技术也得到了很大的发展。1962年,当时还在麻省理工学院攻读博士学位的伊凡·苏泽兰(Ivan Sutherland)成功开发了具有划时代意义的“画板”(Sketchpad)程式。而这正是有史以来第一个交互式绘图系统,同时这也是交互式电脑绘图的开端。从此计算机和图形图像被更加紧密地联系到了一起。鉴于伊凡·苏泽兰为计算机图形学创立所做出的杰出贡献,他于1988年被授予计算机领域最高奖——图灵奖。

1964年,美国加利福尼亚的喷气推进实验室用计算机对“旅行者七号”太空船发回的大批月球照片进行处理,以校正航天器上摄影机中各种类型的图像畸变,收到了明显的效果。在后来的宇航空间技术中,数字图像处理技术都发挥了巨大的作用。

到了20世纪60年代末期,数字图像处理已经形成了比较完善的学科体系,这套理论在20世纪70年代发展得十分迅速,并开始应用于医学影像和天文学等领域。1972年,美国物理学家阿伦·马克利奥德·柯麦科(Allan MacLeodCormack)和英国电机工程师戈弗雷·纽博尔德·豪恩斯弗尔德(Godfrey Newbold Housfield)发明了轴向断层术,并将其用于头颅诊断。世界第一台X射线计算机轴向断层摄影装置由EMI公司研制成功,这也就是人们通常所说的CT(Computer Tomograph)。CT可通过一些算法用感知到的数据去重建通过物体的“切片”图像。这些图像组成了物体内部的再现图像,也就是根据人的头部截面的投影,经计算机处理来进行图像重建。鉴于CT对于医学诊断技术的发展所起到的巨大推动作用,柯麦科和豪恩斯弗尔德于1979年获得了诺贝尔生理或医学奖。

随后在2003年,诺贝尔生理或医学奖的殊荣再次授予了两位在医疗影像设备研究方面做出杰出贡献的科学家——美国化学家保罗·劳特伯尔(Paul Lauterbur)和英国物理学家彼得·曼斯菲尔(Peter Mansfield)。两位获奖者在利用磁共振成像(Magnetic Resonance Imaging,MRI)显示不同结构方面分别取得了开创性成就。瑞典卡罗林斯卡医学院称,这两位科学家在MRI领域的开创性工作,代表了医学诊疗和研究的重大突破。而事实上,核磁共振的成功同样也离不开数字图像处理方面的发展。即使在今天,诸如MRI图像降噪等问题依然是数字图像处理领域的热门研究方向。

说到数字图像的发展历程,还有一项至关重要的成果不得不提,那就是电荷耦合元件(Charge-coupled Device,CCD)。CCD最初是由美国贝尔实验室的科学家维拉德·波义耳(Willard Sterling Boyle)和乔治·史密斯(George Elwood Smith)于1969年发明的。CCD的作用就像胶片一样,它能够把光学影像转化为数字信号。今天人们所广泛使用的数码照相机、数码摄影机和扫描仪都是以CCD为基础发展而来的。换句话说,我们现在所研究的数字图像主要也都是通过CCD设备获取的。由于波义耳和史密斯在CCD研发上所做出的巨大贡献,他们两人共同荣获了2009年度的诺贝尔物理学奖。

数字图像处理在今天是非常热门的技术之一,生活中无处不存在着它的影子,可以说它是一种每时每刻都在改变着人类生活的技术。但长久以来,很多人对数字图像处理存在着较大的曲解,人们总是不自觉地将图像处理和Photoshop联系在一起。大名鼎鼎的Photoshop无疑是当前使用最为广泛的图像处理工具。类似的软件还有Corel公司生产的CorelDRAW等软件。

尽管Photoshop是一款非常优秀的图像处理软件,但它的存在并不代表数字图像处理的全部理论与方法。它所具有的功能仅仅是数字图像处理中的一部分。总的来说,数字图像处理研究的内容主要包括如下几个方面:

  • 1)图像获取和输出
  • 2)图像编码和压缩
  • 3)图像增强与复原
  • 4)图像的频域变换
  • 5)图像的信息安全
  • 6)图像的区域分割
  • 7)图像目标的识别
  • 8)图像的几何变换

但图像处理的研究内容,又不仅限于上述内容!所以说图像处理的研究话题是相当宽泛的。那现在图像处理都应用在哪些领域呢?或许我们可能熟知的例子有(当然,你应该还能举出更多例子):

  • 1)一些专业图像处理软件:Photoshop、CorelDRAW……
  • 2)一些手机APP应用:美图秀秀、玩图……
  • 3)一些医学图像处理应用:MRI、彩超图像处理……
  • 4)一些制造业上的应用:元器件检测、瑕疵检测……
  • 5)一些摄像头、相机上的应用:夜间照片的质量改善……
  • 6)一些电影工业上是应用:换背景、电影特技……


什么样的人会去学(或者需要学)图像处理?


1)如果你是我上述那些应用领域的从业者,你当然需要掌握图像方面的理论和技术;2)相关专业的研究人员、大专院校的博士生、研究生。

所谓相关专业又是指什么呢?这个答案也可能相当宽泛,例如(但不仅限于此):Computer Science, Software Engineering, Electronic Engineering, Biomedical Engineering, Automation, Control, Applied Mathematics……


如何学好图像处理——我的一些箴言


1)对于初级入门者


一个扎实的基础和对于图像处理理论的完整的、系统的整体认识对于后续的深入研究和实践应用具有非常非常重要的意义。

我经常喜欢拿武侠小说《天龙八部》中的一段情节来向读者说明此中的道理,相信读者对这部曾经被多次搬上银幕的金庸作品已经耳熟能详了。书中讲到有个名叫鸠摩智的番僧一心想练就绝世武学,而且他也算是个相当勤奋的人了。但是,他错就错在太过于急功近利,甚至使用道家的小无相功来催动少林绝技。看上去威力无比,而且可以在短时间内“速成”,但实则后患无穷。最终鸠摩智走火入魔,前功尽废,方才大彻大悟。这个故事其实就告诉我们打牢基础是非常重要的,特别是要取得更长足的发展,就更是要对基本原理刨根问底,力求甚解,从而做到庖丁解牛,游刃有余。

一些看似高深的算法往往是许多基础算法的组合提升。例如,令很多人望而却步的SIFT特征构建过程中,就用到了图像金字塔、直方图、高斯滤波这些非常非常基础的内容。但是,它所涉及的基础技术显然有好几个,如果缺乏对图像处理理论的系统认识,你可能会感觉事倍功半。因为所有的地方好像都是沟沟坎坎。

关于课程——

在这个阶段其实对于数学的要求并不高,你甚至可以从一些感性的角度去形象化的理解图像处理中很多内容(但不包括频域处理方面的内容)。具体到学习的建议,如果有条件(例如你还在高校里读书)你最好能选一门图像处理方面的课程,系统地完整的地去学习一下。这显然是入门的最好办法。如此一来,在建立一个完整的、系统的认知上相当有帮助。如果你没办法在学校里上一门这样的课,网上的一些公开课也可以试试。但现在中文MOOC上还没有这方面的优质课程推荐。英文的课程则有很多,例如美国加州伦斯勒理工学院Rich教授的数字图像处理公开课——https://www.youtube.com/channel/UCaiJlKxXamoODQtlx486qJA?spfreload=10。

关于教材——

显然,只听课其实还不太够,如果能一并读一本书就最好了。其实不用参考很多书,只要一本,你能从头读到尾就很好了。如果你没有条件去上一门课,那读一本来完整的自学一下就更有必要了。这个阶段,去网上到处找博客、看帖子是不行的。因为你特别需要在这个阶段对这门学问建立一个系统的完整的知识体系。东一块、西一块的胡拼乱凑无疑是坑你自己,你的知识体系就像一个气泡,可能看起来很大,但是又脆弱的不堪一击。

现在很多学校采用冈萨雷斯的《数字图像处理》一书作为教材。这是一本非常非常经典的著作。但是我必须要提醒读者:

1)这是一本专门为Electronic Engineering专业学生所写的书。它需要有信号与系统、数字信号处理这两门课作为基础。如果你没有这两门课的基础,你读这本书要么是看热闹,要么就是看不懂。

下面是冈书中的一张插图。对于EE的学生来说,这当然不是问题。但是如果没有我说的那两门课的基础,其实你很难把握其中的精髓。H和h,一个大小一个小写,冈书中有的地方用H,有的地方用h,这都是有很深刻用意的。原作者并没有特别说明它们二者的区别,因为他已经默认你应该知道二者是不同的。事实上,它们一个表示频域信号,一个表示时域信号,这也导致有时候运算是卷积,有时候运算是乘法(当然这跟卷积定理有关)。所以我并不太建议那些没有这方面基础的学生在自学的时候读这本书。



2)冈萨雷斯教授的《数字图像处理》第一版是在1977年出版的,到现在已经快40年了;现在国内广泛使用的第二版是2002年出版的(第三版是2007年但是其实二者差异并不大),到现在也有20年左右的时间了。事实上,冈萨雷斯教授退休也有快30年了。所以这本书的内容已经偏于陈旧。数字图像处理这个领域的发展绝对是日新月异,突飞猛进的。特别在最近二三十年里,很多新思路,新方法不断涌现。如果你看了我前面推荐的Rich教授的公开课(这也是当前美国大学正在教学的内容),你一下子就会发现,原来我们的教育还停留在改革开放之前外国的水平上。这其实特别可怕。所以我觉得冈萨雷斯教授的《数字图像处理》作为学习过程中的一个补充还是不错的,但是如果把它作为主参考,那真的就是:国外都洋枪洋炮了,我们还在大刀长矛。


2)对于中级水平者


纸上得来终觉浅,绝知此事要躬行。对于一个具有一定基础的,想更进一步的中级水平的人来说,这个阶段最重要的就是增强动手实践的能力。

还是说《天龙八部》里面的一个角色——口述武功、叹为观止的王语嫣。王语嫣的脑袋里都是武功秘籍,但问题是她从来都没练过一招一式。结果是,然并卵。所以光说不练肯定不灵啊。特别是,如果你将来想从事这个行业,结果一点代码都不会写,那几乎是不可想象的。学习阶段,最常被用来进行算法开发的工具是Matlab和OpenCV。你可以把这两个东西都理解为一个相当完善的库。当然,在工业中C++用得更多,所以Matlab的应用还是很有限的。前面我们讲到,图像处理研究内容其实包括:图像的获取和编解码,但使用Matlab和OpenCV就会掩盖这部分内容的细节。你当然永远不会知道,JPEG文件到底是如何被解码的。

如果你的应用永远都不会涉及这些话题,那么你一直用Matlab和OpenCV当然无所谓。例如你的研究领域是SIFT、SURF这种特征匹配,可以不必理会编解码方面的内容。但是如果你的研究话题是降噪或者压缩,可能你就绕不开这些内容。最开始学的时候,如果能把这部分内容也自己写写,可能会加深你的理解。以后做高级应用开发时,再调用那些库。所以具体用什么,要不要自己写,是要视你所处的阶段和自己的实际情况而定的。以我个人的经验,在我自学的时候,我就动手写了Magic House,我觉得这个过程为我奠定了一个非常夯实的基础,对于我后续的深入研究很有帮助。


下面这个文中,我给出了一些这方面的资源,代码多多,很值得参考学习:图像处理与机器视觉网络资源收罗

http://blog.csdn.net/baimafujinji/article/details/32332079


3)对于高级进阶者


到了这个程度的读者,编程实现之类的基本功应该不在话下。但是要往深,往高去学习、研究和开发图像处理应用,你最需要的内容就变成了数学。这个是拦在很多处于这个阶段的人面前的一大难题。如果你的专业是应用数学,当然你不会感觉有问题。但如果是其他专业背景的人就会越发感觉痛苦。

如果你的图像处理是不涉及机器学习内容的,例如用Poisson方程来做图像融合,那你就要有PDE数值解方面的知识;如果你要研究KAZE特征,你就必须要知道AOS方面的内容。如果你研究TV降噪,你又要知道泛函分析中的BV空间内容……这些词你可能很多都没听过。总的来说,这块需要的内容包括:复变函数、泛函分析、偏微分方程、变分法、数学物理方法……

如果你要涉足机器视觉方法的内容,一些机器学习和数据挖掘方法的内容就不可或缺。而这部分内容同样需要很强大的数学基础,例如最大似然方法、梯度下降法、欧拉-拉格朗日方程、最小二乘估计、凸函数与詹森不等式……

当然,走到这一步,你也已经脱胎换骨,从小白到大神啦!路漫漫其修远兮,吾将上下而求索。


(全文完)


没有更多推荐了,返回首页