图像处理 常用算法

2018-10-04 22:38:10 yanghan742915081 阅读数 6727
                          
               
图像处理基本算法操作从处理对象的多少可以有如下划分:
一)点运算:处理点单元信息的运算
二)群运算:处理群单元 (若干个相邻点的集合)的运算
                                              表1 图像处理操作按处理对象数量分类表格
操作类型
具体常用操作
点运算
二值化操作、直方图处理、亮度映射、加法运算、
翻转运 算 、尺度运算 、对数运算 、指数运算等
群运算
模板卷积运算、滤波运算(均值滤波、最大值滤波 、最小值滤波)、
各项异性扩散、形态学操作(膨胀和腐蚀)、力场变换等
      下图是一副普通的吉普车图像和我们生活中见到的并没有什么两样,但是在计算机看来则是另外一副“模样”了。图像中黄色部分则是几部车图像倒车镜的局部图像在计算机中的形态。                                                
图1 计算机图像的真实表现形态
      以上图为例说明几种重要的点运算和群运算。
      1.二值化操作
       图像二值化是图像处理中十分常见且重要的操作,它是将灰度图像转换为二值图像或灰度图像的过程。二值化操作有很多种,例如一般二值化、翻转二值化、截断二值化、置零二值化、置零翻转二值化。
其中src(x,y)表示的是原始图像中第x行第y列像素值。 
       如果去图像中左上角3X3的邻域,thresh取200,maxval取255,阈值方法选择一般二值化(THRESH_BINARY),那么操作过后的结果如下:
                                                                                                                                                     
                                                                                                                                     图2 一般二值化图示
       在图2中,一般二值化下底表示为0,上顶表示为maxval,其中蓝色横线则表示阈值(thresh)。超过该阈值则为maxval,否则为0。
                                                                                                                      
                                                                                                            (a) 操作前                                                      (b) 操作后
     2.直方图处理 
       直方图是图像处理中另一重要处理过程,它反映图像中不同像素值的统计信息。从这句话我们可以了解到直方图信息仅反映灰度统计信息,与像素具体位置没有关系。这一重要特性在许多识别类算法中直方图处理起到关键作用。假设现有3X3的大小的图像。像素值分别为6,3,3,8,6,8,3,3,3,那么它的统计直方图则为
       假设图1中反光镜的直方图为下图所示。
               
                    图3 图像直方图
     假设我们对直方图中中某一灰度信息进行置零操作,那么反映在直方图图上则是该灰度的柱状高度为0。
     值得一说的是二值化处理和某些直方图处理属于不可逆运算,而亮度映射、加法运算、翻转运算 、尺度运算 、对数运算 、指数运算等皆属于可逆运算。
    
     3.模板卷积运算
       模板运算是图像处理中使用频率相当高的一种运算,很多操作可以归结为模板运算,例如平滑处理,滤波处理以及边缘特征提取处理等。这里需要说明的是模板运算所使用的模板通常说来就是NXN的矩阵(N一般为奇数如3,5,7,...),如果这个矩阵是对称矩阵那么这个模板也称为卷积模板,如果不对称则是一般的运算模板。我们通常使用的模板一般都是卷积模板。如边缘提取中的Sobel算子模板。
            
图 4-a Mx算子模板                         图4-bMy算子模板
       模板运算一般操作过程分为以下三个步骤:
       1)定"锚点 ":就是处理之后的结果值的保存位置,该位置称为"锚点 ",有时候也不在中心。            
       2)对位相乘:模板和原图像的待处理区域,进行对位相乘运算           
       3)求和:将步骤2中模板区域内运算结果进行求和,将求和的结果置于"锚点 "

     4.形态学处理
     形态学处理是二值图像处理中的经典处理手段,主要有膨胀处理和腐蚀处理。也包含一些其他操作如 二值开闭运算、骨架抽取、极限腐蚀、击中击不中变换、形态学梯度、Top-hat变换、颗粒分析、流域变换等。
    膨胀和腐蚀操作主要的功能有:1)消除杂波,噪声信息  2)填充图像内部的"孔洞"  3)平滑边缘毛刺
    膨胀和腐蚀具有类似的数学模型,这里就一起介绍了,简单来说膨胀就是取最大值,腐蚀操作是取最小值。
    膨胀操作的数学表达式为:
                                                                      
    腐蚀操作的数学表达式为:

    膨胀操作和腐蚀操作一般的处理过程如下:
    1)按照选定的处理核(NxN,一般N为奇数)与源图像的区域进行逐个“锚点”配对
    2)将配对的处理邻域信息进行相应操作,膨胀操作就取最大值,腐蚀操作就取最小值
    3)求的结果作为源图像中配对区域的数值。
                         
                                                          图a 原图                                                                图b 膨胀处理图                                                           图c 腐蚀处理
 

           
               
2018-08-12 23:15:22 echo_1994 阅读数 31281

同图像灰度不同,边界处一般会有明显的边缘,利用此特征可以分割图像。需要说明的是:边缘和物体间的边界并不等同,边缘指的是图像中像素的值有突变的地方,而物体间的边界指的是现实场景中的存在于物体之间的边界。有可能有边缘的地方并非边界,也有可能边界的地方并无边缘,因为现实世界中的物体是三维的,而图像只具有二维信息,从三维到二维的投影成像不可避免的会丢失一部分信息;另外,成像过程中的光照和噪声也是不可避免的重要因素。正是因为这些原因,基于边缘的图像分割仍然是当前图像研究中的世界级难题,目前研究者正在试图在边缘提取中加入高层的语义信息。

        在实际的图像分割中,往往只用到一阶和二阶导数,虽然,原理上,可以用更高阶的导数,但是,因为噪声的影响,在纯粹二阶的导数操作中就会出现对噪声的敏感现象,三阶以上的导数信息往往失去了应用价值。二阶导数还可以说明灰度突变的类型。在有些情况下,如灰度变化均匀的图像,只利用一阶导数可能找不到边界,此时二阶导数就能提供很有用的信息。二阶导数对噪声也比较敏感,解决的方法是先对图像进行平滑滤波,消除部分噪声,再进行边缘检测。不过,利用二阶导数信息的算法是基于过零检测的,因此得到的边缘点数比较少,有利于后继的处理和识别工作。

      各种算子的存在就是对这种导数分割原理进行的实例化计算,是为了在计算过程中直接使用的一种计算单位。

 

 

1.Sobel算子

        其主要用于边缘检测,在技术上它是以离散型的差分算子,用来运算图像亮度函数的梯度的近似值, Sobel算子是典型的基于一阶导数的边缘检测算子,由于该算子中引入了类似局部平均的运算,因此对噪声具有平滑作用,能很好的消除噪声的影响。Sobel算子对于象素的位置的影响做了加权,与Prewitt算子、Roberts算子相比因此效果更好。

       Sobel算子包含两组3x3的矩阵,分别为横向及纵向模板,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。实际使用中,常用如下两个模板来检测图像边缘。

                       

检测水平边沿 横向模板 :           检测垂直平边沿 纵向模板:

图像的每一个像素的横向及纵向梯度近似值可用以下的公式结合,来计算梯度的大小。

                                                                             

然后可用以下公式计算梯度方向。

                                                                           

 

在以上例子中,如果以上的角度Θ等于零,即代表图像该处拥有纵向边缘,左方较右方暗。

缺点是Sobel算子并没有将图像的主题与背景严格地区分开来,换言之就是Sobel算子并没有基于图像灰度进行处理,由于Sobel算子并没有严格地模拟人的视觉生理特征,所以提取的图像轮廓有时并不能令人满意。

 

2. Isotropic Sobel算子

 

        Sobel算子另一种形式是(Isotropic Sobel)算子,加权平均算子,权值反比于邻点与中心点的距离,当沿不同方向检测边缘时梯度幅度一致,就是通常所说的各向同性Sobel(Isotropic Sobel)算子。模板也有两个,一个是检测水平边沿的 ,另一个是检测垂直平边沿的 。各向同性Sobel算子和普通Sobel算子相比,它的位置加权系数更为准确,在检测不同方向的边沿时梯度的幅度一致。

 

3. Roberts算子

罗伯茨算子、Roberts算子是一种最简单的算子,是一种利用局部差分算子寻找边缘的算子,他采用对角线方向相邻两象素之差近似梯度幅值检测边缘。检测垂直边缘的效果好于斜向边缘,定位精度高,对噪声敏感,无法抑制噪声的影响。1963年,Roberts提出了这种寻找边缘的算子。

Roberts边缘算子是一个2x2的模板,采用的是对角方向相邻的两个像素之差。从图像处理的实际效果来看,边缘定位较准,对噪声敏感。适用于边缘明显且噪声较少的图像分割。Roberts边缘检测算子是一种利用局部差分算子寻找边缘的算子,Robert算子图像处理后结果边缘不是很平滑。经分析,由于Robert算子通常会在图像边缘附近的区域内产生较宽的响应,故采用上述算子检测的边缘图像常需做细化处理,边缘定位的精度不是很高。

 

4. Prewitt算子

        Prewitt算子是一种一阶微分算子的边缘检测,利用像素点上下、左右邻点的灰度差,在边缘处达到极值检测边缘,去掉部分伪边缘,对噪声具有平滑作用 。其原理是在图像空间利用两个方向模板与图像进行邻域卷积来完成的,这两个方向模板一个检测水平边缘,一个检测垂直边缘。

 对数字图像f(x,y),Prewitt算子的定义如下:

G(i)=|[f(i-1,j-1)+f(i-1,j)+f(i-1,j+1)]-[f(i+1,j-1)+f(i+1,j)+f(i+1,j+1)]|

G(j)=|[f(i-1,j+1)+f(i,j+1)+f(i+1,j+1)]-[f(i-1,j-1)+f(i,j-1)+f(i+1,j-1)]|

则 P(i,j)=max[G(i),G(j)]或 P(i,j)=G(i)+G(j)

经典Prewitt算子认为:凡灰度新值大于或等于阈值的像素点都是边缘点。即选择适当的阈值T,若P(i,j)≥T,则(i,j)为边缘点,P(i,j)为边缘图像。这种判定是欠合理的,会造成边缘点的误判,因为许多噪声点的灰度值也很大,而且对于幅值较小的边缘点,其边缘反而丢失了。

Prewitt算子对噪声有抑制作用,抑制噪声的原理是通过像素平均,但是像素平均相当于对图像的低通滤波,所以Prewitt算子对边缘的定位不如Roberts算子。

 

因为平均能减少或消除噪声,Prewitt梯度算子法就是先求平均,再求差分来求梯度。水平和垂直梯度模板分别为:

检测水平边沿 横向模板                 检测垂直平边沿 纵向模板:

该算子与Sobel算子类似,只是权值有所变化,但两者实现起来功能还是有差距的,据经验得知Sobel要比Prewitt更能准确检测图像边缘。

 

5.Laplacian算子

         Laplace算子是一种各向同性算子,二阶微分算子,在只关心边缘的位置而不考虑其周围的象素灰度差值时比较合适。Laplace算子对孤立象素的响应要比对边缘或线的响应要更强烈,因此只适用于无噪声图象。存在噪声情况下,使用Laplacian算子检测边缘之前需要先进行低通滤波。所以,通常的分割算法都是把Laplacian算子和平滑算子结合起来生成一个新的模板。

 

拉普拉斯算子也是最简单的各向同性微分算子,具有旋转不变性。一个二维图像函数的拉普拉斯变换是各向同性的二阶导数,定义

                                                                           

了更适合于数字图像处理,将拉式算子表示为离散形式:

另外,拉普拉斯算子还可以表示成模板的形式,如下图所示,

 

离散拉普拉斯算子的模板:, 其扩展模板: 。

 

      拉式算子用来改善因扩散效应的模糊特别有效,因为它符合降制模型。扩散效应是成像过程中经常发生的现象。

      Laplacian算子一般不以其原始形式用于边缘检测,因为其作为一个二阶导数,Laplacian算子对噪声具有无法接受的敏感性;同时其幅值产生算边缘,这是复杂的分割不希望有的结果;最后Laplacian算子不能检测边缘的方向;所以Laplacian在分割中所起的作用包括:(1)利用它的零交叉性质进行边缘定位;(2)确定一个像素是在一条边缘暗的一面还是亮的一面;一般使用的是高斯型拉普拉斯算子(Laplacian of a Gaussian,LoG),由于二阶导数是线性运算,利用LoG卷积一幅图像与首先使用高斯型平滑函数卷积改图像,然后计算所得结果的拉普拉斯是一样的。所以在LoG公式中使用高斯函数的目的就是对图像进行平滑处理,使用Laplacian算子的目的是提供一幅用零交叉确定边缘位置的图像;图像的平滑处理减少了噪声的影响并且它的主要作用还是抵消由Laplacian算子的二阶导数引起的逐渐增加的噪声影响。

 

 

6.Canny算子

      该算子功能比前面几种都要好,但是它实现起来较为麻烦,Canny算子是一个具有滤波,增强,检测的多阶段的优化算子,在进行处理前,Canny算子先利用高斯平滑滤波器来平滑图像以除去噪声,Canny分割算法采用一阶偏导的有限差分来计算梯度幅值和方向,在处理过程中,Canny算子还将经过一个非极大值抑制的过程,最后Canny算子还采用两个阈值来连接边缘。

Canny边缘检测算法

step1: 用高斯滤波器平滑图象;

step2: 用一阶偏导的有限差分来计算梯度的幅值和方向;

step3: 对梯度幅值进行非极大值抑制

step4: 用双阈值算法检测和连接边缘

详解:http://www.cnblogs.com/cfantaisie/archive/2011/06/05/2073168.html

 

 

(1)图象边缘检测必须满足两个条件:一能有效地抑制噪声;二必须尽量精确确定边缘的位置。

(2)根据对信噪比与定位乘积进行测度,得到最优化逼近算子。这就是Canny边缘检测算子。

(3)类似与Marr(LoG)边缘检测方法,也属于先平滑后求导数的方法。

2018-06-14 22:02:16 thecentry 阅读数 5890
//添加椒盐噪声
void salt(Mat& src,int number)
{
	for (int i = 0; i < number; i++)
	{
		int r = static_cast<int>(rng.uniform(0, src.rows));
		int c = static_cast<int>(rng.uniform(0, src.cols));
		int k = (static_cast<int>(rng.uniform(0, 1000))&1);
		if(k==1)
		    src.at<uchar>(r, c) = 255;
		else
			src.at<uchar>(r, c) = 0;
	}
	return;
}

 

/*
* @ drt :高斯方差
* @ Medium :高斯均值
*/
int Get_Gauss(int Medium, int drt)
{
	//产生高斯样本,以U为均值,D为均方差
	double sum = 0;
	for (int i = 0; i<12; i++) 
		sum += rand() / 32767.00;
	//计算机中rand()函数为-32767~+32767(2^15-1)
	//故sum+为0~1之间的均匀随机变量
	return int(Medium + drt*(sum - 6));
	//产生均值为U,标准差为D的高斯分布的样本,并返回
}
/*
* variance :高斯噪声的方差
*/

//添加高斯噪声
void ImgAddGaussNoise1( uchar * dstImgbuff, int srcwith, int srcheigh, int chanels)
{
	assert( srcwith > 0 && srcheigh > 0);
	int bytecount = srcwith * srcheigh * chanels;

	for (size_t i = 0; i < bytecount; i++)
	{
		int  iTemp = dstImgbuff[i] + Get_Gauss(0, 20);
		iTemp = iTemp > 255 ? 255 : iTemp;
		iTemp = iTemp < 0 ? 0 : iTemp;
		dstImgbuff[i] = iTemp;
	}
}

 

//均值求取
void Meanvalue(Mat* src, int indexrows, int indexcols, float* meanv, int ker)
{
	int lo = (ker - 1) / 2;
	float total = 0;
	for (int i = indexrows - lo; i <= indexrows + lo; i++)
	{
		for (int j = indexcols - lo; j <= indexcols + lo; j++)
		{
			total += src->at<uchar>(i, j);
		}
	}
	*meanv = total / (ker * ker);
	return;
}

 

//中值求取
void Media(Mat* src, int indexrows, int indexcols, int* meanv, int ker)
{
	int lo = (ker - 1) / 2;
	vector<int>moreo;
	for (int i = indexrows - lo; i <= indexrows + lo; i++)
	{
		for (int j = indexcols - lo; j <= indexcols + lo; j++)
		{
			moreo.push_back(src->at<uchar>(i, j));
		}
	}
	sort(moreo.begin(), moreo.end());
	*meanv = moreo.at(ker * ker / 2);
	return;
}

 

//局部方差求取
void Vvalue(Mat* src, int indexrows, int indexcols, int* vall, int ker, float mean)
{
	int lo = (ker - 1) / 2;
	float total = 0;
	for (int i = indexrows - lo; i <= indexrows + lo; i++)
	{
		for (int j = indexcols - lo; j <= indexcols + lo; j++)
		{
			total += pow((src->at<uchar>(i, j) - mean), 2);
		}
	}
	*vall = static_cast<int>(total);
	return;
}
//像素方差
void Variance(Mat& src, vector<test>& hierachy, int ker)
{
	int row = src.rows;
	int col = src.cols;
	int lo = (ker - 1) / 2;
	for (int ir = lo; ir < row - lo; ir++)
	{
		for (int jc = lo; jc < col - lo; jc++)
		{
			float means;
			int var;
			//计算均值
			Meanvalue(&src, ir, jc, &means, ker);
			Vvalue(&src, ir, jc, &var, ker, means);
			test temp;
			temp.menval = var;
			temp.x = ir;
			temp.y = jc;
			hierachy.push_back(temp);
		}
	}
	return;
}
//STL排序方式
bool SortByM1(const test &v1, const test &v2)//注意:本函数的参数的类型一定要与vector中元素的类型一致  
{
	return v1.menval < v2.menval;//升序排列  
}
//SSIM 结构相似比
Scalar getMSSIM(const Mat& i1, const Mat& i2)
{
	const double C1 = 6.5025, C2 = 58.5225;
	/***************************** INITS **********************************/
	int d = CV_32F;

	Mat I1, I2;
	i1.convertTo(I1, d);           // cannot calculate on one byte large values
	i2.convertTo(I2, d);

	int num = I1.channels();
	//cv::imshow("123", I1);
	//cv::waitKey();

	Mat I2_2 = I2.mul(I2);        // I2^2
	Mat I1_2 = I1.mul(I1);        // I1^2
	Mat I1_I2 = I1.mul(I2);        // I1 * I2

								   /*************************** END INITS **********************************/

	Mat mu1, mu2;   // PRELIMINARY COMPUTING
	GaussianBlur(I1, mu1, Size(11, 11), 1.5);
	GaussianBlur(I2, mu2, Size(11, 11), 1.5);

	Mat mu1_2 = mu1.mul(mu1);
	Mat mu2_2 = mu2.mul(mu2);
	Mat mu1_mu2 = mu1.mul(mu2);

	Mat sigma1_2, sigma2_2, sigma12;

	GaussianBlur(I1_2, sigma1_2, Size(11, 11), 1.5);
	sigma1_2 -= mu1_2;

	GaussianBlur(I2_2, sigma2_2, Size(11, 11), 1.5);
	sigma2_2 -= mu2_2;

	GaussianBlur(I1_I2, sigma12, Size(11, 11), 1.5);
	sigma12 -= mu1_mu2;

	///////////////////////////////// FORMULA ////////////////////////////////
	Mat t1, t2, t3;

	t1 = 2 * mu1_mu2 + C1;
	t2 = 2 * sigma12 + C2;
	t3 = t1.mul(t2);              // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))

	t1 = mu1_2 + mu2_2 + C1;
	t2 = sigma1_2 + sigma2_2 + C2;
	t1 = t1.mul(t2);               // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))

	Mat ssim_map;
	divide(t3, t1, ssim_map);      // ssim_map =  t3./t1;

	Scalar mssim = mean(ssim_map); // mssim = average of ssim map
	return mssim;
}
//功能:局部均值求取 局部方差求取
/* zc 2018/07/08
parameters:
Mat*         src;         //待处理的图像
float*       meanv;       //保存局部均值
float*       dev;         //保存局部方差
int          indexrows;   //要求局部所在行
int          indexcols;   //要求局部所在列
int          ker;         //窗口大小系数
*/
void Meanvalue(Mat* src, float* meanv, float* dev, int indexrows, int indexcols,  int ker)
{
	int lo = (ker - 1) / 2;
	float total = 0;
	float total2 = 0;
	for (int i = indexrows - lo; i <= indexrows + lo; i++)
	{
		for (int j = indexcols - lo; j <= indexcols + lo; j++)
		{
			float temp = static_cast<float>(src->at<uchar>(i, j));
			total += temp;
			total2 += temp*temp;
		}
	}
	int size = ker * ker;
	*meanv = total / size;                                      //均值
	*dev = (total2 - (total*total) / size) / size;              //方差
	return;
}

 

 

 

 

 

 

 

 

 

2015-12-02 21:26:40 u013360881 阅读数 11758

1、滤波(平滑、降噪)

2、增强

3、边缘锐化

4、纹理分析(去骨架、连通性)

5、图像分割(灰度、颜色、频谱特征、纹理特征、空间特征)

6、变换(空域和频域、几何变换、色度变换)

7、几何形态分析(Blob分析) (形状、大小、长度、面积、边缘、圆形度位置、方向、数量、连通性等)

Blob分析是对图像中相同像素的连通域进行分析。该连通域称为Blob。

Blob分析可为机器视觉应用提供图像中的斑点的数量、位置、形状和方向,还可提供相关斑点间的拓扑结构。应用:二维目标图像、高对比度图像、存在/缺席检测、数值范围和旋转不变性需求。

8、匹配(模板匹配、搜索匹配)

9、关于特征识别:字符识别(OCR)、二维码识别(QR code)、人脸识别(LBP)、车牌识别、虹膜识别、语音识别(高斯混合模型和隐马尔科夫模型)、行人检测(HOG)和物体识别(SIFT);

10、色彩分析(色度、色密度、光谱、自动白平衡)

11、立体测量

2020-02-03 18:20:09 I_LOVE_MCU 阅读数 234

学习笔记

OpenCV常用函数

设备环境

  1. 树莓派 3B
  2. OpenCV 3.4.1

1.medianBlur(img, img_noise, 3);

中值滤波函数
参数为输入图像,输出图像,核矩阵大小

2.blur(img, img_box_smooth, Size(3,3));

模糊滤波函数
参数为输入图像,输出图像,模糊效果

3.去光算法的比较

原图与光背景
在这里插入图片描述
差分与除法对比图
在这里插入图片描述
光纹L、图像I、差分dif、除法div
dif = L - I
div = dif * 255 / L = 255 * ( 1 - ( I / L ) )

4.估计算法生成背景

左图为估计背景,右图为实际背景
在这里插入图片描述
算法代码

/**
 * Calcualte image pattern from an input image
 * @param img Mat input image to calculate the light pattern
 * @return a Mat pattern image
 */
Mat calculateLightPattern(Mat img)
{
  Mat pattern;
  // Basic and effective way to calculate the light pattern from one image
  blur(img, pattern, Size(img.cols/3,img.cols/3));
  return pattern;
}

效果比较好

5.求灰度图像的平均值

输出灰度图像的平均值和通道数
img_noise为Mat型

cout << "Channel: " << img_noise.channels() << endl;
cout<<"mean "<<mean(img_noise)[0]<<endl;

在这里插入图片描述
灰度图像灰度级范围一般从0到255,白色为255,黑色为0。

6.resize();

void cv::resize	(	InputArray 	src,
					OutputArray 	dst,
					Size 	dsize,
					double 	fx = 0,
					double 	fy = 0,
					int 	interpolation = INTER_LINEAR 
)	

将原图像大小改为目的图像大小

resize(src, dst, dst.size(), 0, 0, interpolation);

将原图像大小长宽各缩小一半

resize(src, dst, Size(), 0.5, 0.5, interpolation);

缩小,interpolation使用INTER_AREA;放大,interpolation使用INTER_CUBIC (慢)或INTER_LINEAR(快,也还行)。
官方资料: OpenCV: Geometric Image Transformations.

7.waitKey()

等待n毫秒waitKey(n)
永久等待waitKey(0)

8.detectMultiScale()

void cv::CascadeClassifier::detectMultiScale	(	InputArray 	image,
																			std::vector< Rect > & 	objects,
																			double 	scaleFactor = 1.1,
																			int 	minNeighbors = 3,
																			int 	flags = 0,
																			Size 	minSize = Size(),
																			Size 	maxSize = Size() 
)		

image 灰度图像
objects 识别出来的人脸数组
scaleFactor 参数,指定在每个图像尺度上缩小多少图像大小
minNeighbors 参数,指定每个候选矩形应该保留多少个邻居
flags
minSize 最小可能的对象大小。小于该值的对象将被忽略
maxSize 最大可能的对象大小。大于该值的对象将被忽略。如果maxSize == minSize,模型在单一尺度上进行评估

9.rectangle()

10.RECT类