2017-02-18 22:03:58 wang631106979 阅读数 2491

移动端访问不佳,请访问我的个人博客

设计模式学习的demo地址,欢迎大家学习交流

策略模式

策略模式定义了算法家族,分别封装起来,让它们之间可以相互替换,此模式让算法的变化,不会影响到使用算法的客户。

策略模式的组成

  • 抽象策略角色(Strategy): 策略类,通常由一个接口或者抽象类实现。
  • 具体策略角色(ConcreteStrategy):包装了相关的算法和行为。
  • 环境角色(Context):持有一个策略类的引用,最终给客户端调用。

策略模式的基本实现

上图是最基本的装饰模式的结构图,下面将用Swift代码来实现一个基本策略模式:

// 策略类,定义所有支持 的算法的公共接口
protocol Strategy {
    func AlgorithmInterface()
}

// 具体策略类,封装了具体的算法或行为,继承于Strategy
class ConcreteStrategyA: Strategy {
    func AlgorithmInterface() {
        print("ConcreteStrategyA")
    }
}

class ConcreteStrategyB: Strategy {
    func AlgorithmInterface() {
        print("ConcreteStrategyB")
    }
}

class ConcreteStrategyC: Strategy {
    func AlgorithmInterface() {
        print("ConcreteStrategyC")
    }
}

// Context上下文,用一个 ConcreteStrategy来配置,维护一个对Strategy对象的引用
class Context {
    var strategy: Strategy?
    func ContextInterface() {
        strategy?.AlgorithmInterface()
    }
}

以上代码是最简单的策略模式的实现过程,定义了一个Strategy的算法族,通过它的子类可以实现算法(AlgorithmInterface)的替换,而不会影响到客户端。

用策略模式解决实际问题(商场打折)

我们知道在商场中一般有很多打折优惠方案,类似这种问题就可以用策略模式来解决,打折不同的方案就相当于不同的策略(ConcreteStrategy),然后用一个Context类来实现不同算法的切换,下面是商场打折策略模式的实现于UML图:

以上是一个简单的商场收银系统,CashNormal为普通收费子类,CashRebate为打折收费子类,CashReturn为返利收费子类,下面是代码的实现过程:

import Foundation

// 定义一个收费的策略接口
protocol CashSuper {
    func acceptCash(money: Double) -> Double
}

// 普通收费子类
class CashNormal: CashSuper {
    // 正常原价返回
    func acceptCash(money: Double) -> Double {
        return money
    }
}

// 打折收费子类
class CashRebate: CashSuper {
    // 折扣率
    private var moneyRebate: Double = 1.0

    init(moneyRebate: Double) {
        self.moneyRebate = moneyRebate
    }

    func acceptCash(money: Double) -> Double {
        return money*moneyRebate
    }
}

// 返利收费子类
class CashReturn: CashSuper {
    // 返利要求
    private var moneyCondition: Double = 0
    // 返多少
    private var moneyReturn: Double    = 0

    init(moneyCondition: Double, moneyReturn: Double) {
        self.moneyCondition = moneyCondition
        self.moneyReturn    = moneyReturn
    }

    func acceptCash(money: Double) -> Double {
        var result = money
        if money >= moneyCondition {
            result = money - floor(money / moneyCondition) * moneyReturn
        }
        return result
    }
}


// context类
class CashContext {
    private var cs: CashSuper?

    // 通过枚举判断使用哪种方式
    init(style: CashStyle) {
        switch style {
        case .normal:
            cs = CashNormal()
        case .rebate(moneyRebate: let money):
            cs = CashRebate(moneyRebate: money)
        case .return(moneyCondition: let moneyCondition, moneyReturn: let moneyReturn):
            cs = CashReturn(moneyCondition: moneyCondition, moneyReturn: moneyReturn)
        }
    }

    func getResult(money: Double) -> Double {
        return cs?.acceptCash(money: money) ?? 0
    }
}

// 优惠的枚举类型
enum CashStyle {
    case normal
    case rebate(moneyRebate: Double)
    case `return`(moneyCondition: Double, moneyReturn: Double)
}

下面我们测试一下代码:

let money: Double = 300
// 普通
let normal = CashContext(style: .normal)
//7let rebate = CashContext(style: .rebate(moneyRebate: 0.7))
// 满一百返20
let `return` = CashContext(style: .return(moneyCondition: 100, moneyReturn: 20))
print("普通: \(normal.getResult(money: money))")
print("打7折: \(rebate.getResult(money: money))")
print("满一百返20: \(`return`.getResult(money: money))")

下面是执行的结果:

普通: 300.0
打7折: 210.0
满一百返20: 240.0

策略模式总结

我们可以理解为策略就是用来封装算法,但在实践过程中不用那么死板,可以用来封装几乎任何类型的规则,只要在分析过程中听到需要在不同时间应用不同的业务规则,就可以考虑使用策略模式处理这种变化的可能性。

以上是我对于策略模式的理解,如果有不对的地方欢迎大家交流,最后谢谢大家的阅读~~

2019-06-17 23:06:45 Z1591090 阅读数 216

swift 设计模式总共分四中类型的设计模式

  • 创建型模式(例如:对象模板模式、工厂方法模式、建造者模式)
  • 结构型模式(例如:适配器模式、桥接模式、代理模式)
  • 行为模式(例如:命令模式、观察者模式、模板方法模式)
  • MVC模式

一:创建型模式

2017-02-24 13:59:34 wang631106979 阅读数 1765

移动端访问不佳,请访问我的个人博客

设计模式学习的demo地址,欢迎大家学习交流

模板方法模式

模板方法模式,定义一个操作中算法的骨架,而将一些步骤延迟到子类中。模板方法使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤。

模板方法模式的基本实现

上图是基本模板模式的UML图,这种设计模式在很多地方都有用到,下面是基本实现的代码:

class AbstractClass {
    func primitiveOperation1() {}
    func primitiveOperation2() {}

    func templateMethod() {
        primitiveOperation1()
        primitiveOperation2()
    }
}

class ConcreteClassA: AbstractClass {
    override func primitiveOperation1() {
        print("具体类A方法1实现")
    }

    override func primitiveOperation2() {
        print("具体类A方法2实现")
    }
}

class ConcreteClassB: AbstractClass {
    override func primitiveOperation1() {
        print("具体类B方法1实现")
    }

    override func primitiveOperation2() {
        print("具体类B方法2实现")
    }
}

模板方法模式解决实际问题(填表格)

在生活中很多地方用到的模板方法模式,比如我们填一份表格,我们要按照表格的模板开始填,只需要填关键部分,而不用将表格的所有文字炒一遍,下面是UML和代码:

// 表格的模板
class TemplateTable {
    func showTable() {
        fillName()
        fillSex()
    }

    func fillName() {
        print("你的名字:\(yourName())")
    }

    func fillSex() {
        print("你的性别:\(yourSex())")
    }

    func yourName() -> String {
        return ""
    }

    func yourSex() -> String {
        return ""
    }
}

// wcl填写的表格
class WCLTable: TemplateTable {
    override func yourName() -> String {
        return "wcl"
    }

    override func yourSex() -> String {
        return "male"
    }
}

// scy填写的表格
class SCYTable: TemplateTable {
    override func yourName() -> String {
        return "scy"
    }

    override func yourSex() -> String {
        return "female"
    }
}

下面我们调用一下代码:

let wcl = WCLTable()
wcl.showTable()
let scy = SCYTable()
scy.showTable()

下面是调用的结果:

你的名字:wcl
你的性别:male
你的名字:scy
你的性别:female

模板方法模式的特点

模板方法模式是通过把不变行为搬移到超类,去除子类中重复代码来体现它的优势,它提供了一个很好的代码复用平台。

以上是我对模板方法模式的理解,如果有不对的地方欢迎大家交流,最后谢谢大家的阅读~~

2018-06-21 12:04:59 SHTLoveXX 阅读数 406

目前最新的是 swift4.2, 从2014年至今经历4年时间,感觉swift沉淀的也差不多了吧。准备学习并分享一下, 文章会持续更新。有错误的地方请多多指教,以便及时更改。

大纲链接 :

   swift 基础语法

         1.0.1 声明与输出

         1.1.1 数组、字典、元组、集合

         1.2.1 可选型

         1.3.1 控制流(for循环、while循环、if、switch开关语句)

         1.4.1 函数

         1.5.1 闭包

         1.6.1 swift三杰 (类、结构体、枚举)

       swift 进阶语法:     (敬请期待...)

       用swift写设计模式:(敬请期待...)

       swift UIKit:      (敬请期待...)

       swift 实战        (敬请期待...)





2019-03-28 18:50:24 qq_34003239 阅读数 95

设计模式分类 

设计模式总体上可以分为三大类,具体如图:

设计模式

软件设计模式的概念

软件设计模式(Software Design Pattern),又称设计模式,是一套被反复使用、多数人知晓的、经过分类编目的、代码设计经验的总结。它描述了在软件设计过程中的一些不断重复发生的问题,以及该问题的解决方案。也就是说,它是解决特定问题的一系列套路,是前辈们的代码设计经验的总结,具有一定的普遍性,可以反复使用。其目的是为了提高代码的可重用性、代码的可读性和代码的可靠性。

学习设计模式的意义

设计模式的本质是面向对象设计原则的实际运用,是对类的封装性、继承性和多态性以及类的关联关系和组合关系的充分理解。正确使用设计模式具有以下优点。

  • 可以提高程序员的思维能力、编程能力和设计能力。
  • 使程序设计更加标准化、代码编制更加工程化,使软件开发效率大大提高,从而缩短软件的开发周期。
  • 使设计的代码可重用性高、可读性强、可靠性高、灵活性好、可维护性强。

当然,软件设计模式只是一个引导。在具体的软件幵发中,必须根据设计的应用系统的特点和要求来恰当选择。对于简单的程序开发,苛能写一个简单的算法要比引入某种设计模式更加容易。但对大项目的开发或者框架设计,用设计模式来组织代码显然更好。

设计模式遵循额七大原则

总原则:开闭原则

开闭原则的定义

开闭原则总的来说就是:软件实体应当对扩展开放,对修改关闭。

开闭原则的作用

开闭原则是面向对象程序设计的终极目标,它使软件实体拥有一定的适应性和灵活性的同时具备稳定性和延续性。具体来说,其作用如下。

1. 对软件测试的影响

软件遵守开闭原则的话,软件测试时只需要对扩展的代码进行测试就可以了,因为原有的测试代码仍然能够正常运行。

2. 可以提高代码的可复用性

粒度越小,被复用的可能性就越大;在面向对象的程序设计中,根据原子和抽象编程可以提高代码的可复用性。

3. 可以提高软件的可维护性

遵守开闭原则的软件,其稳定性高和延续性强,从而易于扩展和维护。

开闭原则的实现方法

       可以通过“抽象约束、封装变化”来实现开闭原则,即通过接口或者抽象类为软件实体定义一个相对稳定的抽象层,而将相同的可变因素封装在相同的具体实现类中。因为抽象灵活性好,适应性广,只要抽象的合理,可以基本保持软件架构的稳定。而软件中易变的细节可以从抽象派生来的实现类来进行扩展,当软件需要发生变化时,只需要根据需求重新派生一个实现类来扩展就可以了。

一、里氏替换原则

定义

继承必须确保超类所拥有的性质在子类中仍然成立。里氏替换原则主要阐述了有关继承的一些原则,也就是什么时候应该使用继承,什么时候不应该使用继承,以及其中蕴含的原理。里氏替换原是继承复用的基础,它反映了基类与子类之间的关系,是对开闭原则的补充,是对实现抽象化的具体步骤的规范。

里氏替换原则的作用

里氏替换原则的主要作用如下:

  • 里氏替换原则是实现开闭原则的重要方式之一。
  • 它克服了继承中重写父类造成的可复用性变差的缺点。
  • 它是动作正确性的保证。即类的扩展不会给已有的系统引入新的错误,降低了代码出错的可能性。

里氏替换原则的实现方法

      里氏替换原则通俗来讲就是:子类可以扩展父类的功能,但不能改变父类原有的功能。也就是说:子类继承父类时,除添加新的方法完成新增功能外,尽量不要重写父类的方法。如果通过重写父类的方法来完成新的功能,这样写起来虽然简单,但是整个继承体系的可复用性会比较差,特别是运用多态比较频繁时,程序运行出错的概率会非常大。 如果程序违背了里氏替换原则,则继承类的对象在基类出现的地方会出现运行错误。这时其修正方法是:取消原来的继承关系,重新设计它们之间的关系。

二、依赖倒置原则

定义

高层模块不应该依赖低层模块,两者都应该依赖其抽象;抽象不应该依赖细节,细节应该依赖抽象。其核心思想是:要面向接口编程,不要面向实现编程。依赖倒置原则是实现开闭原则的重要途径之一,它降低了客户与实现模块之间的耦合。由于在软件设计中,细节具有多变性,而抽象层则相对稳定,因此以抽象为基础搭建起来的架构要比以细节为基础搭建起来的架构要稳定得多。这里的抽象指的是接口或者抽象类,而细节是指具体的实现类。使用接口或者抽象类的目的是制定好规范和契约,而不去涉及任何具体的操作,把展现细节的任务交给它们的实现类去完成。

依赖、倒置原则的作用

依赖倒置原则的主要作用如下:

  • 依赖倒置原则可以降低类间的耦合性。
  • 依赖倒置原则可以提高系统的稳定性。
  • 依赖倒置原则可以减少并行开发引起的风险。
  • 依赖倒置原则可以提高代码的可读性和可维护性。

依赖倒置原则的实现方法

依赖倒置原则的目的是通过要面向接口的编程来降低类间的耦合性,所以我们在实际编程中只要遵循以下4点,就能在项目中满足这个规则。

  • 每个类尽量提供接口或抽象类,或者两者都具备。
  • 变量的声明类型尽量是接口或者是抽象类。
  • 任何类都不应该从具体类派生。
  • 使用继承时尽量遵循里氏替换原则。

三、单一职责原则

定义

单一职责原则规定一个类应该有且仅有一个引起它变化的原因,否则类应该被拆分。该原则提出对象不应该承担太多职责,如果一个对象承担了太多的职责,至少存在以下两个缺点:

  • 一个职责的变化可能会削弱或者抑制这个类实现其他职责的能力;
  • 当客户端需要该对象的某一个职责时,不得不将其他不需要的职责全都包含进来,从而造成冗余代码或代码的浪费。

单一职责原则的优点

单一职责原则的核心就是控制类的粒度大小、将对象解耦、提高其内聚性。如果遵循单一职责原则将有以下优点。

  • 降低类的复杂度。一个类只负责一项职责,其逻辑肯定要比负责多项职责简单得多。
  • 提高类的可读性。复杂性降低,自然其可读性会提高。
  • 提高系统的可维护性。可读性提高,那自然更容易维护了。
  • 变更引起的风险降低。变更是必然的,如果单一职责原则遵守得好,当修改一个功能时,可以显著降低对其他功能的影响。

单一职责原则的实现方法

       单一职责原则是最简单但又最难运用的原则,需要设计人员发现类的不同职责并将其分离,再封装到不同的类或模块中。而发现类的多重职责需要设计人员具有较强的分析设计能力和相关重构经验。

四、接口隔离原则

定义

客户端不应该被迫依赖于它不使用的方法。该原则还有另外一个定义:一个类对另一个类的依赖应该建立在最小的接口上。以上两个定义的含义是:要为各个类建立它们需要的专用接口,而不要试图去建立一个很庞大的接口供所有依赖它的类去调用。接口隔离原则和单一职责都是为了提高类的内聚性、降低它们之间的耦合性,体现了封装的思想,但两者是不同的:

  • 单一职责原则注重的是职责,而接口隔离原则注重的是对接口依赖的隔离。
  • 单一职责原则主要是约束类,它针对的是程序中的实现和细节;接口隔离原则主要约束接口,主要针对抽象和程序整体框架的构建。

接口隔离原则的优点

接口隔离原则是为了约束接口、降低类对接口的依赖性,遵循接口隔离原则有以下 5 个优点。

  • 将臃肿庞大的接口分解为多个粒度小的接口,可以预防外来变更的扩散,提高系统的灵活性和可维护性。
  • 接口隔离提高了系统的内聚性,减少了对外交互,降低了系统的耦合性。
  • 如果接口的粒度大小定义合理,能够保证系统的稳定性;但是,如果定义过小,则会造成接口数量过多,使设计复杂化;如果定义太大,灵活性降低,无法提供定制服务,给整体项目带来无法预料的风险。
  • 使用多个专门的接口还能够体现对象的层次,因为可以通过接口的继承,实现对总接口的定义。
  • 能减少项目工程中的代码冗余。过大的大接口里面通常放置许多不用的方法,当实现这个接口的时候,被迫设计冗余的代码。

接口隔离原则的实现方法

在具体应用接口隔离原则时,应该根据以下几个规则来衡量。

  • 接口尽量小,但是要有限度。一个接口只服务于一个子模块或业务逻辑。
  • 为依赖接口的类定制服务。只提供调用者需要的方法,屏蔽不需要的方法。
  • 了解环境,拒绝盲从。每个项目或产品都有选定的环境因素,环境不同,接口拆分的标准就不同深入了解业务逻辑。
  • 提高内聚,减少对外交互。使接口用最少的方法去完成最多的事情。

五、迪米特法则

定义 

只与你的直接朋友交谈,不跟“陌生人”说话。其含义是:如果两个软件实体无须直接通信,那么就不应当发生直接的相互调用,可以通过第三方转发该调用。其目的是降低类之间的耦合度,提高模块的相对独立性。迪米特法则中的“朋友”是指:当前对象本身、当前对象的成员对象、当前对象所创建的对象、当前对象的方法参数等,这些对象同当前对象存在关联、聚合或组合关系,可以直接访问这些对象的方法。

迪米特法则的优点

迪米特法则要求限制软件实体之间通信的宽度和深度,正确使用迪米特法则将有以下两个优点。

  • 降低了类之间的耦合度,提高了模块的相对独立性。
  • 由于亲合度降低,从而提高了类的可复用率和系统的扩展性。

但是,过度使用迪米特法则会使系统产生大量的中介类,从而增加系统的复杂性,使模块之间的通信效率降低。所以,在釆用迪米特法则时需要反复权衡,确保高内聚和低耦合的同时,保证系统的结构清晰。

迪米特法则的实现方法

从迪米特法则的定义和特点可知,它强调以下两点:

  • 从依赖者的角度来说,只依赖应该依赖的对象。
  • 从被依赖者的角度说,只暴露应该暴露的方法。

所以,在运用迪米特法则时要注意以下 6 点。

  • 在类的划分上,应该创建弱耦合的类。类与类之间的耦合越弱,就越有利于实现可复用的目标。
  • 在类的结构设计上,尽量降低类成员的访问权限。
  • 在类的设计上,优先考虑将一个类设置成不变类。
  • 在对其他类的引用上,将引用其他对象的次数降到最低。
  • 不暴露类的属性成员,而应该提供相应的访问器(set 和 get 方法)。
  • 谨慎使用序列化(Serializable)功能。

六、合成复用原则

定义

合成复用原则(Composite Reuse Principle,CRP)又叫组合/聚合复用原则(Composition/Aggregate Reuse Principle,CARP)。它要求在软件复用时,要尽量先使用组合或者聚合等关联关系来实现,其次才考虑使用继承关系来实现。如果要使用继承关系,则必须严格遵循里氏替换原则。合成复用原则同里氏替换原则相辅相成的,两者都是开闭原则的具体实现规范。

合成复用原则的重要性

通常类的复用分为继承复用和合成复用两种,继承复用虽然有简单和易实现的优点,但它也存在以下缺点。

  • 继承复用破坏了类的封装性。因为继承会将父类的实现细节暴露给子类,父类对子类是透明的,所以这种复用又称为“白箱”复用。
  • 子类与父类的耦合度高。父类的实现的任何改变都会导致子类的实现发生变化,这不利于类的扩展与维护。
  • 它限制了复用的灵活性。从父类继承而来的实现是静态的,在编译时已经定义,所以在运行时不可能发生变化。

采用组合或聚合复用时,可以将已有对象纳入新对象中,使之成为新对象的一部分,新对象可以调用已有对象的功能,它有以下优点。

  • 它维持了类的封装性。因为成分对象的内部细节是新对象看不见的,所以这种复用又称为“黑箱”复用。
  • 新旧类之间的耦合度低。这种复用所需的依赖较少,新对象存取成分对象的唯一方法是通过成分对象的接口。
  • 复用的灵活性高。这种复用可以在运行时动态进行,新对象可以动态地引用与成分对象类型相同的对象。

合成复用原则的实现方法

合成复用原则是通过将已有的对象纳入新对象中,作为新对象的成员对象来实现的,新对象可以调用已有对象的功能,从而达到复用。

在接下来的一段时间内,笔者将围绕Swift设计模式展开归纳总结与整理。

参考资料:http://c.biancheng.net/view/1317.html

没有更多推荐了,返回首页