2015-09-08 17:58:35 l740450789 阅读数 5245
  • 机器学习算法实战——神秘奥妙的支持向量机

    支持向量机算法是机器学习的重要算法,如今已应用在图像处理、 语音识别和自然语言处理等方面。本课程详细讲解支持向量机的原理、相关概念、 推导过程和代码实战。包括:Logistic函数、最大化间隔、凸二次优化、核函数、 数据中的噪声点处理等知识。最后用了手写字分类实例,详细讲解了相关的代码实战。

    42 人正在学习 去看看 穆辉宇

摘自http://imgtec.eetrend.com/blog/4564
一、基本的灰度变换函数

1.1图像反转
适用场景:增强嵌入在一幅图像的暗区域中的白色或灰色细节,特别是当黑色的面积在尺寸上占主导地位的时候。

1.2对数变换(反对数变换与其相反)
过程:将输入中范围较窄的低灰度值映射为输出中较宽范围的灰度值。
用处:用来扩展图像中暗像素的值,同时压缩更高灰度级的值。
特征:压缩像素值变化较大的图像的动态范围。
举例:处理傅里叶频谱,频谱中的低值往往观察不到,对数变换之后细节更加丰富。

1.3幂率变换(又名:伽马变换)
过程:将窄范围的暗色输入值映射为较宽范围的输出值。
用处:伽马校正可以校正幂律响应现象,常用于在计算机屏幕上精确地显示图像,可进行对比度和可辨细节的加强。

1.4分段线性变换函数
缺点:技术说明需要用户输入。
优点:形式可以是任意复杂的。

1.4.1对比度拉伸:扩展图像的动态范围

1.4.2灰度级分层:可以产生二值图像,研究造影剂的运动

1.4.3比特平面分层:原图像中任意一个像素的值,都可以类似的由这些比特平面对应的二进制像素值来重建,可用于压缩图片。

1.5直方图处理
1.5.1直方图均衡:增强对比度,补偿图像在视觉上难以区分灰度级的差别。作为自适应对比度增强工具,功能强大。

1.5.2直方图匹配(直方图规定化):希望处理好的图像具有规定的直方图形状。在直方图均衡的基础上规定化,有利于解决像素集中于灰度级暗端的图像。

1.5.3局部直方图处理:用于增强小区域的细节,方法是以图像中的每个像素邻域中的灰度分布为基础设计变换函数,可用于显示全局直方图均衡化不足以影响的细节的显示。

1.5.4直方图统计:可用于图像增强,能够增强暗色区域同时尽可能的保留明亮区域不变,灵活性好。

二、基本的空间滤波
2.1平滑空间滤波器
2.1.1平滑线性滤波器(均值滤波器)
输出:包含在滤波器模板邻域内的像素的简单平均值,用邻域内的平均灰度替代了图像中每个像素的值,是一种低通滤波器。
结果:降低图像灰度的尖锐变化。
应用:降低噪声,去除图像中的不相关细节。
负面效应:边缘模糊。

2.1.2统计排序滤波器(非线性滤波器)
举例:中值滤波器
过程:以滤波器保卫的图像区域中所包含图像的排序为基础,然后使用统计排序结果决定的值取代中心区域的值。
用处:中值滤波器可以很好的解决椒盐噪声,也就是脉冲噪声。

2.2锐化空间滤波器
2.2.1拉普拉斯算子(二阶微分)
作用:强调灰度的突变,可以增强图像的细节

2.2.2非锐化掩蔽和高提升滤波
原理:原图像中减去一幅非锐化(平滑处理)的版本
背景:印刷和出版界使用多年的图像锐化处理
高提升滤波:原图减去模糊图的结果为模板,输出图像等于原图加上加权后的模板,当权重为1得到非锐化掩蔽,当权重大于1成为高提升滤波。

2.2.3梯度锐化(一阶微分对)
含义:梯度指出了在该位置的最大变化率的方向。
用处:工业检测,辅助人工检测产品的缺陷,自动检测的预处理。

三、基本的频率滤波器
3.1.1理想低(高)通滤波器
特性:振铃现象,实际无法实现
用处:并不实用,但是研究滤波器的特性很有用。

3.1.2布特沃斯低(高)通滤波器
特点:没有振铃现象,归功于低频和高频之间的平滑过渡,二阶的布特沃斯低通滤波器是很好的选择。
效果:比理想低(高)通滤波器更平滑,边缘失真小,截止频率大,失真越平滑。

3.1.3高斯低(高)通滤波器
特点:没有振铃。
用处:任何类型的人工缺陷都不可接受的情况(医学成像)

3.1.4钝化模板,高提升滤波,高频强调滤波
用处:X射线,先高频强调,然后直方图均衡。

3.1.5同态滤波
原理:图像分为照射分量和反射分量的乘积。
用处:增强图像,锐化图像的反射分量(边缘信息),例如PET扫描。

3.1.6选择性滤波
3.1.6.1带阻滤波器和带通滤波器。
作用:处理制定频段和矩形区域的小区域。

3.1.6.2陷阱滤波器
原理:拒绝或通过事先定义的关于频率矩形中心的一邻域。
应用:选择性的修改离散傅里叶变换的局部区域。
优点:直接对DFT处理,而不需要填充。交互式的处理,不会导致缠绕错误。
用途:解决莫尔波纹。

四、重要的噪声概率密度函数
4.1.高斯噪声
特点:在数学上的易处理性。

4.2瑞利噪声
特点:基本形状向右变形,适用于近似歪斜的直方图。

4.3爱尔兰(伽马)噪声
特点:密度分布函数的分母为伽马函数。

4.4指数噪声
特点:密度分布遵循指数函数。

4.5均匀噪声
特点:密度均匀。

4.6脉冲噪声(双极脉冲噪声又名椒盐噪声)
特点:唯一一种引起退化,视觉上可以区分的噪声类型。

五、空间滤波器还原噪声
5.1均值滤波器
5.1.1算术均值滤波器
结果:模糊了结果,降低了噪声。
适用:高斯或均匀随机噪声。

5.1.2几何均值滤波器
结果:和算术均值滤波器相比,丢失的图像细节更少。
适用:更适用高斯或均匀随机噪声。

5.1.3谐波均值滤波器
结果:对于盐粒噪声(白色)效果较好,但不适用于胡椒噪声(黑色),善于处理高斯噪声那样的其他噪声。

5.1.4逆谐波均值滤波器
结果:适合减少或在实际中消除椒盐噪声的影响,当Q值为正的时候消除胡椒噪声,当Q值为负的时候该滤波器消除盐粒噪声。但不能同时消除这两种噪声。
适用:脉冲噪声。
缺点:必须知道噪声是明噪声还是暗噪声。

5.2统计排序滤波器
5.2.1中值滤波器
适用:存在单极或双极脉冲噪声的情况。

5.2.2最大值滤波器
作用:发现图像中的最亮点,可以降低胡椒噪声。

5.2.2最小值滤波器
作用:对最暗点有用,可以降低盐粒噪声。

5.2.3中点滤波器
作用:结合统计排序和求平均,对于随机分布噪声工作的很好,如高斯噪声或均匀噪声。

5.2.4修正的阿尔法均值滤波器
作用:在包括多种噪声的情况下很有用,例如高斯噪声和椒盐噪声混合。

5.3自适应滤波器
5.3.1自适应局部降低噪声滤波器
作用:防止由于缺乏图像噪声方差知识而产生的无意义结果,适用均值和方差确定的加性高斯噪声。

5.3.1自适应中值滤波器
作用:处理更大概率的脉冲噪声,同时平滑非脉冲噪声时保留细节,减少诸如物体边界粗化或细化等失真。

5.4频率域滤波器消除周期噪声
5.4.1带阻滤波器
应用:在频率域噪声分量的一般位置近似已知的应用中消除噪声

5.4.2带通滤波器
注意:不能直接在一张图片上使用带通滤波器,那样会消除太多的图像细节。
用处:屏蔽选中频段导致的结果,帮助屏蔽噪声模式。

5.4.3陷阱滤波器
原理:阻止事先定义的中心频率的邻域内的频率。
作用:消除周期性噪声。

5.4.4最佳陷阱滤波
作用:解决存在多种干扰分量的情况。

2016-09-20 18:34:30 heyuchang666 阅读数 3590
  • 机器学习算法实战——神秘奥妙的支持向量机

    支持向量机算法是机器学习的重要算法,如今已应用在图像处理、 语音识别和自然语言处理等方面。本课程详细讲解支持向量机的原理、相关概念、 推导过程和代码实战。包括:Logistic函数、最大化间隔、凸二次优化、核函数、 数据中的噪声点处理等知识。最后用了手写字分类实例,详细讲解了相关的代码实战。

    42 人正在学习 去看看 穆辉宇
数字图像处理是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。在计算机中,按照颜色和灰度的多少可以将图像争为二值图像、灰度图像、索引图像和真彩色RGB图像四种基本类型。目前,大多数图像处理软件都支持这四种类型的图像。

(1) 二值图像:

        一幅二值图像的二维矩阵仅由0、1两个值构成,“0”代表黑色,“1”代白色。由于每一像素(矩阵中每一元素)取值仅有0、1两种可能,所以计算机中二值图像的数据类型通常为1个二进制位。二值图像通常用于文字、线条图的扫描识别(OCR)和掩膜图像的存储。

(2) 灰度图像:

        灰度图像矩阵元素的取值范围通常为[0,255]。因此其数据类型一般为8位无符号整数的(int8),这就是人们经常提到的256灰度图像。“0”表示纯黑色,“255”表示纯白色,中间的数字从小到大表示由黑到白的过渡色。在某些软件中,灰度图像也可以用双精度数据类型(double)表示,像素的值域为[0,1],0代表黑色,1代表白色,0到1之间的小数表示不同的灰度等级。二值图像可以看成是灰度图像的一个特例。

(3) 索引图像:

        索引图像的文件结构比较复杂,除了存放图像的二维矩阵外,还包括一个称之为颜色索引矩阵MAP的二维数组。MAP的大小由存放图像的矩阵元素值域决定,如矩阵元素值域为[0,255],则MAP矩阵的大小为256ⅹ3,用MAP=[RGB]表示。MAP中每一行的三个元素分别指定该行对应颜色的红、绿、蓝单色值,MAP中每一行对应图像矩阵像素的一个灰度值,如某一像素的灰度值为64,则该像素就与MAP中的第64行建立了映射关系,该像素在屏幕上的实际颜色由第64行的[RGB]组合决定。也就是说,图像在屏幕上显示时,每一像素的颜色由存放在矩阵中该像素的灰度值作为索引通过检索颜色索引矩阵MAP得到。索引图像的数据类型一般为8位无符号整形(int8),相应索引矩阵MAP的大小为256ⅹ3,因此一般索引图像只能同时显示256种颜色,但通过改变索引矩阵,颜色的类型可以调整。索引图像的数据类型也可采用双精度浮点型(double)。索引图像一般用于存放色彩要求比较简单的图像,如Windows中色彩构成比较简单的壁纸多采用索引图像存放,如果图像的色彩比较复杂,就要用到RGB真彩色图像。

(4) RGB彩色图像:

        RGB图像与索引图像一样都可以用来表示彩色图像。与索引图像一样,它分别用红(R)、绿(G)、蓝(B)三原色的组合来表示每个像素的颜色。但与索引图像不同的是,RGB图像每一个像素的颜色值(由RGB三原色表示)直接存放在图像矩阵中,由于每一像素的颜色需由R、G、B三个分量来表示,M、N分别表示图像的行列数,三个M x N的二维矩阵分别表示各个像素的R、G、B三个颜色分量。RGB图像的数据类型一般为8位无符号整形,通常用于表示和存放真彩色图像,当然也可以存放灰度图像。
2014-07-11 16:45:12 thnh169 阅读数 37521
  • 机器学习算法实战——神秘奥妙的支持向量机

    支持向量机算法是机器学习的重要算法,如今已应用在图像处理、 语音识别和自然语言处理等方面。本课程详细讲解支持向量机的原理、相关概念、 推导过程和代码实战。包括:Logistic函数、最大化间隔、凸二次优化、核函数、 数据中的噪声点处理等知识。最后用了手写字分类实例,详细讲解了相关的代码实战。

    42 人正在学习 去看看 穆辉宇

1.研究噪声特性的必要性

        本文的内容主要介绍了常见噪声的分类与其特性。将噪声建模,然后用模型去实现各式各样的噪声。

        实际生活中的各种照片的老化,都可以归结为以下老化模型。


     这个模型很简单,也可以直接用以下公式来表达。


在频域内,用以下公式区表示。


     根据以上式子,可以看出,老旧照片的复原,主要分为两个任务,一个是去噪;另一个是去卷积,或者称为逆滤波,也就是将老化滤波器做反处理。

     本文首先由噪声类型与其建模。随后的博文,会介绍几种基础的去噪方法和基础的逆滤波方法。

    

2.噪声的实现

      2.1    评价用图像与其直方图

        

      2.2  高斯噪声

        高斯噪声,也称为正态噪声,其统计特性服从正态分布。一种较为泛用的噪声模型。 
        Matlab的实现较为简单,Matlab已经有一个randn(M,N)的函数,用其可以产生出均值为0、方差为1、尺寸为M X N像素的高斯噪声图像。
        用以下程序就可以产生任意均值和方差的高斯噪声。

a = 0;
b = 0.08;
n_gaussian = a + b .* randn(M,N);

         

        2.3 瑞利噪声

        瑞利噪声相比高斯噪声而言,其形状向右歪斜,这对于拟合某些歪斜直方图噪声很有用。

        瑞利噪声的实现可以借由平均噪声来实现。如下所示。


这里的表示均值为0,方差为1的均匀分布的噪声。Matlab里,使用函数rand(M,N)就可以产生一个均值为0,方差为1的均匀噪声。

a = -0.2;
b = 0.03;
n_rayleigh = a + (-b .* log(1 - rand(M,N))).^0.5;

        

       2.4 伽马噪声

         伽马噪声的分布,服从了伽马曲线的分布。伽马噪声的实现,需要使用b个服从指数分布的噪声叠加而来。指数分布的噪声,可以使用均匀分布来实现。


使用若干个(这里用b表示)均匀分布叠加,就可以得到伽马噪声。


当然,当b=1的时候,就可以得到指数噪声了。

a = 25;
b = 3;
n_Erlang = zeros(M,N); 

for j=1:b
    n_Erlang = n_Erlang + (-1/a)*log(1 - rand(M,N));
end



         2.5 均匀噪声

             如同前面所示,均匀噪声可以由函数rand(M,N)直接产生。


a = 0;
b = 0.3;
n_Uniform = a + (b-a)*rand(M,N);

         2.6 椒盐噪声

         椒盐噪声也成为双脉冲噪声。在早期的印刷电影胶片上,由于胶片化学性质的不稳定和播放时候的损伤,会使得胶片表面的感光材料和胶片的基底欠落,在播放时候,产生一些或白或黑的损伤。事实上,这也可以归结为特殊的椒盐噪声。

        椒盐噪声的实现,需要一些逻辑判断。这里我们的思路是,产生均匀噪声,然后将超过阈值的点设置为黑点,或白点。当然,如果需要拟合电影胶片的损伤的话,可以选用别的类型噪声去拟合。

       

a = 0.05;
b = 0.05;
x = rand(M,N);

g_sp = zeros(M,N);
g_sp = f;

g_sp(find(x<=a)) = 0;
g_sp(find(x > a & x<(a+b))) = 1;



3.总结

     本文,实现的几类较为基本的噪声。并给出了其实现的方法,代码在下面。下一篇博文,会进行几个常用去噪滤波器的比较。

close all;
clear all;
clc;

f = imread('./original_pattern.tif');
f = mat2gray(f,[0 255]);
[M,N] = size(f);

figure();
subplot(1,2,1);
imshow(f,[0 1]);
xlabel('a).Original image');

subplot(1,2,2);
x = linspace(-0.2,1.2,358);
h = hist(f,x)/(M*N);
Histogram = zeros(358,1);
for y = 1:256
    Histogram = Histogram + h(:,y);
end
bar(-0.2:1/255:1.2,Histogram);
axis([-0.2 1.2 0 0.014]),grid;
xlabel('b).The Histogram of a');
ylabel('Number of pixels');
%% ---------------gaussian-------------------
a = 0;
b = 0.08;
n_gaussian = a + b .* randn(M,N);

g_gaussian = f + n_gaussian; 

figure();
subplot(1,2,1);
imshow(g_gaussian,[0 1]);
xlabel('a).Ruselt of Gaussian noise');

subplot(1,2,2);
x = linspace(-0.2,1.2,358);
h = hist(g_gaussian,x)/(M*N);
Histogram = zeros(358,1);
for y = 1:256
    Histogram = Histogram + h(:,y);
end
bar(-0.2:1/255:1.2,Histogram);
axis([-0.2 1.2 0 0.014]),grid;
xlabel('b).The Histogram of a');
ylabel('Number of pixels');

%% ---------------rayleigh-------------------
a = -0.2;
b = 0.03;
n_rayleigh = a + (-b .* log(1 - rand(M,N))).^0.5;

g_rayleigh = f + n_rayleigh; 

figure();
subplot(1,2,1);
imshow(g_rayleigh,[0 1]);
xlabel('a).Ruselt of Rayleigh noise');

subplot(1,2,2);
x = linspace(-0.2,1.2,358);
h = hist(g_rayleigh,x)/(M*N);
Histogram = zeros(358,1);
for y = 1:256
    Histogram = Histogram + h(:,y);
end
bar(-0.2:1/255:1.2,Histogram);
axis([-0.2 1.2 0 0.014]),grid;
xlabel('b).The Histogram of a');
ylabel('Number of pixels');
%% ---------------Erlang-------------------
a = 25;
b = 3;
n_Erlang = zeros(M,N); 

for j=1:b
    n_Erlang = n_Erlang + (-1/a)*log(1 - rand(M,N));
end

g_Erlang = f + n_Erlang; 

figure();
subplot(1,2,1);
imshow(g_Erlang,[0 1]);
xlabel('a).Ruselt of Erlang noise');

subplot(1,2,2);
x = linspace(-0.2,1.2,358);
h = hist(g_Erlang,x)/(M*N);
Histogram = zeros(358,1);
for y = 1:256
    Histogram = Histogram + h(:,y);
end
bar(-0.2:1/255:1.2,Histogram);
axis([-0.2 1.2 0 0.014]),grid;
xlabel('b).The Histogram of a');
ylabel('Number of pixels');

%% ---------------Exponential-------------------
a = 9;
n_Ex = (-1/a)*log(1 - rand(M,N)); 

g_Ex = f + n_Ex;

figure();
subplot(1,2,1);
imshow(g_Ex,[0 1]);
xlabel('a).Ruselt of Exponential noise');

subplot(1,2,2);
x = linspace(-0.2,1.2,358);
h = hist(g_Ex,x)/(M*N);
Histogram = zeros(358,1);
for y = 1:256
    Histogram = Histogram + h(:,y);
end
bar(-0.2:1/255:1.2,Histogram);
axis([-0.2 1.2 0 0.014]),grid;
xlabel('b).The Histogram of a');
ylabel('Number of pixels');

%% ---------------Uniform-------------------
a = 0;
b = 0.3;
n_Uniform = a + (b-a)*rand(M,N);

g_Uniform = f + n_Uniform;

figure();
subplot(1,2,1);
imshow(g_Uniform,[0 1]);
xlabel('a).Ruselt of Uniform noise');

subplot(1,2,2);
x = linspace(-0.2,1.2,358);
h = hist(g_Uniform,x)/(M*N);
Histogram = zeros(358,1);
for y = 1:256
    Histogram = Histogram + h(:,y);
end
bar(-0.2:1/255:1.2,Histogram);
axis([-0.2 1.2 0 0.014]),grid;
xlabel('b).The Histogram of a');
ylabel('Number of pixels');

%% ---------------Salt & pepper-------------------
a = 0.05;
b = 0.05;
x = rand(M,N);

g_sp = zeros(M,N);
g_sp = f;

g_sp(find(x<=a)) = 0;
g_sp(find(x > a & x<(a+b))) = 1;

figure();
subplot(1,2,1);
imshow(g_sp,[0 1]);
xlabel('a).Ruselt of Salt & pepper noise');

subplot(1,2,2);
x = linspace(-0.2,1.2,358);
h = hist(g_sp,x)/(M*N);
Histogram = zeros(358,1);
for y = 1:256
    Histogram = Histogram + h(:,y);
end
bar(-0.2:1/255:1.2,Histogram);
axis([-0.2 1.2 0 0.3]),grid;
xlabel('b).The Histogram of a');
ylabel('Number of pixels');

原文发于博客:http://blog.csdn.net/thnh169/ 



=============更新日志===================

2016 - 5 - 21 修正英文单词的拼写错误。


2014-04-16 12:00:16 xiabodan 阅读数 2528
  • 机器学习算法实战——神秘奥妙的支持向量机

    支持向量机算法是机器学习的重要算法,如今已应用在图像处理、 语音识别和自然语言处理等方面。本课程详细讲解支持向量机的原理、相关概念、 推导过程和代码实战。包括:Logistic函数、最大化间隔、凸二次优化、核函数、 数据中的噪声点处理等知识。最后用了手写字分类实例,详细讲解了相关的代码实战。

    42 人正在学习 去看看 穆辉宇

首先了解一下图像存在的噪声类型,这样才能使我们在图像处理中思路更加清晰,以下的内容都来自于中英文文献和互联网,在此就不对每一个参考一一列出。

目前大多数数字图像系统中,输入图像都是采用先冻结再扫描方式将多维图像变成一维电信号,再对其进行处理、存储、传输等加工变换。最后往往还要在组成多维图像信号,而图像噪声也将同样受到这样的分解和合成。在这些过程中电气系统和外界影响将使得图像噪声的精确分析变得十分复杂。另一方面图像只是传输视觉信息的媒介,对图像信息的认识理解是由人的视觉系统所决定的。不同的图像噪声,人的感觉程度是不同的,这就是所谓人的噪声视觉特性课题。
图像噪声在数字图像处理技术中的重要性越来越明显,如高放大倍数航片的判读,X射线图像系统中的噪声去除等已经成为不可缺少的技术步骤。下面就是对图像噪声基本知识的介绍:其中最主要的有两类:电子噪声和光电子噪声,当然如果在核辐射的环境下,图像会呈现出一种雪花状的噪声,此类噪声更加复杂,需要运用多种去噪方法才能检查以及降噪。
图像噪声从统计理论观点可以分为图像噪声从统计理论观点可以分为平稳和非平稳噪声两种。在实际应用中,不去追究严格的数学定义,这两种噪声可以理解为:其统计特性不随时间变化的噪声称其为平稳噪声。其统计特性随时间变化而变化的称其为非平稳噪声。

还可以按噪声幅度随时间分布形状来定义,如其幅度分布是按高斯分布的就称其为高斯噪声,而按雷利分布的就称其为雷利噪声。

瑞利分布(Rayleigh distribution)

当一个随机二维向量的两个分量呈独立的、有着相同的方差的正态分布时,这个向量的模呈瑞利分布。瑞利分布的概率密度函数[1]


高斯噪声

高斯噪声是一种具有正态分布(也称作高斯分布概率密度函数噪声。换句话说,高斯噪声的值遵循高斯分布或者它在各个频率分量上的能量具有高斯分布。它被极其普遍地应用为用以产生加成性高斯白噪声(AWGN)的迭代白噪声。噪声PDF如下:z代表图像灰度,u是z的均值,o是z的标准差,所以高斯噪声的灰度值大多集中在图像的均值附近,因此均值滤波器主要适合于去除高斯噪声,具体方法可以用matlab实现,但是matlab仅仅适合仿真看现象,正真在现实生活中我们需要的实际的降噪,比如用FPGA等等。

matlab代码分析:

%Main函数:

diagram = imread('C:\Users\Administrator\Desktop\Compressed\fiter\lena256.jpg');%读入图片
diagram = rgb2gray(diagram);%将图片转换为灰度图
figure,imshow(diagram),title('Original picture');%显示原图
diagram_n = imnoise(diagram,'salt & pepper',0.01);%加入噪声
figure,imshow(diagram_n),title('Picture with noise');%显示加入噪声的图片
r=3;%构造滤波器模板  r为行数,c为列数
c=3;
sigma = 1;%高斯函数中的参数sigma
w_a = fspecial('average',[r c]);%用Matlab自带函数构造均值滤波器
diagram_a2 = imfilter(diagram_n,w_a,'replicate');%用Matlab自带函数进行均值滤波
figure,imshow(diagram_a2),title('Average filter by Matlab');%显示滤波后的图片
w_g = fspecial('gaussian',[r c],1);%用Matlab自带函数构造高斯滤波器
diagram_g2 = imfilter(diagram_n,w_g,'replicate');%用Matlab自带函数进行均值滤波
figure,imshow(diagram_g2),title('Gaussian filter by Matlab');%显示滤波后的图片

脉冲噪声

脉冲噪声是非连续的,由持续时间短和幅度大的不规则脉冲或噪声尖峰组成,产生脉冲噪声的原因多种多样,其中包括电磁干扰以及通信系统的故障和缺陷,也可能在通信系统的电气开关和继电器改变状态时产生。由于脉冲噪声不具有像高斯噪声一样的统计特征,因此一般采用中值滤波器用于消除脉冲噪声。

%中值滤波
%diagram_m1 = filter_wq(diagram_n,[r c],'med',0);%调用自编函数进行中值滤波
%figure,imshow(diagram_m1),title('Med filter by WQ');%显示滤波后的图片
diagram_m2=medfilt2(diagram_n,'symmetric');%用Matlab自带函数对图像进行中值滤波
figure,imshow(diagram_m2),title('Med filter by Matlab');%显示滤波后的图片






2017-05-06 14:58:30 LICHAOZHONG_CSDN 阅读数 13037
  • 机器学习算法实战——神秘奥妙的支持向量机

    支持向量机算法是机器学习的重要算法,如今已应用在图像处理、 语音识别和自然语言处理等方面。本课程详细讲解支持向量机的原理、相关概念、 推导过程和代码实战。包括:Logistic函数、最大化间隔、凸二次优化、核函数、 数据中的噪声点处理等知识。最后用了手写字分类实例,详细讲解了相关的代码实战。

    42 人正在学习 去看看 穆辉宇

图像常见噪声基本上有以下四种,高斯噪声,泊松噪声,乘性噪声,椒盐噪声。
下面五幅图分别代表了,原图,以及添加了高斯噪声,泊松噪声,乘性噪声,椒盐噪声的图像。至于各个噪声的特性,大家可以参考网上的其他资料。
原图
高斯
泊松
乘性
椒盐
有时候我们要对我们自己的算法进行检验的时候,可能会一下子找不到那么多含噪图片。
其实我们可以直接用matlab生产相应噪声的图片。
用imnoise函数就可以。

图像处理复习

阅读数 76

没有更多推荐了,返回首页