精华内容
参与话题
问答
  • 深度信念网络

    2018-03-07 14:14:44
    1.初识深度信念网络 深度信念网络是一个概率生成模型,与传统的判别模型的神经网络相对,生成模型是建立一个观察数据和标签之间的联合分布,对P(Observation|Label)和 P(Label|Observation)都做了评估,而判别模型...

    1.初识深度信念网络

      深度信念网络是一个概率生成模型,与传统的判别模型的神经网络相对,生成模型是建立一个观察数据和标签之间的联合分布,对P(Observation|Label)和 P(Label|Observation)都做了评估,而判别模型仅仅而已评估了后者,也就是P(Label|Observation)。

      DBNs由多个限制玻尔兹曼机(Restricted Boltzmann Machines)层组成,一个典型的网络结构如图1所示。这些网络被“限制”为一个可视层和一个隐层,层间存在连接,但层内的单元间不存在连接。隐层单元被训练去捕捉在可视层表现出来的高阶数据的相关性。

     
    图1

    2.需要面对的问题

    对于在深度神经网络应用传统的BP算法的时候,DBN遇到了以下问题:

    (1)需要为训练提供一个有标签的样本集;

    (2)学习过程较慢;

    (3)不适当的参数选择会导致学习收敛于局部最优解。

    Solution:

      首先,先不考虑最顶构成一个联想记忆(associative memory)的两层,一个DBN的连接是通过自顶向下的生成权值来指导确定的,RBMs就像一个建筑块一样,相比传统和深度分层的sigmoid信念网络,它能易于连接权值的学习。

      最开始的时候,通过一个非监督贪婪逐层方法去预训练获得生成模型的权值,非监督贪婪逐层方法被Hinton证明是有效的,并被其称为对比分歧(contrastive divergence)。

     
    图2

       在这个训练阶段,在可视层会产生一个向量v,通过它将值传递到隐层。反过来,可视层的输入会被随机的选择,以尝试去重构原始的输入信号。最后,这些新的可视的神经元激活单元将前向传递重构隐层激活单元,获得h(在训练过程中,首先将可视向量值映射给隐单元;然后可视单元由隐层单元重建;这些新可视单元再次映射给隐单元,这样就获取新的隐单元。执行这种反复步骤叫做吉布斯采样)。这些后退和前进的步骤就是我们熟悉的Gibbs采样,而隐层激活单元和可视层输入之间的相关性差别就作为权值更新的主要依据。

      训练时间会显著的减少,因为只需要单个步骤就可以接近最大似然学习。增加进网络的每一层都会改进训练数据的对数概率,我们可以理解为越来越接近能量的真实表达。这个有意义的拓展,和无标签数据的使用,是任何一个深度学习应用的决定性的因素。

      在最高两层,权值被连接到一起,这样更低层的输出将会提供一个参考的线索或者关联给顶层,这样顶层就会将其联系到它的记忆内容。而我们最关心的,最后想得到的就是判别性能,例如分类任务里面。

      在预训练后,DBN可以通过利用带标签数据用BP算法去对判别性能做调整。在这里,一个标签集将被附加到顶层(推广联想记忆),通过一个自下向上的,学习到的识别权值获得一个网络的分类面。这个性能会比单纯的BP算法训练的网络好。这可以很直观的解释,DBNs的BP算法只需要对权值参数空间进行一个局部的搜索,这相比前向神经网络来说,训练是要快的,而且收敛的时间也少。

    3.详细训练算法流程

     
    图3

      在训练时, Hinton采用了逐层无监督的方法来学习参数。如图3所示,首先把数据向量x和第一层隐藏层作为一个RBM, 训练出这个RBM的参数(连接x和h1的权重, x和h1各个节点的偏置等等), 然后固定这个RBM的参数, 把h1视作可见向量, 把h2视作隐藏向量, 训练第二个RBM, 得到其参数, 然后固定这些参数, 训练h2和h3构成的RBM, 具体的训练算法如下:

      CD的训练过程中用到了Gibbs 采样,即在训练过程中,首先将可视向量值映射给隐单元,然后用隐层单元重建可视向量,接着再将可视向量值映射给隐单元……反复执行这种步骤。

      k-Gibbs的过程如下:

      其中,P是model distribution,是training set distribution

      DBN训练算法:

      DBN运用CD算法逐层进行训练,得到每一层的参数Wi和ci用于初始化DBN,之后再用监督学习算法对参数进行微调。

    4.经典网络结构

      经典的DBN网络结构是由若干层 RBM 和一层 BP 组成的一种深层神经网络, 结构如下图4所示.

     
    图4

      DBN 在训练模型的过程中主要分为两步:

      第 1 步:分别单独无监督地训练每一层 RBM 网络,确保特征向量映射到不同特征空间时,都尽可能多地保留特征信息;

      第 2 步:在 DBN 的最后一层设置 BP 网络,接收 RBM 的输出特征向量作为它的输入特征向量,有监督地训练实体关系分类器.而且每一层 RBM 网络只能确保自身层内的 权值对该层特征向量映射达到最优,并不是对整个 DBN 的特征向量映射达到最优,所以反向传播网络还将错误信息自顶向下传播至每一层 RBM,微调整个 DBN 网络.RBM 网络训练模型的过程可以看作对一个深层 BP 网络权值参数的初始化,使DBN 克服了 BP 网络因随机初始化权值参数而容易陷入局部最优和训练时间长的缺点.

      上述训练模型中第一步在深度学习的术语叫做预训练,第二步叫做微调。最上面有监督学习的那一层,根据具体的应用领域可以换成任何分类器模型,而不必是BP网络。

    5.拓展

      DBN的灵活性使得它的拓展比较容易。一个拓展就是卷积DBNs(Convolutional Deep Belief Networks(CDBN))。DBN并没有考虑到图像的2维结构信息,因为输入是简单的从一个图像矩阵一维向量化的。而CDBN就是考虑到了这个问题,它利用邻域像素的空域关系,通过一个称为卷积RBM的模型区达到生成模型的变换不变性,而且可以容易得变换到高维图像。DBN并没有明确地处理对观察变量的时间联系的学习上,虽然目前已经有这方面的研究,例如堆叠时间RBMs,以此为推广,有序列学习的dubbed temporal convolutionmachines,这种序列学习的应用,给语音信号处理问题带来了一个让人激动的未来研究方向。

      目前,和DBN有关的研究包括堆叠自动编码器,它是通过用堆叠自动编码器来替换传统DBN里面的RBM。这就使得可以通过同样的规则来训练产生深度多层神经网络架构,但它缺少层的参数化的严格要求。与DBN不同,自动编码器使用判别模型,这样这个结构就很难采样输入采样空间,这就使得网络更难捕捉它的内部表达。但是,降噪自动编码器却能很好的避免这个问题,并且比传统的DBN更优。它通过在训练过程添加随机的污染并堆叠产生场泛化性能。训练单一的降噪自动编码器的过程和RBM训练生成模型的过程一样。

    展开全文
  • 深度信念网络(DBN)

    万次阅读 多人点赞 2016-12-13 12:47:20
    1.初识深度信念网络 深度信念网络是一个概率生成模型,与传统的判别模型的神经网络相对,生成模型是建立一个观察数据和标签之间的联合分布,对P(Observation|Label)和 P(Label|Observation)都做了评估,而判别模型...

    1.初识深度信念网络

      深度信念网络是一个概率生成模型,与传统的判别模型的神经网络相对,生成模型是建立一个观察数据和标签之间的联合分布,对P(Observation|Label)和 P(Label|Observation)都做了评估,而判别模型仅仅而已评估了后者,也就是P(Label|Observation)。

      DBNs由多个限制玻尔兹曼机(Restricted Boltzmann Machines)层组成,一个典型的网络结构如图1所示。这些网络被“限制”为一个可视层和一个隐层,层间存在连接,但层内的单元间不存在连接。隐层单元被训练去捕捉在可视层表现出来的高阶数据的相关性。


    图1

    2.需要面对的问题

    对于在深度神经网络应用传统的BP算法的时候,DBN遇到了以下问题:

    (1)需要为训练提供一个有标签的样本集;

    (2)学习过程较慢;

    (3)不适当的参数选择会导致学习收敛于局部最优解。

    Solution:

      首先,先不考虑最顶构成一个联想记忆(associative memory)的两层,一个DBN的连接是通过自顶向下的生成权值来指导确定的,RBMs就像一个建筑块一样,相比传统和深度分层的sigmoid信念网络,它能易于连接权值的学习。

      最开始的时候,通过一个非监督贪婪逐层方法去预训练获得生成模型的权值,非监督贪婪逐层方法被Hinton证明是有效的,并被其称为对比分歧(contrastive divergence)。


    图2

       在这个训练阶段,在可视层会产生一个向量v,通过它将值传递到隐层。反过来,可视层的输入会被随机的选择,以尝试去重构原始的输入信号。最后,这些新的可视的神经元激活单元将前向传递重构隐层激活单元,获得h(在训练过程中,首先将可视向量值映射给隐单元;然后可视单元由隐层单元重建;这些新可视单元再次映射给隐单元,这样就获取新的隐单元。执行这种反复步骤叫做吉布斯采样)。这些后退和前进的步骤就是我们熟悉的Gibbs采样,而隐层激活单元和可视层输入之间的相关性差别就作为权值更新的主要依据。

      训练时间会显著的减少,因为只需要单个步骤就可以接近最大似然学习。增加进网络的每一层都会改进训练数据的对数概率,我们可以理解为越来越接近能量的真实表达。这个有意义的拓展,和无标签数据的使用,是任何一个深度学习应用的决定性的因素。

      在最高两层,权值被连接到一起,这样更低层的输出将会提供一个参考的线索或者关联给顶层,这样顶层就会将其联系到它的记忆内容。而我们最关心的,最后想得到的就是判别性能,例如分类任务里面。

      在预训练后,DBN可以通过利用带标签数据用BP算法去对判别性能做调整。在这里,一个标签集将被附加到顶层(推广联想记忆),通过一个自下向上的,学习到的识别权值获得一个网络的分类面。这个性能会比单纯的BP算法训练的网络好。这可以很直观的解释,DBNs的BP算法只需要对权值参数空间进行一个局部的搜索,这相比前向神经网络来说,训练是要快的,而且收敛的时间也少。

    3.详细训练算法流程


    图3

      在训练时, Hinton采用了逐层无监督的方法来学习参数。如图3所示,首先把数据向量x和第一层隐藏层作为一个RBM, 训练出这个RBM的参数(连接x和h1的权重, x和h1各个节点的偏置等等), 然后固定这个RBM的参数, 把h1视作可见向量, 把h2视作隐藏向量, 训练第二个RBM, 得到其参数, 然后固定这些参数, 训练h2和h3构成的RBM, 具体的训练算法如下:

      CD的训练过程中用到了Gibbs 采样,即在训练过程中,首先将可视向量值映射给隐单元,然后用隐层单元重建可视向量,接着再将可视向量值映射给隐单元……反复执行这种步骤。

      k-Gibbs的过程如下:

      其中,P是model distribution,是training set distribution

      DBN训练算法:

      DBN运用CD算法逐层进行训练,得到每一层的参数Wi和ci用于初始化DBN,之后再用监督学习算法对参数进行微调。

    4.经典网络结构

      经典的DBN网络结构是由若干层 RBM 和一层 BP 组成的一种深层神经网络, 结构如下图4所示.


    图4

      DBN 在训练模型的过程中主要分为两步:

      第 1 步:分别单独无监督地训练每一层 RBM 网络,确保特征向量映射到不同特征空间时,都尽可能多地保留特征信息;

      第 2 步:在 DBN 的最后一层设置 BP 网络,接收 RBM 的输出特征向量作为它的输入特征向量,有监督地训练实体关系分类器.而且每一层 RBM 网络只能确保自身层内的 权值对该层特征向量映射达到最优,并不是对整个 DBN 的特征向量映射达到最优,所以反向传播网络还将错误信息自顶向下传播至每一层 RBM,微调整个 DBN 网络.RBM 网络训练模型的过程可以看作对一个深层 BP 网络权值参数的初始化,使DBN 克服了 BP 网络因随机初始化权值参数而容易陷入局部最优和训练时间长的缺点.

      上述训练模型中第一步在深度学习的术语叫做预训练,第二步叫做微调。最上面有监督学习的那一层,根据具体的应用领域可以换成任何分类器模型,而不必是BP网络。

    5.拓展

      DBN的灵活性使得它的拓展比较容易。一个拓展就是卷积DBNs(Convolutional Deep Belief Networks(CDBN))。DBN并没有考虑到图像的2维结构信息,因为输入是简单的从一个图像矩阵一维向量化的。而CDBN就是考虑到了这个问题,它利用邻域像素的空域关系,通过一个称为卷积RBM的模型区达到生成模型的变换不变性,而且可以容易得变换到高维图像。DBN并没有明确地处理对观察变量的时间联系的学习上,虽然目前已经有这方面的研究,例如堆叠时间RBMs,以此为推广,有序列学习的dubbed temporal convolutionmachines,这种序列学习的应用,给语音信号处理问题带来了一个让人激动的未来研究方向。

      目前,和DBN有关的研究包括堆叠自动编码器,它是通过用堆叠自动编码器来替换传统DBN里面的RBM。这就使得可以通过同样的规则来训练产生深度多层神经网络架构,但它缺少层的参数化的严格要求。与DBN不同,自动编码器使用判别模型,这样这个结构就很难采样输入采样空间,这就使得网络更难捕捉它的内部表达。但是,降噪自动编码器却能很好的避免这个问题,并且比传统的DBN更优。它通过在训练过程添加随机的污染并堆叠产生场泛化性能。训练单一的降噪自动编码器的过程和RBM训练生成模型的过程一样。

    展开全文
  • DBN深度信念网络介绍

    千次阅读 2019-06-25 17:10:57
    使用层叠波尔兹曼机组成深度神经网络的方法,在深度学习里被称作深度信念网络DBN,这是目前非常流行的方法。下面的术语,将把自联想网络称作自编码网络autoencoder.。通过层叠自编码网络的深度网络在深度学习里另外...

     DBN神经网络模型

    使用BP算法单独训练每一层的时候,我们发现,必须丢掉网络的第三层,才能级联自联想神经网络。然而,有一种更好的神经网络模型,这就是受限玻尔兹曼机。使用层叠波尔兹曼机组成深度神经网络的方法,在深度学习里被称作深度信念网络DBN,这是目前非常流行的方法。下面的术语,将把自联想网络称作自编码网络autoencoder.。通过层叠自编码网络的深度网络在深度学习里另外一个属于叫栈式自编码网络。

    经典的DBN网络结构 是由若干层 RBM 和一层 BP 组成的一种深层神经网络, 结构如下图所示:

                                                           

    DBN 在训练模型的过程中主要分为两步:

    第 1 步:分别单独无监督地训练每一层 RBM 网络,确保特征向量映射到不同特征空间时,都尽可能多地保留特征信息

    第 2 步:在 DBN 的最后一层设置 BP 网络,接收 RBM 的输出特征向量作为它的输入特征向量,有监督地训练实体关系分类器.而且每一层 RBM 网络只能确保自身层内的 权值对该层特征向量映射达到最优,并不是对整个 DBN 的特征向量映射达到最优,所以反向传播网络还将错误信息自顶向下传播至每一层 RBM,微调整个 DBN 网络.RBM 网络训练模型的过程可以看作对一个深层 BP 网络权值参数的初始化,使DBN 克服了 BP 网络因随机初始化权值参数而容易陷入局部最优和训练时间长的缺点

    上述训练模型中第一步在深度学习的术语叫做预训练,第二步叫做微调。最上面有监督学习的那一层,根据具体的应用领域可以换成任何分类器模型,而不必是BP网络。

    展开全文
  • 深度信念网络(Deep Belief Network)

    千次阅读 2018-09-26 15:42:19
    深度信念网络 (Deep Belief Network, DBN) 由 Geoffrey Hinton 在 2006 年提出。它是一种生成模型,通过训练其神经元间的权重,我们可以让整个神经网络按照最大概率来生成训练数据。我们不仅可以使用 DBN 识别特征、...

    深度信念网络 (Deep Belief Network, DBN) 由 Geoffrey Hinton 在 2006 年提出。它是一种生成模型,通过训练其神经元间的权重,我们可以让整个神经网络按照最大概率来生成训练数据。我们不仅可以使用 DBN 识别特征、分类数据,还可以用它来生成数据。

    DBN 由多层神经元构成,这些神经元又分为显性神经元隐性神经元(以下简称显元和隐元)。显元用于接受输入,隐元用于提取特征。因此隐元也有个别名,叫特征检测器 (feature detectors)。最顶上的两层间的连接是无向的,组成联合内存 (associative memory)。较低的其他层之间有连接上下的有向连接。最底层代表了数据向量 (data vectors),每一个神经元代表数据向量的一维。 

    DBN 的组成元件是受限玻尔兹曼机 (Restricted Boltzmann Machines, RBM)。训练 DBN 的过程是一层一层地进行的。在每一层中,用数据向量来推断隐层,再把这一隐层当作下一层 (高一层) 的数据向量。

    受限玻尔兹曼机 

    如前所述,RBM 是 DBN 的组成元件。事实上,每一个 RBM 都可以单独用作聚类器。 

    RBM 只有两层神经元,一层叫做显层 (visible layer),由显元 (visible units) 组成,用于输入训练数据。另一层叫做隐层 (Hidden layer),相应地,由隐元 (hidden units) 组成,用作特征检测器 (feature detectors)。 

    深度信念网络 

    前文我们已经介绍了 RBM 的基本结构和其训练、使用过程,接下来我们介绍DBN 的相关内容。

    DBN 是由多层 RBM 组成的一个神经网络,它既可以被看作一个生成模型,也可以当作判别模型,其训练过程是:使用非监督贪婪逐层方法去预训练获得权值。 

    训练过程: 

    1. 首先充分训练第一个 RBM; 

    2. 固定第一个 RBM 的权重和偏移量,然后使用其隐性神经元的状态,作为第二个 RBM 的输入向量; 

    3. 充分训练第二个 RBM 后,将第二个 RBM 堆叠在第一个 RBM 的上方; 

    4. 重复以上三个步骤任意多次; 

    5. 如果训练集中的数据有标签,那么在顶层的 RBM 训练时,这个 RBM 的显层中除了显性神经元,还需要有代表分类标签的神经元,一起进行训练: 

    a) 假设顶层 RBM 的显层有 500 个显性神经元,训练数据的分类一共分成了 10 类; 

    b) 那么顶层 RBM 的显层有 510 个显性神经元,对每一训练训练数据,相应的标签神经元被打开设为 1,而其他的则被关闭设为 0。 

    6. DBN 被训练好后如下图: (示意) 

    调优过程 (Fine-Tuning) : 

    生成模型使用 Contrastive Wake-Sleep 算法进行调优,其算法过程是: 

    1. 除了顶层 RBM,其他层 RBM 的权重被分成向上的认知权重和向下的生成权重; 

    2. Wake 阶段:认知过程,通过外界的特征和向上的权重 (认知权重) 产生每一层的抽象表示 (结点状态) ,并且使用梯度下降修改层间的下行权重 (生成权重) 。也就是“如果现实跟我想象的不一样,改变我的权重使得我想象的东西就是这样的”。 

    3. Sleep 阶段:生成过程,通过顶层表示 (醒时学得的概念) 和向下权重,生成底层的状态,同时修改层间向上的权重。也就是“如果梦中的景象不是我脑中的相应概念,改变我的认知权重使得这种景象在我看来就是这个概念”。 

     

    使用过程 :

    1. 使用随机隐性神经元状态值,在顶层 RBM 中进行足够多次的吉布斯抽样; 

    2. 向下传播,得到每层的状态。

    Deep Belief Networks深信度网络

            DBNs是一个概率生成模型,与传统的判别模型的神经网络相对,生成模型是建立一个观察数据和标签之间的联合分布,对P(Observation|Label)和 P(Label|Observation)都做了评估,而判别模型仅仅而已评估了后者,也就是P(Label|Observation)。对于在深度神经网络应用传统的BP算法的时候,DBNs遇到了以下问题:

    (1)需要为训练提供一个有标签的样本集;

    (2)学习过程较慢;

    (3)不适当的参数选择会导致学习收敛于局部最优解。

     

    经典的DBN网络结构是由若干层 RBM 和一层 BP 组成的一种深层神经网络, 

     

    DBN 在训练模型的过程中主要分为两步:

      第 1 步:分别单独无监督地训练每一层 RBM 网络,确保特征向量映射到不同特征空间时,都尽可能多地保留特征信息;

      第 2 步:在 DBN 的最后一层设置 BP 网络,接收 RBM 的输出特征向量作为它的输入特征向量,有监督地训练实体关系分类器.而且每一层 RBM 网络只能确保自身层内的 权值对该层特征向量映射达到最优,并不是对整个 DBN 的特征向量映射达到最优,所以反向传播网络还将错误信息自顶向下传播至每一层 RBM,微调整个 DBN 网络.RBM 网络训练模型的过程可以看作对一个深层 BP 网络权值参数的初始化,使DBN 克服了 BP 网络因随机初始化权值参数而容易陷入局部最优和训练时间长的缺点.

      上述训练模型中第一步在深度学习的术语叫做预训练,第二步叫做微调。最上面有监督学习的那一层,根据具体的应用领域可以换成任何分类器模型,而不必是BP网络。

    --------------------- 本文来自 雪伦_ 的CSDN 博客 ,全文地址请点击:https://blog.csdn.net/a819825294/article/details/53608141?utm_source=copy

    --------------------- 本文来自 losteng 的CSDN 博客 ,全文地址请点击:https://blog.csdn.net/losteng/article/details/51001247?utm_source=copy

     

    https://blog.csdn.net/a819825294/article/details/53608141

    展开全文
  • 深度信念网络DBN

    2016-03-29 20:45:33
    深度信念网络实现手写识别,注意与DBM区别开来
  • 本篇非常简要地介绍了深度信念网络的基本概念。文章先简要介绍了深度信念网络(包括其应用实例)。接着分别讲述了:(1) 其基本组成结构——受限玻尔兹曼机的的基本情况,以及,(2) 这个基本结构如何组成深度信念网络...
  • 浅谈深度信念网络(Deep Belief Network) 一、受限玻尔兹曼机(Restricted Boltzmann Machines ) RBM简介 如图所示,一个受限玻尔兹曼机由两层网络组成,分别为可见层(Visible layer)和隐藏层(Hidden layer)...
  • 快速理解深度信念网络

    千次阅读 2018-10-10 11:02:59
    深度信念网络 (Deep Belief Network, DBN) 由 Geoffrey Hinton 在 2006 年提出。它是一种生成模型,通过训练其神经元间的权重,我们可以让整个神经网络按照最大概率来生成训练数据。我们不仅可以使用 DBN 识别特征、...
  • DBN深度信念网络详解

    千次阅读 2018-09-11 15:44:24
    1. 自联想神经网络深度网络  自联想神经网络是很古老的神经网络模型,简单的说,它就是三层BP网络,只不过它的输出等于输入。很多时候我们并不要求输出精确的等于输入,而是允许一定的误差存在。所以,我们说,...
  • 机器学习——DBN深度信念网络详解

    万次阅读 2016-08-11 16:48:02
    使用BP算法单独训练每一层的时候,我们发现,必须丢掉网络的第三层,才能级联自联想神经网络。...使用层叠波尔兹曼机组成深度神经网络的方法,在深度学习里被称作深度信念网络DBN,这是目前非常流行的方法。
  • Deep Belief Network深度信念网络DBN的Matlab代码),可以运行test_example_DBN.m对手写数字进行训练学习
  • 大话深度信念网络DBN

    千次阅读 2018-03-01 01:57:07
    然而,传统的神经网络仍存在一些局限,在上个世纪90年代陷入衰落,主要有以下几个原因:1、传统的神经网络一般都是单隐层,最多两个隐层,因为一旦神经元个数太多、隐层太多,模型的参数数量迅速增...
  • 深度信念网络结构,经典结构,直接上图: DBN由多个RBM堆叠而成,训练过程由预训练和微调构成 深度信念网络训练步骤: (1)预训练:分别单独无监督的训练每一层RBM网络,确保特征向量映射到不同特征空间是,都...
  • 深度信念网络DBN的一个matlab实例

    万次阅读 多人点赞 2014-09-03 10:36:51
    深度网络 指是具有深层(多层)网络结构的神经网络。  深层网络由于神经元多,参数多,拟合表现能力强,有表现欲解决复杂问题的能力。  但是深度网络存在很多局部最优解,深度网络的训练容易停留在局部最优上,...
  • 深度神经网络  12.《受限波尔兹曼机简介》 (1)主要内容:主要介绍受限玻尔兹曼机(RBM)的基本模型、学习算法、参数设置、评估方法、变形算法等,探讨了RBM在未来值得研究的方向。 (2)RBM的基本模型和学习算法...
  • TensorFlow DBN深度信念网络搭建2

    千次阅读 2018-01-05 15:43:04
    1、改进1:层数改变 通过修改rbm的层数,可以看到重构误差是变小了,但是,我发现只是修改rbm,并没有影响到最终的accuracy,而且更加诡异的是,这个accuracy,只从我修改了数据集以来,无论怎么修改,都是同一个数...
  • 深度信念网络在处理维数比较多的数据时,可以起到压缩数据维度的作用。其经典结构为: ![在这里插入图片描述](https://img-blog.csdnimg.cn/20181110120423330.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5...
  • DBN深度信念网络算法

    千次阅读 2016-11-05 20:25:29
    讲了讲历史,RBM对DBN的模拟,从而带来了deep learning的革命。 1 受限波尔兹曼机RBM的基本模型 介绍0-1状态的BM和RBM,同一类单元的条件独立性,激活概率等。 2. 基于对比散度的RBM快速学习算法 RBM的...
  • 一、DBNs是一个概率生成模型,与传统的判别模型的神经网络相对,用于建立一个观察数据和标签之间的联合分布。  以下左图为sigmoid belief network,右图为DBN,两者的区别就在于sigmoid belief network的最上面...
  • DeepLearnToolbox 源码 下载地址 https://github.com/rasmusbergpalm/DeepLearnToolbox 解压后可得到
  • 深度信念神经网络DBN最通俗易懂的教程

    万次阅读 多人点赞 2017-08-06 21:45:22
    深度信念网络,它的英文名叫作Deep Belief Network,先解释一下这个名词: Deep意思是深度,大家应该有听过深度学习吧,深度学习是一个叫做Hinton的大学霸发明的,这个大学霸,大神很牛,他的官网是:...
  • 【theano-windows】学习笔记十六——深度信念网络DBN

    千次阅读 热门讨论 2017-11-27 23:26:34
    前言前面学习了受限玻尔兹曼机(RBM)的理论和搭建方法, 如果稍微了解过的人, 肯定知道利用RBM可以堆叠构成深度信念网络(deep belief network, DBN)和深度玻尔兹曼机(deep Boltzmann machine), 这里就先学习一下DBN....
  • 按底层网络的不同,DBN可以分为MLP(多层感知器)信念网络和RBM(受限玻尔兹曼机)信念网络。 由于本人学识有限,就先暂时只说一下RBM信念网络。所谓RBM信念网络就是底层网络采用RBM,当然底层网络的层数是自己可选...
  • 深度信念网络DBN,Deep Belief Nets,神经网络的一种。既可以用于无监督学习,类似于一个自编码机;也可以用于监督学习,作为分类器来使用。作为神经网络,神经元自然是其必不可少的组成部分。DBN由若干层神经元...
  • 第二十章 深度生成模型 Deep Generative Models 中文 英文 2020-4-17 深度学习笔记20 - 深度生成... 尽管现在与其他无监督或生成学习算法相比,深度信念网络大多已经失去了青睐并很少使用,但它们在深度学习历史中的...
  • 深度信念网络DBN)和堆叠自编码(SAE)、深度自编码器(DAE)的区别 深度信念网络DBN)和堆叠自编码(SAE)、深度自编码器(DAE)具有类似的思想,因此很容易混淆。 受限制玻尔兹曼机(Restricted Bolzmann ...

空空如也

1 2 3 4 5 ... 20
收藏数 13,005
精华内容 5,202
关键字:

深度信念网络