傅立叶变换_傅立叶变换性质 - CSDN
傅立叶变换 订阅
傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。 展开全文
傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。
信息
提出时间
1807年
别    称
傅立叶展开
提出者
傅立叶
应用学科
数字信号处理
中文名
傅立叶变换
适用领域范围
电工学,信号处理
外文名
Fourier Transform
傅里叶变换简介
Fourier transform或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。傅立叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换,②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的象函数,f(t)叫做F(ω)的象原函数。F(ω)是f(t)的象。f(t)是F(ω)原象。①傅立叶变换 ②傅立叶逆变换 傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成频率谱——显示与频率对应的幅值大小)。* 傅里叶变换属于谐波分析。* 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;* 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;*卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;* 离散形式的傅立叶变换可以利用数字计算机快速地算出(其算法称为快速傅里叶变换算法(FFT)). [1] 
收起全文
精华内容
参与话题
  • 傅里叶变换的意义和理解(通俗易懂)

    万次阅读 多人点赞 2018-08-28 15:45:49
    傅里叶变换的意义和理解(通俗易懂) 这篇文章的核心思想就是:要让读者在不看任何数学公式的情况下理解傅里叶分析。 傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸...

    傅里叶变换的意义和理解(通俗易懂)

    这篇文章的核心思想就是:要让读者在不看任何数学公式的情况下理解傅里叶分析。

    傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生上来就懵圈并从此对它深恶痛绝。老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。(您把教材写得好玩一点会死吗?会死吗?)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。
    下面进入正题:
    抱歉,还是要啰嗦一句:其实学习本来就不是易事,我写这篇文章的初衷也是希望大家学习起来更加轻松,充满乐趣。但是千万!千万不要把这篇文章收藏起来,或是存下地址,心里想着:以后有时间再看。这样的例子太多了,也许几年后你都没有再打开这个页面。无论如何,耐下心,读下去。这篇文章要比读课本要轻松、开心得多……
    p.s.本文无论是cos还是sin,都统一用“正弦波”(Sine Wave)一词来代表简谐波。

    一、什么是频域

    从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。这种以时间作为参照来观察动态世界的方法我们称其为时域分析。而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了?我没有疯,这个静止的世界就叫做频域。

    先举一个公式上并非很恰当,但意义上再贴切不过的例子:

    在你的理解中,一段音乐是什么呢?

    这是我们对音乐最普遍的理解,一个随着时间变化的震动。但我相信对于乐器小能手们来说,音乐更直观的理解是这样的:

    好的!下课,同学们再见。

    是的,其实这一段写到这里已经可以结束了。上图是音乐在时域的样子,而下图则是音乐在频域的样子。所以频域这一概念对大家都从不陌生,只是从来没意识到而已。

    现在我们可以回过头来重新看看一开始那句痴人说梦般的话:世界是永恒的。

    将以上两图简化:

    时域:

    频域:

    在时域,我们观察到钢琴的琴弦一会上一会下的摆动,就如同一支股票的走势;而在频域,只有那一个永恒的音符。

    所以

    你眼中看似落叶纷飞变化无常的世界,实际只是躺在上帝怀中一份早已谱好的乐章。

    抱歉,这不是一句鸡汤文,而是黑板上确凿的公式:傅里叶同学告诉我们,任何周期函数,都可以看作是不同振幅,不同相位正弦波的叠加。在第一个例子里我们可以理解为,利用对不同琴键不同力度,不同时间点的敲击,可以组合出任何一首乐曲。

    而贯穿时域与频域的方法之一,就是传中说的傅里叶分析。傅里叶分析可分为傅里叶级数(Fourier Serie)和傅里叶变换(Fourier Transformation),我们从简单的开始谈起。

    二、傅里叶级数(Fourier Series)的频谱

    还是举个栗子并且有图有真相才好理解。

    如果我说我能用前面说的正弦曲线波叠加出一个带90度角的矩形波来,你会相信吗?你不会,就像当年的我一样。但是看看下图:

    第一幅图是一个郁闷的正弦波cos(x)

    第二幅图是2个卖萌的正弦波的叠加cos(x)+a.cos(3x)

    第三幅图是4个发春的正弦波的叠加

    第四幅图是10个便秘的正弦波的叠加

    随着正弦波数量逐渐的增长,他们最终会叠加成一个标准的矩形,大家从中体会到了什么道理?

    (只要努力,弯的都能掰直!)

    随着叠加的递增,所有正弦波中上升的部分逐渐让原本缓慢增加的曲线不断变陡,而所有正弦波中下降的部分又抵消了上升到最高处时继续上升的部分使其变为水平线。一个矩形就这么叠加而成了。但是要多少个正弦波叠加起来才能形成一个标准90度角的矩形波呢?不幸的告诉大家,答案是无穷多个。(上帝:我能让你们猜着我?)

    不仅仅是矩形,你能想到的任何波形都是可以如此方法用正弦波叠加起来的。这是没
    有接触过傅里叶分析的人在直觉上的第一个难点,但是一旦接受了这样的设定,游戏就开始有意思起来了。

    还是上图的正弦波累加成矩形波,我们换一个角度来看看:

    在这几幅图中,最前面黑色的线就是所有正弦波叠加而成的总和,也就是越来越接近矩形波的那个图形。而后面依不同颜色排列而成的正弦波就是组合为矩形波的各个分量。这些正弦波按照频率从低到高从前向后排列开来,而每一个波的振幅都是不同的。一定有细心的读者发现了,每两个正弦波之间都还有一条直线,那并不是分割线,而是振幅为0的正弦波!也就是说,为了组成特殊的曲线,有些正弦波成分是不需要的。

    这里,不同频率的正弦波我们成为频率分量。

    好了,关键的地方来了!!

    如果我们把第一个频率最低的频率分量看作“1”,我们就有了构建频域的最基本单元。

    对于我们最常见的有理数轴,数字“1”就是有理数轴的基本单元。

    时域的基本单元就是“1秒”,如果我们将一个角频率为\omega_{0}的正弦波cos(\omega_{0}t)看作基础,那么频域的基本单元就是\omega_{0}

    有了“1”,还要有“0”才能构成世界,那么频域的“0”是什么呢?cos(0t)就是一个周期无限长的正弦波,也就是一条直线!所以在频域,0频率也被称为直流分量,在傅里叶级数的叠加中,它仅仅影响全部波形相对于数轴整体向上或是向下而不改变波的形状。

    接下来,让我们回到初中,回忆一下已经死去的八戒,啊不,已经死去的老师是怎么定义正弦波的吧。

    正弦波就是一个圆周运动在一条直线上的投影。所以频域的基本单元也可以理解为一个始终在旋转的圆

    想看动图的同学请戳这里:File:Fourier series square wave circles animation.gif

    以及这里:File:Fourier series sawtooth wave circles animation.gif

    点出去的朋友不要被wiki拐跑了,wiki写的哪有这里的文章这么没节操是不是。

    介绍完了频域的基本组成单元,我们就可以看一看一个矩形波,在频域里的另一个模样了:

    这是什么奇怪的东西?

    这就是矩形波在频域的样子,是不是完全认不出来了?教科书一般就给到这里然后留给了读者无穷的遐想,以及无穷的吐槽,其实教科书只要补一张图就足够了:频域图像,也就是俗称的频谱,就是——

    再清楚一点:

    可以发现,在频谱中,偶数项的振幅都是0,也就对应了图中的彩色直线。振幅为0的正弦波。

    动图请戳:

    File:Fourier series and transform.gif

    老实说,在我学傅里叶变换时,维基的这个图还没有出现,那时我就想到了这种表达方法,而且,后面还会加入维基没有表示出来的另一个谱——相位谱。

    但是在讲相位谱之前,我们先回顾一下刚刚的这个例子究竟意味着什么。记得前面说过的那句“世界是静止的”吗?估计好多人对这句话都已经吐槽半天了。想象一下,世界上每一个看似混乱的表象,实际都是一条时间轴上不规则的曲线,但实际这些曲线都是由这些无穷无尽的正弦波组成。我们看似不规律的事情反而是规律的正弦波在时域上的投影,而正弦波又是一个旋转的圆在直线上的投影。那么你的脑海中会产生一个什么画面呢?

    我们眼中的世界就像皮影戏的大幕布,幕布的后面有无数的齿轮,大齿轮带动小齿轮,小齿轮再带动更小的。在最外面的小齿轮上有一个小人——那就是我们自己。我们只看到这个小人毫无规律的在幕布前表演,却无法预测他下一步会去哪。而幕布后面的齿轮却永远一直那样不停的旋转,永不停歇。这样说来有些宿命论的感觉。说实话,这种对人生的描绘是我一个朋友在我们都是高中生的时候感叹的,当时想想似懂非懂,直到有一天我学到了傅里叶级数……

    三、傅里叶级数(Fourier Series)的相位谱

    上一章的关键词是:从侧面看。这一章的关键词是:从下面看。

    在这一章最开始,我想先回答很多人的一个问题:傅里叶分析究竟是干什么用的?这段相对比较枯燥,已经知道了的同学可以直接跳到下一个分割线。

    先说一个最直接的用途。无论听广播还是看电视,我们一定对一个词不陌生——频道。频道频道,就是频率的通道,不同的频道就是将不同的频率作为一个通道来进行信息传输。下面大家尝试一件事:

    先在纸上画一个sin(x),不一定标准,意思差不多就行。不是很难吧。

    好,接下去画一个sin(3x)+sin(5x)的图形。

    别说标准不标准了,曲线什么时候上升什么时候下降你都不一定画的对吧?

    好,画不出来不要紧,我把sin(3x)+sin(5x)的曲线给你,但是前提是你不知道这个曲线的方程式,现在需要你把sin(5x)给我从图里拿出去,看看剩下的是什么。这基本是不可能做到的。

    但是在频域呢?则简单的很,无非就是几条竖线而已。

    所以很多在时域看似不可能做到的数学操作,在频域相反很容易。这就是需要傅里叶变换的地方。尤其是从某条曲线中去除一些特定的频率成分,这在工程上称为滤波,是信号处理最重要的概念之一,只有在频域才能轻松的做到。

    再说一个更重要,但是稍微复杂一点的用途——求解微分方程。(这段有点难度,看不懂的可以直接跳过这段)微分方程的重要性不用我过多介绍了。各行各业都用的到。但是求解微分方程却是一件相当麻烦的事情。因为除了要计算加减乘除,还要计算微分积分。而傅里叶变换则可以让微分和积分在频域中变为乘法和除法,大学数学瞬间变小学算术有没有。

    傅里叶分析当然还有其他更重要的用途,我们随着讲随着提。

    ————————————————————————————————————

    下面我们继续说相位谱:

    通过时域到频域的变换,我们得到了一个从侧面看的频谱,但是这个频谱并没有包含时域中全部的信息。因为频谱只代表每一个对应的正弦波的振幅是多少,而没有提到相位。基础的正弦波A.sin(wt+θ)中,振幅,频率,相位缺一不可,不同相位决定了波的位置,所以对于频域分析,仅仅有频谱(振幅谱)是不够的,我们还需要一个相位谱。那么这个相位谱在哪呢?我们看下图,这次为了避免图片太混论,我们用7个波叠加的图。

    鉴于正弦波是周期的,我们需要设定一个用来标记正弦波位置的东西。在图中就是那些小红点。小红点是距离频率轴最近的波峰,而这个波峰所处的位置离频率轴有多远呢?为了看的更清楚,我们将红色的点投影到下平面,投影点我们用粉色点来表示。当然,这些粉色的点只标注了波峰距离频率轴的距离,并不是相位。


    这里需要纠正一个概念:时间差并不是相位差。如果将全部周期看作2Pi或者360度的话,相位差则是时间差在一个周期中所占的比例。我们将时间差除周期再乘2Pi,就得到了相位差。

    在完整的立体图中,我们将投影得到的时间差依次除以所在频率的周期,就得到了最下面的相位谱。所以,频谱是从侧面看,相位谱是从下面看。下次偷看女生裙底被发现的话,可以告诉她:“对不起,我只是想看看你的相位谱。”

    注意到,相位谱中的相位除了0,就是Pi。因为cos(t+Pi)=-cos(t),所以实际上相位为Pi的波只是上下翻转了而已。对于周期方波的傅里叶级数,这样的相位谱已经是很简单的了。另外值得注意的是,由于cos(t+2Pi)=cos(t),所以相位差是周期的,pi和3pi,5pi,7pi都是相同的相位。人为定义相位谱的值域为(-pi,pi],所以图中的相位差均为Pi。

    最后来一张大集合:

     

    四、傅里叶变换(Fourier Transformation)

    相信通过前面三章,大家对频域以及傅里叶级数都有了一个全新的认识。但是文章在一开始关于钢琴琴谱的例子我曾说过,这个栗子是一个公式错误,但是概念典型的例子。所谓的公式错误在哪里呢?

    傅里叶级数的本质是将一个周期的信号分解成无限多分开的(离散的)正弦波,但是宇宙似乎并不是周期的。曾经在学数字信号处理的时候写过一首打油诗:

    往昔连续非周期,

    回忆周期不连续,

    任你ZT、DFT,

    还原不回去。

    (请无视我渣一样的文学水平……)

    在这个世界上,有的事情一期一会,永不再来,并且时间始终不曾停息地将那些刻骨铭心的往昔连续的标记在时间点上。但是这些事情往往又成为了我们格外宝贵的回忆,在我们大脑里隔一段时间就会周期性的蹦出来一下,可惜这些回忆都是零散的片段,往往只有最幸福的回忆,而平淡的回忆则逐渐被我们忘却。因为,往昔是一个连续的非周期信号,而回忆是一个周期离散信号。

    是否有一种数学工具将连续非周期信号变换为周期离散信号呢?抱歉,真没有。

    比如傅里叶级数,在时域是一个周期且连续的函数,而在频域是一个非周期离散的函数。这句话比较绕嘴,实在看着费事可以干脆回忆第一章的图片。

    而在我们接下去要讲的傅里叶变换,则是将一个时域非周期的连续信号,转换为一个在频域非周期的连续信号。

    算了,还是上一张图方便大家理解吧:

    或者我们也可以换一个角度理解:傅里叶变换实际上是对一个周期无限大的函数进行傅里叶变换。

    所以说,钢琴谱其实并非一个连续的频谱,而是很多在时间上离散的频率,但是这样的一个贴切的比喻真的是很难找出第二个来了。

    因此在傅里叶变换在频域上就从离散谱变成了连续谱。那么连续谱是什么样子呢?

    你见过大海么?

    为了方便大家对比,我们这次从另一个角度来看频谱,还是傅里叶级数中用到最多的那幅图,我们从频率较高的方向看。


    以上是离散谱,那么连续谱是什么样子呢?

    尽情的发挥你的想象,想象这些离散的正弦波离得越来越近,逐渐变得连续……

    直到变得像波涛起伏的大海:

    很抱歉,为了能让这些波浪更清晰的看到,我没有选用正确的计算参数,而是选择了一些让图片更美观的参数,不然这图看起来就像屎一样了。

    不过通过这样两幅图去比较,大家应该可以理解如何从离散谱变成了连续谱的了吧?原来离散谱的叠加,变成了连续谱的累积。所以在计算上也从求和符号变成了积分符号。

    不过,这个故事还没有讲完,接下去,我保证让你看到一幅比上图更美丽壮观的图片,但是这里需要介绍到一个数学工具才能然故事继续,这个工具就是——

    五、宇宙耍帅第一公式:欧拉公式

    虚数i这个概念大家在高中就接触过,但那时我们只知道它是-1的平方根,可是它真正的意义是什么呢?

    这里有一条数轴,在数轴上有一个红色的线段,它的长度是1。当它乘以3的时候,它的长度发生了变化,变成了蓝色的线段,而当它乘以-1的时候,就变成了绿色的线段,或者说线段在数轴上围绕原点旋转了180度。

    我们知道乘-1其实就是乘了两次 i使线段旋转了180度,那么乘一次 i 呢——答案很简单——旋转了90度。


    同时,我们获得了一个垂直的虚数轴。实数轴与虚数轴共同构成了一个复数的平面,也称复平面。这样我们就了解到,乘虚数i的一个功能——旋转。

    现在,就有请宇宙第一耍帅公式欧拉公式隆重登场——

    这个公式在数学领域的意义要远大于傅里叶分析,但是乘它为宇宙第一耍帅公式是因为它的特殊形式——当x等于Pi的时候。

    经常有理工科的学生为了跟妹子表现自己的学术功底,用这个公式来给妹子解释数学之美:”石榴姐你看,这个公式里既有自然底数e,自然数1和0,虚数i还有圆周率pi,它是这么简洁,这么美丽啊!“但是姑娘们心里往往只有一句话:”臭屌丝……“

    这个公式关键的作用,是将正弦波统一成了简单的指数形式。我们来看看图像上的涵义:


    欧拉公式所描绘的,是一个随着时间变化,在复平面上做圆周运动的点,随着时间的改变,在时间轴上就成了一条螺旋线。如果只看它的实数部分,也就是螺旋线在左侧的投影,就是一个最基础的余弦函数。而右侧的投影则是一个正弦函数。

    关于复数更深的理解,大家可以参考:

    复数的物理意义是什么?

    这里不需要讲的太复杂,足够让大家理解后面的内容就可以了。

    六、指数形式的傅里叶变换

    有了欧拉公式的帮助,我们便知道:正弦波的叠加,也可以理解为螺旋线的叠加在实数空间的投影。而螺旋线的叠加如果用一个形象的栗子来理解是什么呢?

    光波

    高中时我们就学过,自然光是由不同颜色的光叠加而成的,而最著名的实验就是牛顿师傅的三棱镜实验:


    所以其实我们在很早就接触到了光的频谱,只是并没有了解频谱更重要的意义。

    但不同的是,傅里叶变换出来的频谱不仅仅是可见光这样频率范围有限的叠加,而是频率从0到无穷所有频率的组合。

    这里,我们可以用两种方法来理解正弦波:

    第一种前面已经讲过了,就是螺旋线在实轴的投影。

    另一种需要借助欧拉公式的另一种形式去理解:

    e^{it}=cos(t)+i.sin(t)
    e^{-it}=cos(t)-i.sin(t)

    将以上两式相加再除2,得到:

    cos(t)=\frac{e^{it}+e^{-it}}{2}

    这个式子可以怎么理解呢?

    我们刚才讲过,e^(it)可以理解为一条逆时针旋转的螺旋线,那么e^(-it)则可以理解为一条顺时针旋转的螺旋线。而cos(t)则是这两条旋转方向不同的螺旋线叠加的一半,因为这两条螺旋线的虚数部分相互抵消掉了!

    举个例子的话,就是极化方向不同的两束光波,磁场抵消,电场加倍。

    这里,逆时针旋转的我们称为正频率,而顺时针旋转的我们称为负频率(注意不是复频率)。

    好了,刚才我们已经看到了大海——连续的傅里叶变换频谱,现在想一想,连续的螺旋线会是什么样子:

    想象一下再往下翻:


    是不是很漂亮?

    你猜猜,这个图形在时域是什么样子?


    哈哈,是不是觉得被狠狠扇了一个耳光。数学就是这么一个把简单的问题搞得很复杂的东西。

    顺便说一句,那个像大海螺一样的图,为了方便观看,我仅仅展示了其中正频率的部分,负频率的部分没有显示出来。

    如果你认真去看,海螺图上的每一条螺旋线都是可以清楚的看到的,每一条螺旋线都有着不同的振幅(旋转半径),频率(旋转周期)以及相位。而将所有螺旋线连成平面,就是这幅海螺图了。

    好了,讲到这里,相信大家对傅里叶变换以及傅里叶级数都有了一个形象的理解了,我们最后用一张图来总结一下:

    好了,傅里叶的故事终于讲完了,下面来讲讲我的故事:

    这篇文章第一次被写下来的地方你们绝对猜不到在哪,是在一张高数考试的卷子上。当时为了刷分,我重修了高数(上),但是后来时间紧压根没复习,所以我就抱着裸考的心态去了考场。但是到了考场我突然意识到,无论如何我都不会比上次考的更好了,所以干脆写一些自己对于数学的想法吧。于是用了一个小时左右的时间在试卷上洋洋洒洒写了本文的第一草稿。

    你们猜我的了多少分?

    6分

    没错,就是这个数字。而这6分的成绩是因为最后我实在无聊,把选择题全部填上了C,应该是中了两道,得到了这宝贵的6分。说真的,我很希望那张卷子还在,但是应该不太可能了。

    那么你们猜猜我第一次信号与系统考了多少分呢?

    45分

    没错,刚刚够参加补考的。但是我心一横没去考,决定重修。因为那个学期在忙其他事情,学习真的就抛在脑后了。但是我知道这是一门很重要的课,无论如何我要吃透它。说真的,信号与系统这门课几乎是大部分工科课程的基础,尤其是通信专业。

    在重修的过程中,我仔细分析了每一个公式,试图给这个公式以一个直观的理解。虽然我知道对于研究数学的人来说,这样的学习方法完全没有前途可言,因为随着概念愈加抽象,维度越来越高,这种图像或者模型理解法将完全丧失作用。但是对于一个工科生来说,足够了。

    后来来了德国,这边学校要求我重修信号与系统时,我彻底无语了。但是没办法,德国人有时对中国人就是有种藐视,觉得你的教育不靠谱。所以没办法,再来一遍吧。

    这次,我考了满分,而及格率只有一半。

    老实说,数学工具对于工科生和对于理科生来说,意义是完全不同的。工科生只要理解了,会用,会查,就足够了。但是很多高校却将这些重要的数学课程教给数学系的老师去教。这样就出现一个问题,数学老师讲得天花乱坠,又是推理又是证明,但是学生心里就只有一句话:学这货到底干嘛用的?

    缺少了目标的教育是彻底的失败。

    在开始学习一门数学工具的时候,学生完全不知道这个工具的作用,现实涵义。而教材上有只有晦涩难懂,定语就二十几个字的概念以及看了就眼晕的公式。能学出兴趣来就怪了!

    好在我很幸运,遇到了大连海事大学的吴楠老师。他的课全程来看是两条线索,一条从上而下,一条从下而上。先讲本门课程的意义,然后指出这门课程中会遇到哪样的问题,让学生知道自己学习的某种知识在现实中扮演的角色。然后再从基础讲起,梳理知识树,直到延伸到另一条线索中提出的问题,完美的衔接在一起!

    这样的教学模式,我想才是大学里应该出现的。

    最后,写给所有给我点赞并留言的同学。真的谢谢大家的支持,也很抱歉不能一一回复。因为知乎专栏的留言要逐次加载,为了看到最后一条要点很多次加载。当然我都坚持看完了,只是没办法一一回复。

    本文只是介绍了一种对傅里叶分析新颖的理解方法,对于求学,还是要踏踏实实弄清楚公式和概念,学习,真的没有捷径。但至少通过本文,我希望可以让这条漫长的路变得有意思一些。

    最后,祝大家都能在学习中找到乐趣。…

    展开全文
  • 全面解析傅立叶变换(非常详细)

    万次阅读 多人点赞 2016-06-30 11:29:30
    从头到尾彻底理解傅里叶变换算法、下 第三章、复数 第四章、复数形式离散傅立叶变换   前言: “关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的...

    前言

    第一部分、  DFT
    第一章、傅立叶变换的由来
    第二章、实数形式离散傅立叶变换(Real DFT)

    从头到尾彻底理解傅里叶变换算法、下

    第三章、复数

    第四章、复数形式离散傅立叶变换

     

    前言
    “关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解”---dznlong,

    那么,到底什么是傅里叶变换算法列?傅里叶变换所涉及到的公式具体有多复杂列?
    傅里叶变换(Fourier transform)是一种线性的积分变换。因其基本思想首先由法国学者傅里叶系统地提出,所以以其名字来命名以示纪念。

       哦,傅里叶变换原来就是一种变换而已,只是这种变换是从时间转换为频率的变化。这下,你就知道了,傅里叶就是一种变换,一种什么变换列?就是一种从时间到频率的变化或其相互转化。

      ok,咱们再来总体了解下傅里叶变换,让各位对其有个总体大概的印象,也顺便看看傅里叶变换所涉及到的公式,究竟有多复杂:
    以下就是傅里叶变换的4种变体(摘自,维基百科)
    连续傅里叶变换
       一般情况下,若“傅里叶变换”一词不加任何限定语,则指的是“连续傅里叶变换”。连续傅里叶变换将平方可积的函数f(t)表示成复指数函数的积分或级数形式。

    这是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。

    连续傅里叶变换的逆变换 (inverse Fourier transform)为:

    即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。

    一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅里叶变换对(transform pair)。

    除此之外,还有其它型式的变换对,以下两种型式亦常被使用。在通信或是信号处理方面,常以来代换,而形成新的变换对:

     或者是因系数重分配而得到新的变换对:

     一种对连续傅里叶变换的推广称为分数傅里叶变换(Fractional Fourier Transform)。分数傅里叶变换(fractional Fourier transform,FRFT)指的就是傅里叶变换(Fourier transform,FT)的广义化。
    分数傅里叶变换的物理意义即做傅里叶变换 a 次,其中 a 不一定要为整数;而做了分数傅里叶变换之后,信号或输入函数便会出现在介于时域(time domain)与频域(frequency domain)之间的分数域(fractional domain)。

    当f(t)为偶函数(或奇函数)时,其正弦(或余弦)分量将消亡,而可以称这时的变换为余弦变换(cosine transform)或正弦变换(sine transform).

    另一个值得注意的性质是,当f(t)为纯实函数时,F(−ω) = F*(ω)成立.

    傅里叶级数
       连续形式的傅里叶变换其实是傅里叶级数 (Fourier series)的推广,因为积分其实是一种极限形式的求和算子而已。对于周期函数,其傅里叶级数是存在的:

    其中Fn为复幅度。对于实值函数,函数的傅里叶级数可以写成:


    其中an和bn是实频率分量的幅度。

    离散时域傅里叶变换
       离散傅里叶变换是离散时间傅里叶变换(DTFT)的特例(有时作为后者的近似)。DTFT在时域上离散,在频域上则是周期的。DTFT可以被看作是傅里叶级数的逆变换。

    离散傅里叶变换
       离散傅里叶变换(DFT),是连续傅里叶变换在时域和频域上都离散的形式,将时域信号的采样变换为在离散时间傅里叶变换(DTFT)频域的采样。在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列都应当被认为是离散周期信号的主值序列。即使对有限长的离散信号作DFT,也应当将其看作经过周期延拓成为周期信号再作变换。在实际应用中通常采用快速傅里叶变换以高效计算DFT。

       为了在科学计算和数字信号处理等领域使用计算机进行傅里叶变换,必须将函数xn定义在离散点而非连续域内,且须满足有限性或周期性条件。这种情况下,使用离散傅里叶变换(DFT),将函数xn表示为下面的求和形式:

    其中Xk是傅里叶幅度。直接使用这个公式计算的计算复杂度为O(n*n),而快速傅里叶变换(FFT)可以将复杂度改进为O(n*lgn)。(后面会具体阐述FFT是如何将复杂度降为O(n*lgn)的。)计算复杂度的降低以及数字电路计算能力的发展使得DFT成为在信号处理领域十分实用且重要的方法。

       下面,比较下上述傅立叶变换的4种变体,

       如上,容易发现:函数在时(频)域的离散对应于其像函数在频(时)域的周期性。反之连续则意味着在对应域的信号的非周期性。也就是说,时间上的离散性对应着频率上的周期性。同时,注意,离散时间傅里叶变换,时间离散,频率不离散,它在频域依然是连续的。
       如果,读到此,你不甚明白,大没关系,不必纠结于以上4种变体,继续往下看,你自会豁然开朗。(有什么问题,也恳请提出,或者批评指正)

       ok, 本文,接下来,由傅里叶变换入手,后重点阐述离散傅里叶变换、快速傅里叶算法,到最后彻底实现FFT算法,全篇力求通俗易懂、阅读顺畅,教你从头到尾彻底理解傅里叶变换算法。由于傅里叶变换,也称傅立叶变换,下文所称为傅立叶变换,同一个变换,不同叫法,读者不必感到奇怪。

    第一部分、DFT
    第一章、傅立叶变换的由来
        要理解傅立叶变换,先得知道傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。
     
    一、傅立叶变换的提出

        傅立叶是一位法国数学家和物理学家,原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier于1807年在法国科学学会上发表了一篇论文,论文里描述运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号都可以由一组适当的正弦曲线组合而成。

        当时审查这个论文拉格朗日坚决反对此论文的发表,而后在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。直到拉格朗日死后15年这个论文才被发表出来。
        谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。

        为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角波来代替呀,分解信号的方法是无穷多的,但分解信号的目的是为了更加简单地处理原来的信号。
        用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。一个正余弦曲线信号输入后,输出的仍是正余弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。且只有正余弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。

    二、傅立叶变换分类
        根据原信号的不同类型,我们可以把傅立叶变换分为四种类别:
    1、非周期性连续信号        傅立叶变换(Fourier Transform) 
    2、周期性连续信号           傅立叶级数(Fourier Series) 
    3、非周期性离散信号        离散时域傅立叶变换(Discrete Time Fourier Transform) 
    4、周期性离散信号           离散傅立叶变换(Discrete Fourier Transform) 
           下图是四种原信号图例(从上到下,依次是FT,FS,DTFT,DFT): 

     

        这四种傅立叶变换都是针对正无穷大和负无穷大的信号,即信号的的长度是无穷大的,我们知道这对于计算机处理来说是不可能的,那么有没有针对长度有限的傅立叶变换呢?没有。因为正余弦波被定义成从负无穷小到正无穷大,我们无法把一个长度无限的信号组合成长度有限的信号。
        面对这种困难,方法是:把长度有限的信号表示成长度无限的信号。如,可以把信号无限地从左右进行延伸,延伸的部分用零来表示,这样,这个信号就可以被看成是非周期性离散信号我们可以用到离散时域傅立叶变换(DTFT)的方法。也可以把信号用复制的方法进行延伸,这样信号就变成了周期性离散信号,这时我们就可以用离散傅立叶变换方法(DFT)进行变换。本章我们要讲的是离散信号,对于连续信号我们不作讨论,因为计算机只能处理离散的数值信号,我们的最终目的是运用计算机来处理信号的。
     
        但是对于非周期性的信号,我们需要用无穷多不同频率的正弦曲线来表示,这对于计算机来说是不可能实现的。所以对于离散信号的变换只有离散傅立叶变换(DFT)才能被适用,对于计算机来说只有离散的和有限长度的数据才能被处理,对于其它的变换类型只有在数学演算中才能用到,在计算机面前我们只能用DFT方法,后面我们要理解的也正是DFT方法。
        这里要理解的是我们使用周期性的信号目的是为了能够用数学方法来解决问题,至于考虑周期性信号是从哪里得到或怎样得到是无意义的。
     
        每种傅立叶变换都分成实数和复数两种方法,对于实数方法是最好理解的,但是复数方法就相对复杂许多了,需要懂得有关复数的理论知识,不过,如果理解了实数离散傅立叶变换(real DFT),再去理解复数傅立叶变换就更容易了,所以我们先把复数的傅立叶变换放到一边去,先来理解实数傅立叶变换,在后面我们会先讲讲关于复数的基本理论,然后在理解了实数傅立叶变换的基础上再来理解复数傅立叶变换。
     
        还有,这里我们所要说的变换(transform)虽然是数学意义上的变换,但跟函数变换是不同的,函数变换是符合一一映射准则的,对于离散数字信号处理(DSP),有许多的变换:傅立叶变换、拉普拉斯变换、Z变换、希尔伯特变换、离散余弦变换等,这些都扩展了函数变换的定义,允许输入和输出有多种的值,简单地说变换就是把一堆的数据变成另一堆的数据的方法。
     
    三、一个关于实数离散傅立叶变换(Real DFT)的例子

           先来看一个变换实例,下图是一个原始信号图像:


           这个信号的长度是16,于是可以把这个信号分解9个余弦波和9个正弦波(一个长度为N的信号可以分解成N/2+1个正余弦信号,这是为什么呢?结合下面的18个正余弦图,我想从计算机处理精度上就不难理解,一个长度为N的信号,最多只能有N/2+1个不同频率,再多的频率就超过了计算机所能所处理的精度范围),如下图:

            9个余弦信号:

            9个正弦信号:

           把以上所有信号相加即可得到原始信号,至于是怎么分别变换出9种不同频率信号的,我们先不急,先看看对于以上的变换结果,在程序中又是该怎么表示的,我们可以看看下面这个示例图:


     
        上图中左边表示时域中的信号,右边是频域信号表示方法,
    从左向右,-->,表示正向转换(Forward DFT),从右向左,<--,表示逆向转换(Inverse DFT),
    用小写x[]表示信号在每个时间点上的幅度值数组, 用大写X[]表示每种频率的副度值数组(即时间x-->频率X), 
    因为有N/2+1种频率,所以该数组长度为N/2+1,
        X[]数组又分两种,一种是表示余弦波的不同频率幅度值:Re X[],
    另一种是表示正弦波的不同频率幅度值:Im X[],
        Re是实数(Real)的意思,Im是虚数(Imagine)的意思,采用复数的表示方法把正余弦波组合起来进行表示,但这里我们不考虑复数的其它作用,只记住是一种组合方法而已,目的是为了便于表达(在后面我们会知道,复数形式的傅立叶变换长度是N,而不是N/2+1)。如此,再回过头去,看上面的正余弦各9种频率的变化,相信,问题不大了。

     

    第二章、实数形式离散傅立叶变换(Real DFT)
           上一章,我们看到了一个实数形式离散傅立叶变换的例子,通过这个例子能够让我们先对傅立叶变换有一个较为形象的感性认识,现在就让我们来看看实数形式离散傅立叶变换的正向和逆向是怎么进行变换的。在此,我们先来看一下频率的多种表示方法。
     
    一、   频域中关于频率的四种表示方法
     
    1、序号表示方法,根据时域中信号的样本数取0 ~ N/2,用这种方法在程序中使用起来可以更直接地取得每种频率的幅度值,因为频率值跟数组的序号是一一对应的: X[k],取值范围是0 ~ N/2;
    2、分数表示方法,根据时域中信号的样本数的比例值取0 ~ 0.5: X[ƒ],ƒ = k/N,取值范围是0 ~ 1/2;
    3、用弧度值来表示,把ƒ乘以一个2π得到一个弧度值,这种表示方法叫做自然频率(natural frequency):X[ω],ω = 2πƒ = 2πk/N,取值范围是0 ~ π;
    4、以赫兹(Hz)为单位来表示,这个一般是应用于一些特殊应用,如取样率为10 kHz表示每秒有10,000个样本数:取值范围是0到取样率的一半。
     
    二、   DFT基本函数
     
    ck[i] = cos(2πki/N)
    sk[i] = sin(2πki/N)
        其中k表示每个正余弦波的频率,如为2表示在0到N长度中存在两个完整的周期,10即有10个周期,如下图:

           上图中至于每个波的振幅(amplitude)值(Re X[k],Im X[k])是怎么算出来的,这个是DFT的核心,也是最难理解的部分,我们先来看看如何把分解出来的正余弦波合成原始信号(Inverse DFT)。
     
    三、   合成运算方法(Real Inverse DFT)
     
    DFT合成等式(合成原始时间信号,频率-->时间,逆向变换):

    如果有学过傅立叶级数,对这个等式就会有似曾相识的感觉,不错!这个等式跟傅立叶级数是非常相似的:

               当然,差别是肯定是存在的,因为这两个等式是在两个不同条件下运用的,至于怎么证明DFT合成公式,这个我想需要非常强的高等数学理论知识了,这是研究数学的人的工作,对于普通应用者就不需要如此的追根究底了,但是傅立叶级数是好理解的,我们起码可以从傅立叶级数公式中看出DFT合成公式的合理性。
                                      _            _
           DFT合成等式中的Im X[k]和Re X[k]跟之前提到的Im X[k]和Re X[k]是不一样的,下面是转换方法(关于此公式的解释,见下文):

           
           但k等于0和N/2时,实数部分的计算要用下面的等式:

                  
           上面四个式中的N是时域中点的总数,k是从0到N/2的序号。
           为什么要这样进行转换呢?这个可以从频谱密度(spectral density)得到理解,如下图就是个频谱图:

           
           这是一个频谱图,横坐标表示频率大小,纵坐标表示振幅大小,原始信号长度为N(这里是32),经DFT转换后得到的17个频率的频谱,频谱密度表示每单位带宽中为多大的振幅,那么带宽是怎么计算出来的呢?看上图,除了头尾两个,其余点的所占的宽度是2/N,这个宽度便是每个点的带宽,头尾两个点的带宽是1/N,而Im X[k]和Re X[k]表示的是频谱密度,即每一个单位带宽的振幅大小,但表示2/N(或1/N)带宽的振幅大小,所以分别应当是Im X[k]和Re X[k]的2/N(或1/N)。
     
    频谱密度就象物理中物质密度,原始信号中的每一个点就象是一个混合物,这个混合物是由不同密度的物质组成的,混合物中含有的每种物质的质量是一样的,除了最大和最小两个密度的物质外,这样我们只要把每种物质的密度加起来就可以得到该混合物的密度了,又该混合物的质量是单位质量,所以得到的密度值跟该混合物的质量值是一样的。
     
           至于为什么虚数部分是负数,这是为了跟复数DFT保持一致,这个我们将在后面会知道这是数学计算上的需要(Im X[k]在计算时就已经加上了一个负号(稍后,由下文,便可知),再加上负号,结果便是正的,等于没有变化)。
     
           如果已经得到了DFT结果,这时要进行逆转换,即合成原始信号,则可按如下步骤进行转换:
    1、先根据上面四个式子计算得出的值;
    2、再根据DFT合成等式得到原始信号数据。
    下面是用BASIC语言来实现的转换源代码:
    100 ‘DFT逆转换方法
    110 ‘/XX[]数组存储计算结果(时域中的原始信号)
    120 ‘/REX[]数组存储频域中的实数分量,IMX[]为虚分量
    130 ‘
    140 DIM XX[511]
    150 DIM REX[256]
    160 DIM IMX[256]
    170 ‘
    180 PI = 3.14159265
    190 N% = 512
    200 ‘
    210 GOSUB XXXX ‘转到子函数去获取REX[]和IMX[]数据
    220 ‘
    230 ‘
    240 ‘
    250 FOR K% = 0 TO 256
    260   REX[K%] = REX[K%] / (N%/2)
    270   IMX[K%] = -IMX[K%] / (N%/2)
    280 NEXT k%
    290 ‘
    300 REX[0] = REX[0] / N
    310 REX[256] = REX[256] / N
    320 ‘
    330 ‘ 初始化XX[]数组
    340 FOR I% = 0 TO 511
    350   XX[I%] = 0
    360 NEXT I%
    370 ‘
    380 ‘
    390 ‘
    400 ‘
    410 ‘
    420 FOR K% =0 TO 256
    430   FOR I%=0 TO 511
    440 ‘
    450      XX[I%] = XX[I%] + REX[K%] * COS(2 * PI * K% * I% / N%) 
    460      XX[I%] = XX[I%] + IMX[K%] * SIN(2 * PI * K% * I% / N%)
    470 ‘
    480   NEXT I%
    490 NEXT K%
    500 ‘
    510 END
     
    上面代码中420至490换成如下形式也许更好理解,但结果都是一样的:
    420 FOR I% =0 TO 511
    430   FOR K%=0 TO 256
    440 ‘
    450      XX[I%] = XX[I%] + REX[K%] * COS(2 * PI * K% * I% / N%) 
    460      XX[I%] = XX[I%] + IMX[K%] * SIN(2 * PI * K% * I% / N%)
    470 ‘
    480   NEXT I%
    490 NEXT K%
     
    四、   分解运算方法(DFT)
     
          有三种完全不同的方法进行DFT:一种方法是通过联立方程进行求解, 从代数的角度看,要从N个已知值求N个未知值,需要N个联立方程,且N个联立方程必须是线性独立的,但这是这种方法计算量非常的大且极其复杂,所以很少被采用;第二种方法是利用信号的相关性(correlation)进行计算,这个是我们后面将要介绍的方法;第三种方法是快速傅立叶变换(FFT),这是一个非常具有创造性和革命性的的方法,因为它大大提高了运算速度,使得傅立叶变换能够在计算机中被广泛应用,但这种算法是根据复数形式的傅立叶变换来实现的,它把N个点的信号分解成长度为N的频域,这个跟我们现在所进行的实域DFT变换不一样,而且这种方法也较难理解,这里我们先不去理解,等先理解了复数DFT后,再来看一下FFT。有一点很重要,那就是这三种方法所得的变换结果是一样的,经过实践证明,当频域长度为32时,利用相关性方法进行计算效率最好,否则FFT算法效率较高。现在就让我们来看一下相关性算法。
     
    利用第一种方法、信号的相关性(correlation)可以从噪声背景中检测出已知的信号,我们也可以利用这个方法检测信号波中是否含有某个频率的信号波:把一个待检测信号波乘以另一个信号波,得到一个新的信号波,再把这个新的信号波所有的点进行相加,从相加的结果就可以判断出这两个信号的相似程度。如下图:

            上面a和 b两个图是待检测信号波,图a很明显可以看出是个3个周期的正弦信号波,图b的信号波则看不出是否含有正弦或余弦信号,图c和d都是个3个周期的正弦信号波,图e和f分别是a、b两图跟c、d两图相乘后的结果,图e所有点的平均值是0.5,说明信号a含有振幅为1的正弦信号c,但图f所有点的平均值是0,则说明信号b不含有信号d。这个就是通过信号相关性来检测是否含有某个信号的方法。
     
           第二种方法:相应地,我也可以通过把输入信号和每一种频率的正余弦信号进行相乘(关联操作),从而得到原始信号与每种频率的关联程度(即总和大小),这个结果便是我们所要的傅立叶变换结果,下面两个等式便是我们所要的计算方法:

           第二个式子中加了个负号,是为了保持复数形式的一致,前面我们知道在计算时又加了个负号,所以这只是个形式的问题,并没有实际意义,你也可以把负号去掉,并在计算时也不加负号。

           这里有一点必须明白一个正交的概念:两个函数相乘,如果结果中的每个点的总和为0,则可认为这两个函数为正交函数。要确保关联性算法是正确的,则必须使得跟原始信号相乘的信号的函数形式是正交的,我们知道所有的正弦或余弦函数是正交的,这一点我们可以通过简单的高数知识就可以证明它,所以我们可以通过关联的方法把原始信号分离出正余弦信号。当然,其它的正交函数也是存在的,如:方波、三角波等形式的脉冲信号,所以原始信号也可被分解成这些信号,但这只是说可以这样做,却是没有用的。
           下面是实域傅立叶变换的BASIC语言代码:


     
           到此为止,我们对傅立叶变换便有了感性的认识了吧。但要记住,这只是在实域上的离散傅立叶变换,其中虽然也用到了复数的形式,但那只是个替代的形式,并无实际意义,现实中一般使用的是复数形式的离散傅立叶变换,且快速傅立叶变换是根据复数离散傅立叶变换来设计算法的,在后面我们先来复习一下有关复数的内容,然后再在理解实域离散傅立叶变换的基础上来理解复数形式的离散傅立叶变换。

     

    第三章、复数

            复数扩展了我们一般所能理解的数的概念,复数包含了实数和虚数两部分,利用复数的形式可以把由两个变量表示的表达式变成由一个变量(复变量)来表达,使得处理起来更加自然和方便。
            我们知道傅立叶变换的结果是由两部分组成的,使用复数形式可以缩短变换表达式,使得我们可以单独处理一个变量(这个在后面的描述中我们就可以更加确切地知道),而且快速傅立叶变换正是基于复数形式的,所以几乎所有描述的傅立叶变换形式都是复数的形式。
           但是复数的概念超过了我们日常生活中所能理解的概念,要理解复数是较难的,所以我们在理解复数傅立叶变换之前,先来专门复习一下有关复数的知识,这对后面的理解非常重要。
     
    一、 复数的提出
     
          在此,先让我们看一个物理实验:把一个球从某点向上抛出,然后根据初速度和时间来计算球所在高度,这个方法可以根据下面的式子计算得出:

    其中h表示高度,g表示重力加速度(9.8m/s2),v表示初速度,t表示时间。现在反过来,假如知道了高度,要求计算到这个高度所需要的时间,这时我们又可以通过下式来计算:

            

    多谢JERRY_PRI提出

        1、根据公式h=-(gt2/2)+Vt(gt后面的2表示t的平方),我们可以讨论最终情况,也就是说小球运动到最高点时,v=gt,所以,可以得到t=sqt(2h/g)
    且在您给的公式中,根号下为1-(2h)/g,化成分数形式为(g-2h)/g,g和h不能直接做加减运算。

        2、g是重力加速度,单位是m/s2,h的单位是m,他们两个相减的话在物理上没有意义,而且使用您给的那个公式反向回去的话推出的是h=-(gt2/2)+gt啊(gt后面的2表示t的平方)。
        3、直接推到可以得出t=v/g±sqt((v2-2hg)/g2)(v和g后面的2都表示平方),那么也就是说当v2<2hg时会产生复数,但是如果从实际的v2是不可能小于2hg的,所以我感觉复数不能从实际出发去推到,只能从抽象的角度说明一下。

    )      
          经过计算我们可以知道,当高度是3米时,有两个时间点到达该高度:球向上运动时的时间是0.38秒,球向下运动时的时间是1.62秒。但是如果高度等于10时,结果又是什么呢?根据上面的式子可以发现存在对负数进行开平方运算,我们知道这肯定是不现实的。
          第一次使用这个不一般的式子的人是意大利数学家Girolamo Cardano(1501-1576),两个世纪后,德国伟大数学家Carl Friedrich Gause(1777-1855)提出了复数的概念,为后来的应用铺平了道路,他对复数进行这样表示:复数由实数(real)和虚数(imaginary)两部分组成,虚数中的根号负1用i来表示(在这里我们用j来表示,因为i在电力学中表示电流的意思)。
     
           我们可以把横坐标表示成实数,纵坐标表示成虚数,则坐标中的每个点的向量就可以用复数来表示,如下图:
                   
           上图中的ABC三个向量可以表示成如下的式子:
     
                A = 2 + 6j
                B = -4 – 1.5j
                C = 3 – 7j
     
           这样子来表达方便之处在于运用一个符号就能把两个原来难以联系起来的数组合起来了,不方便的是我们要分辨哪个是实数和哪个是虚数,我们一般是用Re( )和Im( )来表示实数和虚数两部分,如:
     
                Re A = 2      Im A = 6
                Re B = -4     Im B = -1.5
                Re C = 3      Im C = -7 
     
           复数之间也可以进行加减乘除运算:
                
      
           这里有个特殊的地方是j2等于-1,上面第四个式子的计算方法是把分子和分母同时乘以c – dj,这样就可消去分母中的j了。
     
           复数也符合代数运算中的交换律、结合律、分配律:
     
                  A B = B A
                  (A + B) + C = A + (B + C)
                  A(B + C) = AB + AC
     
     
    二、 复数的极坐标表示形式
     
           前面提到的是运用直角坐标来表示复数,其实更为普遍应用的是极坐标的表示方法,如下图:


                  
           上图中的M即是数量积(magnitude),表示从原点到坐标点的距离,θ是相位角(phase angle),表示从X轴正方向到某个向量的夹角,下面四个式子是计算方法:
                         
         我们还可以通过下面的式子进行极坐标到直角坐标的转换:
     
                 a + jb = M (cosθ + j sinθ)


         上面这个等式中左边是直角坐标表达式,右边是极坐标表达式。
     
         还有一个更为重要的等式——欧拉等式(欧拉,瑞士的著名数学家,Leonhard Euler,1707-1783):
                 ejx = cos x + j sin x 
     
         这个等式可以从下面的级数变换中得到证明:

          上面中右边的两个式子分别是cos(x)和sin(x)的泰勒(Taylor)级数。
     

          这样子我们又可以把复数的表达式表示成指数的形式了:
     
                 a + jb = M ejθ (这便是复数的两个表达式)
     
          指数形式是数字信号处理中数学方法的支柱,也许是因为用指数形式进行复数的乘除运算极为简单的缘故吧:

                  
    三、复数是数学分析中的一个工具
     
           为什么要使用复数呢?其实它只是个工具而已,就如钉子和锤子的关系,复数就象那锤子,作为一种使用的工具。我们把要解决的问题表达成复数的形式(因为有些问题用复数的形式进行运算更加方便),然后对复数进行运算,最后再转换回来得到我们所需要的结果。
     
           有两种方法使用复数,一种是用复数进行简单的替换,如前面所说的向量表达式方法和前一节中我们所讨论的实域DFT,另一种是更高级的方法:数学等价(mathematical equivalence),复数形式的傅立叶变换用的便是数学等价的方法,但在这里我们先不讨论这种方法,这里我们先来看一下用复数进行替换中的问题。
     
           用复数进行替换的基本思想是:把所要分析的物理问题转换成复数的形式,其中只是简单地添加一个复数的符号j,当返回到原来的物理问题时,则只是把符号j去掉就可以了。
     
           有一点要明白的是并不是所有问题都可以用复数来表示,必须看用复数进行分析是否适用,有个例子可以看出用复数来替换原来问题的表达方式明显是谬误的:假设一箱的苹果是5美元,一箱的桔子是10美元,于是我们把它表示成 5 + 10j,有一个星期你买了6箱苹果和2箱桔子,我们又把它表示成6 + 2j,最后计算总共花的钱是(5 + 10j)(6 + 2j) = 10 + 70j,结果是买苹果花了10美元的,买桔子花了70美元,这样的结果明显是错了,所以复数的形式不适合运用于对这种问题的解决。
     
    四、用复数来表示正余弦函数表达式
     
           对于象M cos (ωt + φ)和A cos(ωt ) + B sin(ωt )表达式,用复数来表示,可以变得非常简洁,对于直角坐标形式可以按如下形式进行转换:
           
           上式中余弦幅值A经变换生成a,正弦幅值B的相反数经变换生成b:A <=> a,B<=> -b,但要注意的是,这不是个等式,只是个替换形式而已。
     
           对于极坐标形式可以按如下形式进行转换:
           
          
           上式中,M <=> M,θ<=>φ。
       这里虚数部分采用负数的形式主要是为了跟复数傅立叶变换表达式保持一致,对于这种替换的方法来表示正余弦,符号的变换没有什么好处,但替换时总会被改变掉符号以跟更高级的等价变换保持形式上的一致。
     
            在离散信号处理中,运用复数形式来表示正余弦波是个常用的技术,这是因为利用复数进行各种运算得到的结果跟原来的正余弦运算结果是一致的,但是,我们要小心使用复数操作,如加、减、乘、除,有些操作是不能用的,如两个正弦信号相加,采用复数形式进行相加,得到的结果跟替换前的直接相加的结果是一样的,但是如果两个正弦信号相乘,则采用复数形式来相乘结果是不一样的。幸运的是,我们已严格定义了正余弦复数形式的运算操作条件:
    1、参加运算的所有正余弦的频率必须是一样的;
    2、运算操作必须是线性的,如两个正弦信号可以进行相加减,但不能进行乘除,象信号的放大、衰减、高低通滤波等系统都是线性的,象平方、缩短、取限等则不是线性的。要记住的是卷积和傅立叶分析也只有线性操作才可以进行。
       
           下图是一个相量变换(我们把正弦或余弦波变成复数的形式称为相量变换,Phasor transform)的例子,一个连续信号波经过一个线性处理系统生成另一个信号波,从计算过程我们可以看出采用复数的形式使得计算变化十分的简洁:
     
        在第二章中我们描述的实数形式傅立叶变换也是一种替换形式的复数变换,但要注意的是那还不是复数傅立叶变换,只是一种代替方式而已。下一章、即,第四章,我们就会知道复数傅立叶变换是一种更高级的变换,而不是这种简单的替换形式。 

     

    第四章、复数形式离散傅立叶变换

        复数形式的离散傅立叶变换非常巧妙地运用了复数的方法,使得傅立叶变换变换更加自然和简洁,它并不是只是简单地运用替换的方法来运用复数,而是完全从复数的角度来分析问题,这一点跟实数DFT是完全不一样的。
     
    一、  把正余弦函数表示成复数的形式

        通过欧拉等式可以把正余弦函数表示成复数的形式:
     
                        cos( x ) = 1/2 e j(-x) + 1/2 ejx 
                        sin( x ) = j (1/2 e j(-x) - 1/2 ejx)

        从这个等式可以看出,如果把正余弦函数表示成复数后,它们变成了由正负频率组成的正余弦波,相反地,一个由正负频率组成的正余弦波,可以通过复数的形式来表示。
     
        我们知道,在实数傅立叶变换中,它的频谱是0 ~ π(0 ~ N/2),但无法表示-π~ 0的频谱,可以预见,如果把正余弦表示成复数形式,则能够把负频率包含进来。
     
    二、  把变换前后的变量都看成复数的形式
     
        复数形式傅立叶变换把原始信号x[n]当成是一个用复数来表示的信号,其中实数部分表示原始信号值,虚数部分为0,变换结果X[k]也是个复数的形式,但这里的虚数部分是有值的。
        在这里要用复数的观点来看原始信号,是理解复数形式傅立叶变换的关键(如果有学过复变函数则可能更好理解,即把x[n]看成是一个复数变量,然后象对待实数那样对这个复数变量进行相同的变换)。
     
    三、  对复数进行相关性算法(正向傅立叶变换)
     
         从实数傅立叶变换中可以知道,我们可以通过原始信号乘以一个正交函数形式的信号,然后进行求总和,最后就能得到这个原始信号所包含的正交函数信号的分量。

         现在我们的原始信号变成了复数,我们要得到的当然是复数的信号分量,我们是不是可以把它乘以一个复数形式的正交函数呢?答案是肯定的,正余弦函数都是正交函数,变成如下形式的复数后,仍旧还是正交函数(这个从正交函数的定义可以很容易得到证明):

                       cos x + j sin x, cos x – j sin x,……
     
         这里我们采用上面的第二个式子进行相关性求和,为什么用第二个式子呢?,我们在后面会知道,正弦函数在虚数中变换后得到的是负的正弦函数,这里我们再加上一个负号,使得最后的得到的是正的正弦波,根据这个于是我们很容易就可以得到了复数形式的DFT正向变换等式

           
         这个式子很容易可以得到欧拉变换式子:
           
     
         其实我们是为了表达上的方便才用到欧拉变换式,在解决问题时我们还是较多地用到正余弦表达式。
     
           对于上面的等式,我们要清楚如下几个方面(也是区别于实数DFT的地方):
    1、X[k]、x[n]都是复数,但x[n]的虚数部分都是由0组成的,实数部分表示原始信号;
    2、k的取值范围是0 ~ N-1 (也可以表达成0 ~ 2π),其中0 ~ N/2(或0 ~ π)是正频部分,

    N/2 ~ N-1(π~ 2π)是负频部分,由于正余弦函数的对称性,所以我们把 –π~ 0表示成π~ 2π,这是出于计算上方便的考虑。
    3、其中的j是一个不可分离的组成部分,就象一个等式中的变量一样,不能随便去掉,去掉之后意义就完全不一样了,但我们知道在实数DFT中,j只是个符号而已,把j去掉,整个等式的意义不变;
    4、下图是个连续信号的频谱,但离散频谱也是与此类似的,所以不影响我们对问题的分析:
                 

     
         上面的频谱图把负频率放到了左边,是为了迎合我们的思维习惯,但在实际实

    现中我们一般是把它移到正的频谱后面的。

         从上图可以看出,时域中的正余弦波(用来组成原始信号的正余弦波)在复数DFT的频谱中被分成了正、负频率的两个组成部分,基于此等式中前面的比例系数是1/N(或1/2π),而不是2/N,这是因为现在把频谱延伸到了2π,但把正负两个频率相加即又得到了2/N,又还原到了实数DFT的形式,这个在后面的描述中可以更清楚地看到。

         由于复数DFT生成的是一个完整的频谱,原始信号中的每一个点都是由正、负两个频率组合而成的,所以频谱中每一个点的带宽是一样的,都是1/N,相对实数DFT,两端带宽比其它点的带宽少了一半;复数DFT的频谱特征具有周期性:-N/2 ~ 0与N/2 ~ N-1是一样的,实域频谱呈偶对称性(表示余弦波频谱),虚域频谱呈奇对称性(表示正弦波频谱)。
     

    四、  逆向傅立叶变换
     
         假设我们已经得到了复数形式的频谱X[k],现在要把它还原到复数形式的原始信号x[n],当然应该是把X[k]乘以一个复数,然后再进行求和,最后得到原始信号x[n],这个跟X[k]相乘的复数首先让我们想到的应该是上面进行相关性计算的复数:

                         cos(2πkn/N) – j si(2πkn/N),
     
         但其中的负号其实是为了使得进行逆向傅立叶变换时把正弦函数变为正的符号,因为虚数j的运算特殊性,使得原来应该是正的正弦函数变为了负的正弦函数(我们从后面的推导会看到这一点),所以这里的负号只是为了纠正符号的作用,在进行逆向DFT时,我们可以把负号去掉,于是我们便得到了这样的逆向DFT变换等式

                         x[n] = X[k] (cos(2πkn/N) + j sin(2πkn/N))

         我们现在来分析这个式子,会发现这个式其实跟实数傅立叶变换是可以得到一样结果的。我们先把X[k]变换一下:

                         X[k] = Re X[k] + j Im X[k]


          这样我们就可以对x[n]再次进行变换,如:

               x[n] = (Re X[k] + j Im X[k]) (cos(2πkn/N) + j sin(2πkn/N))

                      = ( Re X[k] cos(2πkn/N) + j Im X[k] cos(2πkn/N) +j Re X[k] sin(2πkn/N) -  Im X[k] sin(2πkn/N) )

                      = ( Re X[k] (cos(2πkn/N) + j sin(2πkn/N)) +    ---------------------(1)

                                Im X[k] ( - sin(2πkn/N) + j cos(2πkn/N)))  ---------------(2)

     

          这时我们就把原来的等式分成了两个部分,第一个部分是跟实域中的频谱相乘,第二个部分是跟虚域中的频谱相乘,根据频谱图我们可以知道,Re X[k]是个偶对称的变量,Im X[k]是个奇对称的变量,即

                        Re X[k] = Re X[- k]
                        Im X[k] = - Im X[-k]

          但k的范围是0 ~ N-1,0~N/2表示正频率,N/2~N-1表示负频率,为了表达方便我们把N/2~N-1用-k来表示,这样在从0到N-1的求和过程中对于(1)和(2)式分别有N/2对的k和-k的和,对于(1)式有:

                        Re X[k] (cos(2πkn/N) + j sin(2πkn/N)) + Re X[- k] (cos( - 2πkn/N) + j sin( -2πkn/N))

          根据偶对称性和三角函数的性质,把上式化简得到:
     
                        Re X[k] (cos(2πkn/N) + j sin(2πkn/N)) + Re X[ k] (cos( 2πkn/N) - j sin( 2πkn/N))

          这个式子最后的结果是:

                        2 Re X[ k] cos(2πkn/N)。
          
          再考虑到求Re X[ k]等式中有个比例系数1/N,把1/N乘以2,这样的结果不就是跟实数DFT中的式子一样了吗?
     
          对于(2)式,用同样的方法,我们也可以得到这样的结果:

                        -2 Im X[k] sin(2πkn/N)

           注意上式前面多了个负符号,这是由于虚数变换的特殊性造成的,当然我们肯定不能把负符号的正弦函数跟余弦来相加,还好,我们前面是用cos(2πkn/N) – j sin(2πkn/N)进行相关性计算,得到的Im X[k]中有个负的符号,这样最后的结果中正弦函数就没有负的符号了,这就是为什么在进行相关性计算时虚数部分要用到负符号的原因(我觉得这也许是复数形式DFT美中不足的地方,让人有一种拼凑的感觉)。
     
           从上面的分析中可以看出,实数傅立叶变换跟复数傅立叶变换,在进行逆变换时得到的结果是一样的,只不过是殊途同归吧。本文完。(July、dznlong)

    展开全文
  • 傅里叶变换就是这么简单?

    万次阅读 多人点赞 2018-10-23 16:19:23
    学习傅里叶变换需要面对大量的数学公式,数学功底较差的同学听到傅里叶变换就头疼。事实上,许多数学功底好的数字信号处理专业的同学也不一定理解傅里叶变换的真实含义,不能做到学以致用! 事实上,傅里叶变换的相关...

    学习傅里叶变换需要面对大量的数学公式,数学功底较差的同学听到傅里叶变换就头疼。事实上,许多数学功底好的数字信号处理专业的同学也不一定理解傅里叶变换的真实含义,不能做到学以致用!

    事实上,傅里叶变换的相关运算已经非常成熟,有现成函数可以调用。对于绝大部分只需用好傅里叶变换的同学,重要的不是去记那些枯燥的公式,而是解傅里叶变换的含义及意义。

    本文试图不用一个数学公式,采用较为通俗的语言深入浅出的阐述傅里叶变换的含义、意义及方法,希望大家可以更加亲近傅里叶变换,用好傅里叶变换。
     

    1

    伟大的傅里叶、伟大的争议!

     

    1807年,39岁的法国数学家傅里叶于法国科学学会上展示了一篇论文(此时不能算发表,该论文要到21年之后发表),论文中有个在当时极具争议的论断:“任何连续周期信号可以由一组适当的正弦曲线组合而成”。

    这篇论文,引起了法国另外两位著名数学家拉普拉斯和拉格朗日的极度关注!

    640?wx_fmt=jpeg


    58岁的拉普拉斯赞成傅里叶的观点。

    71岁的拉格朗日(貌似现在的院士,不用退休)则反对,反对的理由是“正弦曲线无法组合成一个带有棱角的信号” 。屈服于拉格朗日的威望,该论文直到朗格朗日去世后的第15年才得以发表。

    之后的科学家证明:傅里叶和拉格朗日都是对的!

    有限数量的正弦曲线的确无法组合成一个带有棱角的信号,然而,无限数量的正弦曲线的组合从能量的角度可以非常无限逼近带有棱角的信号。

     

    2

    傅里叶变换的定义

     

    后人将傅里叶的论断进行了扩展:满足一定条件的函数可以表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。如何得到这个线性组合呢?这就需要傅里叶变换。

    一定条件是什么呢?

    这是数学家研究的问题,对于大多数搞电参量测量的工程师而言,不必关注这个问题,因为,电参量测量中遇到的周期信号,都满足这个条件。

    这样,在电参量测量分析中,我们可以用更通俗的话来描述傅里叶变换:

    任意周期信号可以分解为直流分量和一组不同幅值、频率、相位的正弦波。分解的方法就是傅里叶变换。

    并且,这些正弦波的频率符合一个规律:是某个频率的整数倍。这个频率,就称为基波频率,而其它频率称为谐波频率。如果谐波的频率是基波频率的N倍,就称为N次谐波。直流分量的频率为零,是基波频率的零倍,也可称零次谐波。

     

    3

    傅里叶变换的意义

     

    1、为什么要进行傅里叶变换呢?

    傅里叶变换是描述信号的需要。

    只要能反映信号的特征,描述方法越简单越好!

    信号特征可以用特征值进行量化。

    所谓特征值,是指可以定量描述一个波形的某种特征的数值。全面描述一个波形,可能需要多个特征值。

    比如说:正弦波可以用幅值和频率两个特征值全面描述;方波可以用幅值、频率和占空比三个特征值全面描述(单个周期信号不考虑相位)。

    上述特征值,我们可以通过示波器观测实时波形获取,称为时域分析法。事实上,许多人都习惯于时域分析法,想要了解一个信号时,一定会说:“让我看看波形!”

    可是,除了一些常见的规则信号,许多时候,给你波形看,你也看不明白!

    复杂的不讲,看看下面这个波形,能看出道道吗?

    640?wx_fmt=png
     

    我们能看到的仅仅是一个类似正弦波的波形,其幅值在按照一定的规律变化。

    如何记载这个波形的信息呢?尤其是量化的记载!

    很难!

    事实上,上述波形采用傅里叶变换后,就是一个50Hz的正弦波上叠加一个40Hz的正弦波,两者幅度不同,40Hz的幅度越大,波动幅度就越大,而波动的频率就是两者的差频10Hz(三相异步电动机叠频温升试验时的电流波形)。

    再看一个看似简单的波形:

    640?wx_fmt=png
     

    这个波形有点像正弦波,但是,比正弦波尖,俗称“尖顶波”,多见于变压器空载电流输入波形。

    我们很难准确定量其与正弦波的区别。

    采用傅里叶变换后,得到下述频谱(幅值谱):

    640?wx_fmt=png
     

    主要包括3、5、7、9次谐波,一目了然!

    傅里叶变换是一种信号分析方法,让我们对信号的构成和特点进行深入的、定量的研究。把信号通过频谱的方式(包括幅值谱、相位谱和功率谱)进行准确的、定量的描述。

    这就是傅里叶变换的主要目的。

    现在,我们知道傅里叶变换的目的了, 剩下的问题是:

    2、为什么傅里叶变换要把信号分解为正弦波的组合,而不是方波或三角波?

    其实,如果张三能够证明, 任意信号可以分解为方波的组合,其分解的方法不妨称为张三变换;李四能够证明,任意信号可以分解为三角波的组合,其分解的方法也可以称为李四变换。

    傅里叶变换是一种信号分析的方法。既然是分析方法,其目的应该是把问题变得更简单,而不是变得更复杂。傅里叶选择了正弦波,没有选择方波或其它波形,正好是其伟大之处!

    正弦波有个其它任何波形(恒定的直流波形除外)所不具备的特点:正弦波输入至任何线性系统,出来的还是正弦波,改变的仅仅是幅值和相位,即:正弦波输入至线性系统,不会产生新的频率成分(非线性系统如变频器,就会产生新的频率成分,称为谐波)。用单位幅值的不同频率的正弦波输入至某线性系统,记录其输出正弦波的幅值和频率的关系,就得到该系统的幅频特性,记录输出正弦波的相位和频率的关系,就得到该系统的相频特性。

    线性系统是自动控制研究的主要对象,线性系统具备一个特点,多个正弦波叠加后输入至一个系统,输出是所有正弦波独立输入时对应输出的叠加。

    也就是说,我们只要研究正弦波的输入输出关系,就可以知道该系统对任意输入信号的响应。

    这就是傅里叶变换的最主要的意义!

     

    4

    如何求傅里叶变换?

     

    文章开始就说了,具体求傅里叶变换,有成熟的函数可供调用。本文只讲述如何理解傅里叶变换的思想。如果你掌握了这个思想,不用再记公式,也不用去调用什么函数,自己编个简单程序就可实现。就算你不会编程,只要你学过三角函数,至少可以理解傅里叶变换的过程。

    傅里叶的伟大之处不在于如何进行傅里叶变换,而是在于给出了“任何连续周期信号可以由一组适当的正弦曲线组合而成”这一伟大的论断。

    知道了这一论断,只要知道正弦函数的基本特性,变换并不难,不要记公式,你也能实现傅里叶变换!

    正弦函数有一个特点,叫做正交性,所谓正交性,是指任意两个不同频率的正弦波的乘积,在两者的公共周期内的积分等于零。

    这是一个非常有用的特性,我们可以利用这个特性设计一个如下的检波器(下称检波器A):

    检波器A由一个乘法器和一个积分器构成,乘法器的一个输入为已知频率f的单位幅值正弦波(下称标准正弦信号f),另一个输入为待变换的信号。检波器A的输出只与待变换信号中的频率为f的正弦分量的幅值和相位有关。

     

    640?wx_fmt=png
     

    待变换信号可能包含频率为f的分量(下称f分量),也可能不包含f分量,总之,可能包含各种频率分量。一句话,待变换信号是未知的,并且可能很复杂!

    没关系,我们先看看,待变换信号是否包含f分量。

    因为其它频率分量与标准正弦信号f的乘积的积分都等于零,检波器A可以当它们不存在!经过检波器A,输出就只剩下与f分量有关的一个量,这个量等于待变换信号中f分量与标准正弦信号f的乘积的积分。

    很容易得到的结论是:

    如果输出不等于零,就说明输入信号包含f分量!

    这个输出是否就是f分量呢?

    答案:不一定!

    正弦波还有下述的特性:

    相同频率的正弦波,当相位差为90°时(正交),在一个周期内的乘积的积分值等于零;当相位相同时,积分值达到最大,等于两者的有效值的乘积,当相位相反时,积分值达到最小,等于两者的有效值的乘积取反。

    我们知道标准正弦信号f的初始相位为零,但是,我们不知道f分量的初始相位!如果f分量与标准正弦信号f的相位刚好差90°(或270°),检波器A输出也等于零!为此,我们再设计一个检波器B:

    检波器B与检波器A的不同之处在于检波器B用一个标准余弦信号f(与标准正弦信号A相位差90°)替代滤波器A中的标准正弦信号f。如果待变换信号中包含f分量,检波器A和检波器B至少有一个输出不等于零。

     

    640?wx_fmt=png


    利用三角函数的基础知识可以证明,不论f分量的初始相位如何,检波器A和检波器B输出信号的幅值的方和根就等于f分量的幅值;而检波器B和检波器A的幅值的比值等于f分量初始相位的正切,如此如此……即可求出f分量的相位。

    我们再把标准正弦信号f和标准余弦信号f的频率替换成我们关心的任意频率,就可以得到输入信号的各种频率成分。如果知道输入信号的频率,把这个频率作为基波频率f0,用f0、2f0、3f0依次替代标准正弦信号f和标准余弦信号f的频率,就可以得到输入信号的基波、2次谐波和3次谐波。

    这就是傅里叶变换!

    什么?不会积分?

    没有关系,实际上,在谐波检测仪、电能质量分析仪等各类电参量测量仪器中,现在用的都是基于交流采样的离散傅里叶变换,在离散信号处理中,累加就是积分!

    640?wx_fmt=png傅里叶变换就是这么简单,你学会了吗?

    展开全文
  • 深入理解傅里叶变换

    万次阅读 多人点赞 2018-05-31 13:03:37
    这原本是我在知乎上对傅立叶变换、拉普拉斯变换、Z变换的联系?...本文要求读者需要在对傅里叶变换有一定的了解的基础之上阅读,至少要知道怎么算傅里叶变换。 此外部分地方要求读者有一定的微分方程基础,...

    这原本是我在知乎上对傅立叶变换、拉普拉斯变换、Z变换的联系?为什么要进行这些变换。研究的都是什么?问题的回答,实际上是我在本科学习数学和信号处理期间的思考,知乎上的答案因为写得仓促,只写了一些大致思想,没有具体展开,也没有图,比较难以理解,这里重新整理了一下,汇成此文。

    本文要求读者需要在对傅里叶变换有一定的了解的基础之上阅读,至少要知道怎么算傅里叶变换。 此外部分地方要求读者有一定的微分方程基础,至少会求简谐振子的二阶常微分方程吧。

    什么是傅里叶变换

    高等数学中一般是从周期函数的傅里叶级数开始介绍的,这里也不例外。简单的说,从高中我们就学过一个理想的波可以用三角函数来描述,但是实际上的波可以是各种奇形怪状的。首先我们来看具有固定周期的波,下图中展示了4种常见的周期波。傅里叶级数告诉我们,这些周期信号都可以分解为有限或无限个正弦波或余弦波的叠加,且这些波的频率都是原始信号频率f0f0的整数倍。

    s(x)=A02+n=1Ansin(2πnf0x+ϕn).s(x)=A02+∑n=1∞An⋅sin⁡(2πnf0x+ϕn).

    这里f0f0被称为这些波的基频,A0/2A0/2代表直流系数,系数AnAn被称为幅度,ϕnϕn被称作相位。根据幅度和相位可以利用反变换恢复信号的波形,因此幅度和相位包含了信号的全部信息。这里的幅度关于频率的函数,我们称之为频谱,相位关于频率的函数,称之为相位谱。

    waveforms.svg

    下图是矩形波分解为多个正弦波的示意图,随着正弦波数目的增加,可以无限地逼近矩形波。 对于非周期信号,我们不能简单地将它展开为可数个正弦波的叠加,但是可以利用傅里叶变换展开为不可数的正弦波的叠加,其表达式可以通过f0f0→∞简单得到。

    f^(ξ)=f(x) e2πixξdx,f^(ξ)=∫−∞∞f(x) e−2πixξdx,

    我们日常遇到的琴音、震动等都可以分解为正弦波的叠加,电路中的周期电压信号等信号都可以分解为正弦波的叠加。 那么问题来了,为什么我们要将信号分解为正弦波的叠加呢?这里面包含两个问题,为什么要分解?为什么是正弦波(或余弦波),可不可以是其他的波?另一个问题是对通信的同学的,我们学过多个变换那么这些变换之间有哪些关系? 在下面的篇章中,我将回答这三个问题。

    fourier_series.svg

    为什么要分解为正弦波的叠加

    这个问题可以追溯到傅里叶变换的创始人傅里叶解热传导方程的时候,因为热传导方程要求读者对热力学有一定了解,这里我以简谐振子系统为例来说明这个问题。没有阻尼的简谐振子系统可以用下面这个微分方程来描述

    d2xdt2+2ω0dxdt+ω20x=F(t).d2xdt2+2ω0dxdt+ω02x=F(t).

    x,t,ω0,Fx,t,ω0,F分别代表位移、时间、系统固有频率和外界驱动力。当没有外界驱动力FF时,这个系统有通解

    x(t)=Asin(ω0t+ϕ)x(t)=Asin⁡(ω0t+ϕ)

    现在我们考虑存在外界驱动力FF的场景,熟悉常微分方程理论的可以知道此时的通解是上述其次方程的通解(FF恒为0)加上一个特解,所谓特解就是某个满足上述非齐次方程(FF不恒为0)的任意一个接!那为什么能做这种分解呢?原因在于这是一个线性系统,或者说这个方程是一个线性方程,因此遵循叠加原理,可以简单的证明这个一般性结论。假设线性系统可以由线性微分方程来描述

    L^x(t)=F(t)L^x(t)=F(t)

    L^L^是线性算子,你可以简单地理解为谐振子方程中的左边操作。如果C(t),x0(t)C(t),x0(t)分别是其次方程通解和非齐次方程特解,即他们满足

    L^C(t)=0,L^x0(t)=F(t).L^C(t)=0,L^x0(t)=F(t).

    那么将这两个式子相加,就可以得到

    L^(x0(t)+C(t))=F(t)L^(x0(t)+C(t))=F(t)

    因此,只剩下一个问题,对于给定的驱动力F(t)F(t),怎么找特解的问题了。 也许你还记得在高数的书上,对F(t)F(t)为三角函数和指数函数时,可以有和F(t)F(t)形式相同的特解。 例如F(t)=f0sin(wt)F(t)=f0sin⁡(wt)时,可以假定非齐次方程也有这种形式的特解Bsin(wt)Bsin⁡(wt),代入原方程,求出待定常数可得特解A(ww0)2sin(wt)A(w−w0)2sin⁡(wt)。指数形式的驱动力也类似,那么对于其他形式的驱动力,怎么求特解呢?很简单,利用线性叠加原理,我如果求出很多个FF为正弦驱动力sin(wnt)sin⁡(wnt)下的特解xn(t)xn(t),并且如果FF可以表达为这些正弦波的叠加,那么特解不就可以用这些特解的叠加得到了么?用数学语言表述就是

    L^xn(t)=sin(wnt),n=0,1...L^nAnxn(t)=nAnsin(wnt).L^xn(t)=sin⁡(wnt),n=0,1...L^∑nAnxn(t)=∑nAnsin⁡(wnt).

    上面第二个式子右边如果等于F(t)F(t),那么左边的nAnxn(t)∑nAnxn(t)就是原齐次方程的特解。 简单地说,就是将驱动力做傅里叶变换(如果是周期驱动力则展开为傅里叶级数),求出每个基驱动力的特解,然后叠加得到特解。当然实际求解不用那么绕,以简谐振动方程为例,直接对方程左右两边做傅里叶变换即得

    w2X^(w)2wω0X^(w)+ω20X^(w)=F^(w)w2X^(w)−2wω0X^(w)+ω02X^(w)=F^(w)

    上式带尖头的函数代表时域函数的傅里叶变换,这是一个代数方程,容易求得

    X^(w)=F^(w)(wω0)2X^(w)=F^(w)(w−ω0)2

    通过上述描述,我们可以看到,将一个函数做傅里叶变换或者展开为傅里叶级数,可以帮助我们求解线性微分方程,或者从实际意义来说,可以帮助我们分析一个线性系统对外界做出如何响应!之所以能这样展开,是因为我们分析的是线性系统,如果是非线性系统就不能这样操作了。至于为什么是三角函数,我在下面将会回答,接下来我们先来看看更多的例子。

    傅里叶变换与信号系统

    这里,我们对通信相关的领域再举一个例子,来说明展开为三角函数(或者复指数函数)的重要性。这种分析,我们称之为傅里叶分析,或者叫频谱分析。

    一个信号,通常用一个时间的函数x(t)x(t)来表示,这样简单直观,因为它的函数图像可以看做信号的波形,比如声波和水波等等。很多时候,对信号的处理是很特殊的,比如说线性电路会将输入的正弦信号处理后,输出仍然是正弦信号,只是幅度和相位有一个变化。这是因为线性电路都可以用常系数线性微分方程来描述,输入信号可以看做外界驱动力,输出可以看做系统地响应,这和上面的谐振子方程类似。因此,如果我们将信号全部分解成正弦信号的线性组合(傅里叶变换)x(t)=ΣωX(ω)eiωtx(t)=ΣωX(ω)eiωt,那么就可以用一个传递函数H(w)=Y(w)/X(w)H(w)=Y(w)/X(w)来描述这个线性系统。倘若这个信号很特殊,例如e2tsin(t)e2tsin(t),傅里叶变换在数学上不存在,这个时候就引入拉普拉斯变换来解决这个问题x(t)=ΣsX(s)estx(t)=ΣsX(s)est。这样一个线性系统都可以用一个传递函数H(s)=Y(s)/X(s)H(s)=Y(s)/X(s)来表示。所以,从这里可以看到将信号分解为正弦函数(傅里叶变换)或者 复指数函数(拉普拉斯变换)对分析线性系统也是至关重要的。

    傅里叶变换与量子力学

    量子力学的波函数可以用多种不同的表象来描述,例如坐标表象、动量表象、能量表象等,不同表象之间的变换实际上是希尔伯特空间的一个幺正变换,其中坐标表象和动量表象之间的变换就是傅里叶变换。

    Φ(p)=12πΨ(x)eipxdx,Ψ(x)=12πΦ(p)eipxdp.Φ(p)=12πℏ∫Ψ(x)e−iℏpxdx,Ψ(x)=12πℏ∫Φ(p)eiℏpxdp.

    傅里叶变换、拉普拉斯、Z变换、离散傅里叶变换的关系

    信号处理中经常要对信号做各种变换,其中傅里叶变换、拉普拉斯、Z变换、离散傅里叶变换是最基础的几个变换。 他们都是为了对信号做频谱分析而采用的变换,只不过被变换的信号会有一些差异。

    如果只关心信号本身,不关心系统,这几个变换的关系可以通过下面这样一个过程联系起来。

    从模拟信号x(t)x(t)开始,如果模型信号能量是有限的,那么我们可以对它做傅里叶变换,把它用频域表达为X(w)X(w)。如果信号的能量是无限的,那么傅里叶变换将不会收敛,这种时候可以对它做拉普拉斯变换X(s)X(s)。 如果我们将拉普拉斯的s=σ+jws=σ+jw域画出来,他是一个复平面,拉普拉斯变换X(s)X(s)是这个复平面上的一个复变函数。而这个函数沿虚轴jwjw的值X(jw)X(jw)就是傅里叶变换。

    LaplaceFourier

    拉普拉斯变换和傅里叶变换广泛应用在模拟电路分析当中,下图就是对模拟电路中基本元件的ss域建模示意图,当s=jws=jw时,就是傅里叶变换了。

    S-Domain_circuit_equivalents

    需要明确一个观点,不管使用时域还是频域(或s域)来表示一个信号,他们表示的都是同一个信号!也就是说,上面的时域表达、频域表达和ss域表达都表示的是同一个模拟信号。关于这一点,你可以从线性空间的角度理解。同一个信号,如果采用不同的坐标框架(或者说基向量),那么他们的坐标就不同。例如,采用{δ(tτ)|τR}{δ(t−τ)|τ∈R}作为坐标,那么信号就可以表示为x(t)x(t),而采用{eiwt|wR}{eiwt|w∈R}则表示为傅里叶变换的形式X(w)X(w)。 两个不同坐标框架下,同一个向量的坐标可以通过一个线性变换联系起来,如果是有限维的空间,则可以表示为一个矩阵,在这里是无限维,这个线性变换就是傅里叶变换。

    到现在,对信号的形式还没有多少假定,如果信号是带宽受限信号,也就是说X(jw)X(jw)只在一个小范围内(如B<w<B−B<w<B)不为0。之所以要做这个假定以及这个假定的合理性是根据实际需要而定的。在一个通信系统或者信号处理系统中,无限带宽的信号是无法处理的,而且一般接受信号的期间都会有一定的带宽,所以这是对实际中的信号的一种理想假设。现代的信号处理系统多是数字信号处理系统,即使是模拟系统,现在也多将复杂的处理放到数字信号处理子系统端进行处理,这两个系统之间通过 AD、DA 连接起来。根据采样定理,只要采样的频率足够高(大于两倍带宽),就可以无失真地将信号还原出来。那么采样对信号的影响是什么呢?从s平面来看,时域的采样将X(s)X(s)沿虚轴方向作周期延拓!这个性质从数学上可以很容易验证。下图显示的是就是采样对信号频谱的影响,只画出虚轴上的图像。这个性质也很好的解释了为什么要两倍的采样频率,这样才能使得周期延拓后频谱不会重叠到一起。设fs=ws/2πfs=ws/2π是采样频率,则采样后信号在ss域可以表达为

    Xsampling(s)=X(s)n=ens/fsXsampling(s)=X(s)∑n=−∞∞ens/fs

    sampling

    对于采样后的信号,可以利用指数变换将ss域的带状区域变换到单位圆内。这就是z变换,它可以看做拉普拉斯变换的一种特殊形式,即做了一个代换z=es/fsz=e−s/fsfsfs是采样频率。这个变换将信号从s域变换到z域。请注意,s域和z域表示的是同一个信号,即采样完了之后的信号,只有采样才会改变信号本身!从复平面上来看,这个变换将与σσ轴平行的条带变换到z平面的一个单叶分支2kπθ2(k+1)π2kπ≤θ≤2(k+1)π,并且将虚轴映射到单位圆。z=ejw/fsz=e−jw/fs时也称作离散时间傅里叶变换(DTFT)。你会看到前面采样导致的周期延拓产生的条带重叠在一起了,因为具有周期性,所以z域不同的分支的函数值X(z)X(z)是相同的。换句话说,如果没有采样,直接进行z变换,将会得到一个多值的复变函数!所以一般只对采样完了后的信号做z变换!

    X(z)=Xsampling(z=es/fs)=X(s=fslnz)n=znX(z)=Xsampling(z=e−s/fs)=X(s=fsln⁡z)∑n=−∞∞zn

    这里讲了时域的采样,时域采样后,信号只有fs/2fs/2−fs/2→fs/2间的频谱,即最高频率只有采样频率一半,但是要记录这样一个信号,仍然需要无限大的存储空间,可以进一步对频域进行采样。如果时间有限(实际上这与频率受限互相矛盾,但大多数信号近似成立)的信号,那么通过频域采样(时域做周期扩展)可以不失真地从采样的信号中恢复原始信号。并且信号长度是有限的,这就是离散傅里叶变换(DFT),它有著名的快速算法快速傅里叶变换(FFT)。为什么DFT这么重要呢,因为计算机要有效地对一般的信号做傅里叶变换,都是用DFT来实现的,除非信号具有简单的解析表达式!利用上述关系,可以推导出DFT在第k个频点的值为

    X(k)=X(z=ej2πNk)=X(s=j2πNkfs)n=ej2πNnk=X(s=j2πNkfs)=x(t)ej2πNkfstdt=nxnej2πNnkX(k)=X(z=e−j2πNk)=X(s=−j2πNkfs)∑n=−∞∞e−j2πNnk=X(s=−j2πNkfs)=∫−∞∞x(t)e−j2πNkfstdt=∑nxne−j2πNnk

    上述推导利用到两个基本公式

    n=ej2πNnk=1x(t)ej2πNkfstdt=nxnej2πNnk∑n=−∞∞e−j2πNnk=1∫−∞∞x(t)e−j2πNkfstdt=∑nxne−j2πNnk

    总结起来说,就是对于一个线性系统,输入输出是线性关系的,不论是线性电路还是光路,只要可以用一个线性方程或线性微分方程(如拉普拉斯方程、泊松方程等)来描述的系统,都可以通过傅里叶分析从频域来分析这个系统的特性,比单纯从时域分析要强大得多!两个著名的应用例子就是线性电路和傅里叶光学(信息光学)。甚至非线性系统,也在很多情况里面使用线性系统的东西!所以傅里叶变换才这么重要!你看最早傅里叶最早也是为了求解热传导方程(那里其实也可以看做一个线性系统)!

    傅里叶变换的思想还在不同领域有很多演变,比如在信号处理中的小波变换,它也是采用一组基函数来表达信号,只不过克服了傅里叶变换不能同时做时频分析的问题。

    傅里叶变换特殊的原因解释

    最后,我从纯数学的角度说一下傅里叶变化到底是什么。 如果我们把函数f(t)f(t)看做向量,那么这些函数在加法和数乘两种运算下构成一个线性空间。 如果我们定义内积

    <f,g>=f(t)g(t)dt<f,g>=∫−∞∞f(t)g(t)dt

    并且限定该集合是有界函数的子集,所谓有界是指内积<f,f><f,f>有界。 那么上述线性空间就是一个希尔伯特空间。这里我们忽略这些严格的泛函分析中的定义,就简单地与欧式空间中的向量和内积进行类比即可。 在这种类比下,一个函数就是一个向量。

    在这种类比下(严格的证明需要用泛函分析那一套,这里我们只关注直观的图像理解),傅里叶变换就是这个向量空间中的一个幺正变换! 我们知道,欧式空间中的线性变换都可以用一个矩阵A来表示,即变换

    b=Axb=Ax

    表示把向量x通过变换A变换为b!傅里叶变换就把时域函数f(t)变换到频域函数F(w)! 利用傅里叶变换的基本性质,容易验证这个变换是一个幺正变换。

    我们知道,线性变换的本质就是选取的基向量不同。向量的每一个坐标就是对应基向量前面的系数!

    [x1,x2,...,xn]=i=1nxiei[x1,x2,...,xn]=∑i=1nxiei

    那么在函数空间中,基向量是什么呢?在时域基向量可以看成delta函数{δ(ts);sR}{δ(t−s);s∈R}

    f(t)=f(s)δ(ts)dsf(t)=∫−∞∞f(s)δ(t−s)ds

    这里的积分可以类比于前面的求和,δ(ts)δ(t−s)可以类比于基向量eiei成为基函数,f(s)可以类比于xixi是基函数前面的系数!

    同样的类比,傅里叶变换到频域选取的基函数是{eiwt;wR}{e−iwt;w∈R}

    f(t)=F(w)eiwtdwf(t)=∫−∞∞F(w)e−iwtdw

    F(w)就是基函数eiwte−iwt前面的系数。傅里叶变换就是在这两组基函数间的线性变换

    那么,问题来了,线性变换这么多,为什么傅里叶变换这么特殊?

    还记得线性代数中的线性方程Ax=b吗?解这个方程的方法很多,高斯消元法是最常用的方法之一。 但是如果A是一个对角方阵,那么这个向量版的线性方程可以变为多个独立的代数方程!

    aiixi=bi,i=1,...,naiixi=bi,i=1,...,n

    这种情况下,很容易求得xi=bi/aiixi=bi/aii

    上述情况过于特殊,我们考虑更一般的情况,如果A是对称方阵,那么根据线性空间的特征值理论,可以找到矩阵A的所有互相正交的特征向量{vi,i=1..n}{vi,i=1..n}和特征值{λi,i=1..n}{λi,i=1..n},然后将向量x和b表示成特征向量的组合x=Σixivi,b=Σibivix=Σixi′vi,b=Σibi′vi。由于特征向量的正交关系,矩阵的代数方程可以化为n个标量代数方程

    λixi=bi,i=1,...,nλixi′=bi′,i=1,...,n

    是不是很神奇!!一个向量版的线性方程通过重新选取了一组基向量变成多个独立的代数一次方程!

    你会问这跟傅里叶变换有毛关系?别急,我们再来看非齐次线性常微分方程

    (ddt+a)y(t)=z(t)(ddt+a)y(t)=z(t)

    如果把左边的线性算子部分看做线性变换,那么这个方程完全可以和上述向量版的线性方程进行类比! 把算子Λ=ddt+aΛ=ddt+a看做线性变换,那么我们可以采用上述类似的思路,把这个方程变成多个独立的代数方程吗? 答案是肯定的,利用该算子的特征函数作为基函数重新选取基函数即可!可以验证指数函数y=eiwty=eiwt是该的特征函数,对应的特征值是iw+aiw+a

    (ddt+a)est=(iw+a)est(ddt+a)est=(iw+a)est

    利用相似的思路,我门把函数y(t),z(t)y(t),z(t)都表示为基函数的线性组合

    y(t)=Y(w)eiwtdwz(t)=Z(w)eiwtdwy(t)=∫Y(w)eiwtdwz(t)=∫Z(w)eiwtdw

    那么这样一来,前述微分方程变成了多个标量线性代数方程!

    (iw+a)Y(w)=Z(w),wR(iw+a)Y(w)=Z(w),w∈R

    其实这个过程也可以看做对原始方程左右两边同时做傅里叶变换!这也是傅里叶变换求解常系数微分方程的理论基础!

    在常系数线性偏微分方程中也有类似结论!例如,考虑有源的拉普拉斯方程

    2ϕ(x)=ρ(x)∇2ϕ(x)=ρ(x)

    容易验证基函数(其实就是格林函数)

    G(k,x)=eikxG(k,x)=eik⋅x

    是拉普拉斯算子的特征函数!将场ϕϕ和源ρρ按照基函数展开,就可以将原来的拉普拉斯方程变为多个标量代数线性方程

    (k2x+k2y+k2z)ϕ(k)=ρ(k)−(kx2+ky2+kz2)ϕ(k)=ρ(k)

    上述傅里叶变换也可以用拉普拉斯变换替换,结论一样! 以上是我在上数理方程课程的时候体会到的。归纳起来,就是说傅里叶变换就是线性空间中的一个特殊的正交变换!他之所以特殊是因为指数函数是常系数微分算子的特征函数!而自然界常见的规律大多是用常系数微分方程描述,信号系统中更是常见,线性时不变系统都可以利用常系数微分方程描述,这使得傅里叶变换应用十分广泛!

    其他微分算子的特征函数举例

    对于常系数线性微分算子,可以用指数函数作为基函数展开,而对于变系数线性微分算子,其基函数就不再是简单的指数函数了。 但是上述思想仍然可以利用,只不过基函数是一些特殊函数,如贝塞尔函数、勒让德多项书函数等等!

    所谓常系数微分算子就是具有这种形式的微分算子

    L^=k=0nakdkxdtk,akRL^=∑k=0nakdkxdtk,ak∈R

    对于变系数的微分算子,akak是自变量tt的函数,这种算子的特征函数并没有一般性的结论。 基本上每一类算子都会有自己特殊的特征函数, 这里列举几个我遇到过多次的特征函数及变系数算子。

    柱坐标下的贝塞尔函数是下述微分算子的特征函数

    L^=x2d2ydx2+xdydx+(x2α2)L^=x2d2ydx2+xdydx+(x2−α2)

    球坐标下的勒让德多项式

    Pn(x)=12nn!dndxn[(x21)n].Pn(x)=12nn!dndxn[(x2−1)n].

    它是下述微分算子的特征函数,这是一个变系数的微分算子

    L^=ddx[(1x2)ddx]+n(n+1)L^=ddx[(1−x2)ddx]+n(n+1)

    拉盖尔多项式

    Ln(x)=exn!dndxn(exxn)=1n!(ddx1)nxnL^=xd2dx2+(1x)ddx+nLn(x)=exn!dndxn(e−xxn)=1n!(ddx−1)nxnL^=xd2dx2+(1−x)ddx+n

    这样的例子还有很多,这些函数实际上都是一个函数族,这些函数互相正交,这和实对称阵的本征向量互相正交的性质一样,这里的线性算子也是其泛函空间上的对称轭米算子。这些函数族构成一组完备正交基,可以表达对应泛函空间中的任意函数。这和傅里叶变换的基函数——复指数函数一样。

    展开全文
  • 十分简明易懂的FFT(快速傅里叶变换

    万次阅读 多人点赞 2019-07-05 19:55:26
    快速傅里叶变换 (fast Fourier transform),即利用计算机计算离散傅里叶变换(DFT)的高效、快速计算方法的统称,简称FFT。快速傅里叶变换是1965年由J.W.库利和T.W.图基提出的。采用这种算法能使计算机计算离散傅里叶...
  • 通俗易懂的傅里叶变换讲解(多图预警)

    千次阅读 多人点赞 2018-05-25 09:14:09
    这学期学习图像处理时遇到了傅里叶变换,他的名字早就耳熟能详,但从来没有搞懂其中真正的含义,因为没有系统的学过复变函数。借此机会学习,在网上找到了一篇通俗易懂的博客,其中没有许多公式解读,读后对傅里叶...
  • 图像傅里叶变换

    万次阅读 多人点赞 2012-06-01 21:08:59
    冈萨雷斯版里面的解释非常形象:一个恰当的比喻是将傅里叶变换比作一个玻璃棱镜。棱镜是可以将光分解为不同颜色的物理仪器,每个成分的颜色由波长(或频率)来决定。傅里叶变换可以看作是数学上的棱镜,将函数基于...
  • 傅里叶变换(二维离散傅里叶变换)

    万次阅读 多人点赞 2018-06-15 22:22:35
    离散二维傅里叶变换一常用性质: 可分离性、周期性和共轭对称性、平移性、旋转性质、卷积与相关定理;(1)可分离性: 二维离散傅里叶变换DFT可分离性的基本思想是DFT可分离为两次一维DFT。因此可以用通过计算两次...
  • 傅里叶变换(一)——认识傅里叶变换

    万次阅读 多人点赞 2018-08-11 17:24:13
    注:本文为博主参考书籍和他人文章并加上自己的理解所编,作为学习笔记使用并将其分享出去供大家学习。若涉及到引用您的文章内容请评论区告知!...一、什么是傅里叶变换   时域及频域  在讲...
  • 傅里叶变换概念及公式推导

    万次阅读 多人点赞 2017-10-26 19:06:20
    傅里叶变换傅里叶变换的目的是可将时域(即时间域)上的信号转变为频域(即频率域)上的信号,随着域的不同,对同一个事物的了解角度也就随之改变,因此在时域中某些不好处理的地方,在频域就可以较为简单的处理。...
  • 如何通俗地理解傅立叶变换

    万次阅读 多人点赞 2018-12-14 15:37:01
    声明下,下面都是用傅立叶级数来阐述,文章最后会说明下傅立叶级数和傅立叶变换之间的关系。 让我们从比较容易懂的解释开始吧。 1 直观解释 1666年牛顿发现太阳光经三棱镜的折射后可呈现彩色光,称为光的色散现象...
  • cos和sin的傅立叶变换

    万次阅读 2016-07-13 15:10:05
  • 高斯函数的傅里叶变换

    万次阅读 多人点赞 2015-07-03 20:27:53
    高斯一维函数: 高斯二维函数: 傅里叶变换: ...则高斯函数的傅里叶变换为: ...可以看出傅里叶变换后的函数仍为高斯函数,只是幅度和方差发生了变化,二维高斯函数的傅里叶变换原理和上面相同。
  • 傅里叶级数仅适用于周期信号,傅里叶变换可以视作傅里叶级数的延伸,可以用于分析非周期信号的频谱特性。事实上,引入冲击函数后,周期信号也可以进行傅里叶变换傅里叶级数:所有周期信号都可以分解为不同频率的...
  • 傅里叶、拉普拉斯、z变换常用公式合集

    万次阅读 多人点赞 2019-06-27 09:51:23
    傅里叶变换 常用信号的傅里叶变换 傅里叶变换的性质 傅里叶性质—典型变换对 拉普拉斯 常用信号的单边拉普拉斯变换 拉普拉斯变换的性质 z变换 常用序列的z变换 z变换的性质 ...
  • 傅里叶变换(CTFT)的性质及证明

    万次阅读 2018-01-09 14:51:04
    1.对称性: 2.尺度变化 3.时移 ...周期信号可以写成指数傅里叶级数形式,对两边取傅里叶变换有: 例:对于周期脉冲序列s(t): 其傅里叶系数Fn: 那么s(t)的傅里叶变换为:
  • 实函数傅里叶变换的奇偶虚实特性

    万次阅读 多人点赞 2016-04-25 21:45:14
    本文内容来源于他人的PPT,经本人整理而成,算是对数字信号处理的复习吧。而实偶函数的傅里叶变换仍然是一个实偶函数的性质正是DCT的基础。 
  • 离散傅里叶变换(DFT)(一)

    万次阅读 2020-10-17 19:36:12
    离散傅里叶变换(DFT) 傅里叶变换的优点就是能够将信号从时序空间转换到频域,从频率的角度去分析信号,能够容易发现一些时域内不容易发现的频率。这句话在N多博客里都有类似的描述。那么为什么呢?怎么转换到的...
  • 1/t的傅里叶变换证明

    万次阅读 2016-01-11 20:58:05
    -i*pi*sgn(ω); 看到很多人只给了结论,这里简单说一下证明思路: 其中有一些符号变换注意一下就可以了
  • 离散时间傅里叶变换 DTFT:Discrete Time Fourier Transform 一、定义 序列x[n]的离散时间傅里叶变换(DTFT)X(e^jω)定义为: 由定义易知DTFT是以2π为周期的周期函数。 而X(e^jω)的傅里叶变换(IDTFT...
1 2 3 4 5 ... 20
收藏数 27,685
精华内容 11,074
关键字:

傅立叶变换