图像处理牛人博客

2015-07-09 11:07:20 weiliangdemo 阅读数 1234

每次搜资料都能搜到很多牛人的东西,然后搜着搜着,就陷入了深深的膜拜之中。

因为牛人很多,有价值的东西很多,所以要学习的东西有很多很多。搜集的这里面,不仅仅有大牛,还有比的一些可能不能称之为大牛的人,但是共同点就是他们身上都有值得我们学习的地方。

不断持续更新中……

于是将每次搜集到的牛人博客网址做个汇总,每次迷失方向的时候都去看看,并且想把里面的好的东西都学习一下。。。。为什么每次都觉得要学习的东西有好多好多好多好多啊!!!!!!!!!!!!!!!!!!!!!!!


浅墨_毛星云

http://blog.csdn.net/poem_qianmo?viewmode=contents

opencv3书籍作者  

里面的opencv例子都看过了一遍,关于c++的都是游戏方面的居多,每次看还是会受益匪浅。

非opencv和c++的那些文章,也特别好。



翡青

c++,数据结构,程序人生

http://blog.csdn.net/zjf280441589/article/details/26058431



小村长

里面有一些opencv和图像处理书籍,还有《机器学习实战笔记》的!还没有开始学,准备都看看。

http://blog.csdn.net/lu597203933/article/category/1740929


xw20084898

opencv C++ 图像处理方面的书籍

http://blog.csdn.net/xw20084898/article/category/1734751


yang_xian521

opencv和图像处理方面书籍

http://blog.csdn.net/yang_xian521/article/category/910716


zouxy09

opencv ,机器学习,图像处理,深度学习,C++,神经网络

http://blog.csdn.net/zouxy09/article/category/1218762


hitwengqi

opencv,C++,图像处理

http://blog.csdn.net/hitwengqi/article/category/1280327


shiter

c++/图像处理,opencv、机器学习,STL……

http://blog.csdn.net/wangyaninglm/article/category/2897381


羽凌寒

opencv,图像处理,机器学习

http://blog.csdn.net/u011630458/article/category/2857699


小洲实验室

opencv,图像处理,机器学习

http://blog.csdn.net/chenjiazhou12/article/category/1917865


dpkirin

http://blog.csdn.net/lingfengtengfei/article/details/12857219

c++,算法,面试,



opencv的牛人博客

http://blog.csdn.net/xiaojun111111/article/details/43560841


Augusdi

opencv,图像处理,机器学习,

http://blog.csdn.net/Augusdi/article/details/20238157


松子茶

http://blog.csdn.net/songzitea/article/details/13335375



byxdaz

opencv,C++,图像处理

http://blog.csdn.net/byxdaz/article/category/716541


masikkk

计算机视觉,opencv,c++

http://blog.csdn.net/masibuaa/article/category/701625


Belial_2010

opencv, 计算机视觉,C++

http://blog.csdn.net/kezunhai/article/details/11620357


Yao-Blog

关于模式识别、机器学习、推荐系统、图像特征、数值计算、目标跟踪等方面个人主页及博客

http://blog.csdn.net/pb09013037/article/details/45618657



thefutureisour

《C++ primer 》《数据结构》《effictive C++》

http://blog.csdn.net/thefutureisour/article/category/1126906


zb872676223

c++/opencv/面试~~

http://blog.csdn.net/zb872676223/article/category/2436045


努力的草根

C++/opencv

http://blog.csdn.net/qq61394323/article/category/1424861


大唐游子

C++ /opencv/图像处理

http://blog.csdn.net/lichengyu/article/category/605044


周旭光

http://blog.csdn.net/zhouxuguang236/article/category/2843027

http://blog.csdn.net/zhouxuguang236/article/details/7724931


merlin_q

C++和opencv学习

http://blog.csdn.net/merlin_q/article/category/869660





lyc_daniel

C/C++编程居多

http://blog.csdn.net/lyc_daniel/article/category/1207417


2016-01-10 16:21:28 liu_xiao_cheng 阅读数 0

各种教学视频或文档资料 +QQ:635992897

做图像处理或计算机视觉研究和开发,常会在线搜索一些资源,日积月累便挖出了一堆比较牛的博主,特别说明:做这个方向的人很多,牛人也很多,但是这些资源大部分主要突出实用主义,相关博主也并不一定是这个领域中的泰山北斗(第一波中大部分都不是学校里的教授),但是他们的空间里真的有料,可以学到很多。不断更新中,但大浪淘沙,我只保留最值得推荐的。

第一波是一些资源丰富的博客,有算法介绍,也有代码实现:


1、毕业于荷兰特温特大学的Dirk-Jan Kroon博士,在Mathworks的FileExchange上的链接,曾经到访过他原来读书时的主页,当时有句话对他的评价是,他非常喜欢计算机编程,这个真不假,下面这个链接里有他用Matlab写成的近百个程序源码,质量非常高,而且涉猎广泛。

http://www.mathworks.com/matlabcentral/fileexchange/authors/29180


2、这是研究 image matting(中文叫抠图——这名字真难听,不知道是谁始作俑者)必去的一个网站,里面有大量关于这个主题内容的介绍,包括最新的成果,评测和对比。
http://www.alphamatting.com/


3、laviewpbt的专栏,他有两个基本同步的博客,一个在CSDN,一个在博客园,自称是“一心无二用,本人只专注于基础图像算法的实现与优化,如图像增强、滤镜、分割、解码编码等,无心恋及图像识别。 ”。博客中很少有提供完整的源代码,但是对理论算法的介绍非常到位,我也同意博主的看法,如果真的对算法理解到位了,写代码处理并不是难事。

http://blog.csdn.net/laviewpbt?viewmode=contents
http://www.cnblogs.com/Imageshop/


4、Rachel Zhang的专栏(浙大计算机女硕士),CSDN博客排名百名以内的名博,里面有大量图像处理和计算机视觉的资料,有算法讲解,也有很多代码实现(OpenCV居多,少量Matlab)
http://blog.csdn.net/abcjennifer/article/category/1173803/2


5、小魏的修行路(又一个女学霸,博主应该是北大女硕士),博客都是图文并茂的,很详细很用心,代码实现上也是用OpenCV的居多。
http://blog.csdn.net/xiaowei_cqu/


6、非常棒的网站,超多资源。IPOL is a research journal of image processing and image analysis. Each article contains a text on an algorithm and its source code。讨论了超过20个大的Topics,具体每个Topics里面还有许多具体的实现分支,配有可供研究的源代码。研究图像处理不可不看的网站。

http://www.ipol.im/

 

 

 

第二波是我所关注的一些研究方向上比较前沿的学者主页:

 

1、KAZE特征检测作者的主页,里面有文章,也有代码实现。Pablo F. Alcantarilla博士人非常Nice,我给他写Email讨论问题,基本上8个小时之内就能收到回复,也非常感谢他提供的一些参考资料。

http://www.robesafe.com/personal/pablo.alcantarilla/kaze.html

 

2、在去噪领域中当前最成功的算法莫过于BM3D系列(当然还有BM4D等等),下面这个是项目的主页,非常值得推荐,对于研究降噪问题的同学实在应该仔细看看。

http://www.cs.tut.fi/~foi/GCF-BM3D/

 

3、布朗大学Douglas Lanman博士的主页,很多有意思的成果,部分有代码资源下载
http://mesh.brown.edu/dlanman/courses.html

 

4、两位以色列学者(犹太人)的主页。经验中,大部分Paper的作者会在自己的网站上贴出文章,但很少附有代码,如果你自己去写个代码,很多都无法达到作者paper中给出的效果,吹水的可能性极大。但是在研究Close-form soluting 的图像matting时,看到了以色列女学者Anat Levin的主页,作者就提供有matlab代码,很值得推荐。
http://www.wisdom.weizmann.ac.il/~levina/
另外一个以色列学者(以色列理工的Guy Gilboa教授)的主页(有关于TV去噪的代码)。
http://visl.technion.ac.il/~gilboa/PDE-filt/tv_denoising.html

2019-03-10 15:32:50 cbd_2012 阅读数 0
2012-12-04 14:21:43 forever1dreamsxx 阅读数 0

转帖地址:http://www.guzili.com/?p=42636

 

转贴:看到的一个来源是http://blog.sina.com.cn/s/blog_631a4cc40101d00t.html,不确定是否是最原始版本。

牛人主页(主页有很多论文代码)

Serge Belongie at UC San Diego
Ce Liu at Microsoft Research New England
Vittorio Ferrari at Univ.of Edinburgh
Kristen Grauman at UT Austin
Devi Parikh at  TTI-Chicago (Marr Prize at ICCV2011)
John Wright at Columbia Univ.
Piotr Dollar at CalTech
Boris Babenko at UC San Diego
David Ross at Google/Youtube
David Donoho at Stanford Univ.
大神们:
Roberto Cipolla at Cambridge
David Lowe at Univ. of British Columbia
Mubarak Shah at Univ. of Central Florida
Yi Ma at MSRA
Tinne Tuytelaars at K.U. Leuven
Trevor Darrell at U.C. Berkeley
Michael J. Black at Brown Univ.



重要研究组:
Computer Vision Group at UC Berkeley
Robotics Research Group at Univ. of Oxford
LEAR at INRIA
Computer Vision Lab at ETH Zurich
Computer Vision Lab at Seoul National Univ.
Computer Vision Lab at UC San Diego
Computer Vision Lab at UC Santa Cruz
Computer Vision Lab at Univ. of Southern California
Computer Vision Lab at Univ. of Central Florida
Computer Vision Lab at Columbia Univ.
Motion and Shape Computing Group at George Mason Univ.
Computer Vision Lab. at Vienna Univ. of Tech.
Visual Perception Lab at Purdue Univ.
潜力牛人:
Juergen Gall at ETH Zurich
Matt Flagg at Georgia Tech.
Mathieu Salzmann at TTI-Chicago
Gerg Shakhnarovich at TTI-Chicago
Stefan Roth at TU Darmstadt
Peter Kontschieder at Graz Univ. of Tech.
Dominik Alexander Klein at Univ. of Bonn
Yinan Yu at CASIA (PASCAL VOC 2010 Detection Challenge Winner)
Zdenek Kalal at FPFL
Julien Pilet at FPFL
(1)googleResearch; http://research.google.com/index.html
(2)MIT博士,汤晓欧学生林达华; http://people.csail.mit.edu/dhlin/index.html
(3)MIT博士后Douglas Lanman; http://web.media.mit.edu/~dlanman/
(4)opencv中文网站; http://www.opencv.org.cn/index.php/首页
(5)Stanford大学vision实验室; http://vision.stanford.edu/research.html
(6)Stanford大学博士崔靖宇; http://www.stanford.edu/~jycui/
(7)UCLA教授朱松纯; http://www.stat.ucla.edu/~sczhu/
(8)中国人工智能网; http://www.chinaai.org/
(9)中国视觉网; http://www.china-vision.net/
(10)中科院自动化所; http://www.ia.cas.cn/
(11)中科院自动化所李子青研究员; http://www.cbsr.ia.ac.cn/users/szli/
(12)中科院计算所山世光研究员; http://www.jdl.ac.cn/user/sgshan/
(13)人脸识别主页; http://www.face-rec.org/
(14)加州大学伯克利分校CV小组;http://www.eecs.berkeley.edu/Research/Projects/CS/vision/(15)南加州大学CV实验室; http://iris.usc.edu/USC-Computer-Vision.html
(16)卡内基梅隆大学CV主页;

http://www.cs.cmu.edu/afs/cs/project/cil/ftp/html/vision.html

(17)微软CV研究员Richard Szeliski;http://research.microsoft.com/en-us/um/people/szeliski/
(18)微软亚洲研究院计算机视觉研究组;http://research.microsoft.com/en-us/groups/vc/
(19)微软剑桥研究院ML与CV研究组;http://research.microsoft.com/en-us/groups/mlp/default.aspx

(20)研学论坛; http://bbs.matwav.com/
(21)美国Rutgers大学助理教授刘青山;http://www.research.rutgers.edu/~qsliu/
(22)计算机视觉最新资讯网; http://www.cvchina.info/
(23)运动检测、阴影、跟踪的测试视频下载;http://apps.hi.baidu.com/share/detail/18903287
(24)香港中文大学助理教授王晓刚;http://www.ee.cuhk.edu.hk/~xgwang/
(25)香港中文大学多媒体实验室(汤晓鸥);http://mmlab.ie.cuhk.edu.hk/
(26)U.C. San Diego. computer vision;http://vision.ucsd.edu/content/home
(27)CVonline; http://homepages.inf.ed.ac.uk/rbf/CVonline/
(28)computer vision software;http://peipa.essex.ac.uk/info/software.html
(29)Computer Vision Resource; http://www.cvpapers.com/
(30)computer vision research groups;http://peipa.essex.ac.uk/info/groups.html
(31)computer vision center;http://computervisioncentral.com/cvcnews

(32)浙江大学图像技术研究与应用(ITRA)团队:http://www.dvzju.com/

(33)自动识别网:http://www.autoid-china.com.cn/

(34)清华大学章毓晋教授:http://www.tsinghua.edu.cn/publish/ee/4157/2010/20101217173552339241557/20101217173552339241557_.html

(35)顶级民用机器人研究小组Porf.Gary领导的Willow Garage:http://www.willowgarage.com/

(36)上海交通大学图像处理与模式识别研究所:http://www.pami.sjtu.edu.cn/

(37)上海交通大学计算机视觉实验室刘允才教授:http://www.visionlab.sjtu.edu.cn/

(38)德克萨斯州大学奥斯汀分校助理教授Kristen Grauman :http://www.cs.utexas.edu/~grauman/

(39)清华大学电子工程系智能图文信息处理实验室(丁晓青教授):http://ocrserv.ee.tsinghua.edu.cn/auto/index.asp

(40)北京大学高文教授:http://www.jdl.ac.cn/htm-gaowen/

(41)清华大学艾海舟教授:http://media.cs.tsinghua.edu.cn/cn/aihz

(42)中科院生物识别与安全技术研究中心:http://www.cbsr.ia.ac.cn/china/index CH.asp

(43)瑞士巴塞尔大学 Thomas Vetter教授:http://informatik.unibas.ch/personen/vetter_t.html

(44)俄勒冈州立大学 Rob Hess博士:http://blogs.oregonstate.edu/hess/

(45)深圳大学 于仕祺副教授:http://yushiqi.cn/

(46)西安交通大学人工智能与机器人研究所:http://www.aiar.xjtu.edu.cn/

(47)卡内基梅隆大学研究员Robert T. Collins:http://www.cs.cmu.edu/~rcollins/home.html#Background

(48)MIT博士Chris Stauffer:http://people.csail.mit.edu/stauffer/Home/index.php

(49)美国密歇根州立大学生物识别研究组(Anil K. Jain教授):http://www.cse.msu.edu/rgroups/biometrics/

(50)美国伊利诺伊州立大学Thomas S. Huang:http://www.beckman.illinois.edu/directory/t-huang1

(51)武汉大学数字摄影测量与计算机视觉研究中心:http://www.whudpcv.cn/index.asp

(52)瑞士巴塞尔大学Sami Romdhani助理研究员:http://informatik.unibas.ch/personen/romdhani_sami/

(53)CMU大学研究员Yang Wang:http://www.cs.cmu.edu/~wangy/home.html

(54)英国曼彻斯特大学Tim Cootes教授:http://personalpages.manchester.ac.uk/staff/timothy.f.cootes/

(55)美国罗彻斯特大学教授Jiebo Luo:http://www.cs.rochester.edu/u/jluo/

(56)美国普渡大学机器人视觉实验室:https://engineering.purdue.edu/RVL/Welcome.html

(57)美国宾利州立大学感知、运动与认识实验室:http://vision.cse.psu.edu/home/home.shtml

(58)美国宾夕法尼亚大学GRASP实验室:https://www.grasp.upenn.edu/

(59)美国内达华大学里诺校区CV实验室:http://www.cse.unr.edu/CVL/index.php

(60)美国密西根大学vision实验室:http://www.eecs.umich.edu/vision/index.html

(61)University of Massachusetts(麻省大学),视觉实验室:http://vis-www.cs.umass.edu/index.html

(62)华盛顿大学博士后Iva Kemelmacher:http://www.cs.washington.edu/homes/kemelmi

(63)以色列魏茨曼科技大学Ronen Basri:http://www.wisdom.weizmann.ac.il/~ronen/index.html

(64)瑞士ETH-Zurich大学CV实验室:http://www.vision.ee.ethz.ch/boostingTrackers/index.htm

(65)微软CV研究员张正友:http://research.microsoft.com/en-us/um/people/zhang/

(66)中科院自动化所医学影像研究室:http://www.3dmed.net/

(67)中科院田捷研究员:http://www.3dmed.net/tian/

(68)微软Redmond研究院研究员Simon Baker:http://research.microsoft.com/en-us/people/sbaker/

(69)普林斯顿大学教授李凯:http://www.cs.princeton.edu/~li/
(70)普林斯顿大学博士贾登:http://www.cs.princeton.edu/~jiadeng/
(71)牛津大学教授Andrew Zisserman:http://www.robots.ox.ac.uk/~az/
(72)英国leeds大学研究员Mark Everingham:http://www.comp.leeds.ac.uk/me/
(73)英国爱丁堡大学教授Chris William:http://homepages.inf.ed.ac.uk/ckiw/
(74)微软剑桥研究院研究员John Winn: http://johnwinn.org/
(75)佐治亚理工学院教授Monson H.Hayes:http://savannah.gatech.edu/people/mhayes/index.html
(76)微软亚洲研究院研究员孙剑:http://research.microsoft.com/en-us/people/jiansun/
(77)微软亚洲研究院研究员马毅:http://research.microsoft.com/en-us/people/mayi/
(78)英国哥伦比亚大学教授David Lowe:http://www.cs.ubc.ca/~lowe/
(79)英国爱丁堡大学教授Bob Fisher:http://homepages.inf.ed.ac.uk/rbf/
(80)加州大学圣地亚哥分校教授Serge J.Belongie:http://cseweb.ucsd.edu/~sjb/
(81)威斯康星大学教授Charles R.Dyer:http://pages.cs.wisc.edu/~dyer/
(82)多伦多大学教授Allan.Jepson:http://www.cs.toronto.edu/~jepson/
(83)伦斯勒理工学院教授Qiang Ji: http://www.ecse.rpi.edu/~qji/
(84)CMU研究员Daniel Huber: http://www.ri.cmu.edu/person.html?person_id=123
(85)多伦多大学教授:David J.Fleet:http://www.cs.toronto.edu/~fleet/
(86)伦敦大学玛丽女王学院教授Andrea Cavallaro:http://www.eecs.qmul.ac.uk/~andrea/
(87)多伦多大学教授Kyros Kutulakos:http://www.cs.toronto.edu/~kyros/
(88)杜克大学教授Carlo Tomasi: http://www.cs.duke.edu/~tomasi/
(89)CMU教授Martial Hebert: http://www.cs.cmu.edu/~hebert/
(90)MIT助理教授Antonio Torralba:http://web.mit.edu/torralba/www/
(91)马里兰大学研究员Yasel Yacoob:http://www.umiacs.umd.edu/users/yaser/
(92)康奈尔大学教授Ramin Zabih: http://www.cs.cornell.edu/~rdz/

(93)CMU博士田渊栋: http://www.cs.cmu.edu/~yuandong/
(94)CMU副教授Srinivasa Narasimhan: http://www.cs.cmu.edu/~srinivas/
(95)CMU大学ILIM实验室:http://www.cs.cmu.edu/~ILIM/
(96)哥伦比亚大学教授Sheer K.Nayar: http://www.cs.columbia.edu/~nayar/
(97)三菱电子研究院研究员Fatih Porikli :http://www.porikli.com/
(98)康奈尔大学教授Daniel Huttenlocher:http://www.cs.cornell.edu/~dph/
(99)南京大学教授周志华:http://cs.nju.edu.cn/zhouzh/index.htm
(100)芝加哥丰田技术研究所助理教授Devi Parikh: http://ttic.uchicago.edu/~dparikh/index.html
(101)瑞士联邦理工学院博士后Helmut Grabner:
http://www.vision.ee.ethz.ch/~hegrabne/#Short_CV

(102)香港中文大学教授贾佳亚:http://www.cse.cuhk.edu.hk/~leojia/index.html

(103)南洋理工大学副教授吴建鑫:http://c2inet.sce.ntu.edu.sg/Jianxin/index.html

(104)GE研究院研究员李关:http://www.cs.unc.edu/~lguan/

(105)佐治亚理工学院教授Monson Hayes:http://savannah.gatech.edu/people/mhayes/

(106)图片检索国际会议VOC(微软剑桥研究院组织):http://pascallin.ecs.soton.ac.uk/challenges/VOC/

(107)机器视觉开源处理库汇总:http://archive.cnblogs.com/a/2217609/

(108)布朗大学教授Benjamin Kimia:http://www.lems.brown.edu/kimia.html

about multi-camera: http://server.cs.ucf.edu/~vision/projects.html

about 3D Voxel Coloring   Rob Hess: http://blogs.oregonstate.edu/hess/code/voxels/

About  the particle filters–condensation filter:http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/ISARD1/condensation.html

Machine Learning Open Source Software:http://jmlr.csail.mit.edu/mloss/

1、动作识别数据库:Recognition of human actions:http://www.nada.kth.se/cvap/actions/

2、Datasets for Computer Vision Research:http://www-cvr.ai.uiuc.edu/ponce_grp/data/

3、Computer Vision Datasets:http://clickdamage.com/sourcecode/cv_datasets.php

4、里面有好多基本算法 matlab:  http://www.mathworks.cn/index.html

5、CVPR 2011中关于grassmann 流形文章的源码: http://itee.uq.edu.au/~uqmhara1/code.html

  • Matlab Codefor Graph Embedding Discriminant Analysis on Grassmannian Manifolds for Improved Image Set Matching (CVPR), 2011.
  • Matlab Codefor Optimal Local Basis: A Reinforcement Learning Approach for Face Recognition(IJCV), vol. 81, no. 2, pp. 191-204, 2009.

牛人bolg:

1、Hong Kong Polytechnic University :http://www4.comp.polyu.edu.hk/~cslzhang/

2、Computer Vision Resources:资源非常丰富,包含有基本算法。https://netfiles.uiuc.edu/jbhuang1/www/resources/vision/index.html

3、源代码非常丰富~~  http://homepage.tudelft.nl/19j49/Publications.html

CVonline

http://homepages.inf.ed.ac.uk/rbf/CVonline

http://homepages.inf.ed.ac.uk/rbf/CVonline/unfolded.htm

http://homepages.inf.ed.ac.uk/rbf/CVonline/CVentry.htm

李子青的大作:

Markov Random Field Modeling in Computer Vision

http://www.cbsr.ia.ac.cn/users/szli/mrf_book/book.html

Handbook of Face Recognition (PDF)

http://www.umiacs.umd.edu/~shaohua/papers/zhou04hfr.pdf
张正友的有关参数鲁棒估计著作:

Parameter Estimation Techniques:A Tutorial with Application to Conic Fitting

http://research.microsoft.com/~zhang/INRIA/Publis/Tutorial-Estim/Main.html

Andrea Fusiello“计算机视觉中的几何”教程:Elements of Geometric Computer Vision

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/FUSIELLO4/tutorial.html#x1-520007

有关马尔可夫蒙特卡罗方法的资料:

An introduction to Markov chain Monte Carlo

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/SENEGAS/mcmc.html

Markov Chain Monte Carlo for Computer Vision— A tutorial at ICCV05

http://civs.stat.ucla.edu/MCMC/MCMC_tutorial.htm

有关独立成分分析(Independent Component Analysis , ICA)的资料:

An ICA-Page

http://www.cnl.salk.edu/~tony/ica.html

Fast ICA

http://www.cis.hut.fi/projects/ica/fastica/

The Kalman Filter (介绍卡尔曼滤波器的终极网页)

http://www.cs.unc.edu/~welch/kalman/index.html

Cached k-d tree search for ICP algorithms

http://kos.informatik.uni-osnabrueck.de/download/3dim2007/paper.html

几个计算机视觉研究工具

Machine Vision Toolbox for Matlab

http://www.petercorke.com/Machine Vision Toolbox.html


Matlab and Octave Function for Computer Vision and Image Processing

http://www.csse.uwa.edu.au/~pk/research/matlabfns/

Bayes Net Toolbox for Matlab

http://www.cs.ubc.ca/~murphyk/Software/BNT/bnt.html


OpenCV (Chinese)

http://www.opencv.org.cn/index.php/首页

Gandalf (A Computer Vision and Numerical Algorithm Labrary)

http://gandalf-library.sourceforge.net/

CMU Computer Vision Home Page

http://www.cs.cmu.edu/afs/cs/project/cil/ftp/html/vision.html

Machine Learning Resource Links

http://www.cse.ust.hk/~ivor/resource.htm

The Bayesian Filtering Library

http://www.orocos.org/bfl

Optical Flow Algorithm Evaluation (提供了一个动态贝叶斯网络框架,例如递归信息处理与分析、卡尔曼滤波、粒子滤波、序列蒙特卡罗方法等,C++写的)

http://of-eval.sourceforge.net/

MATLAB code for ICP algorithm

http://www.usenet.com/newsgroups/comp.graphics.visualization/msg00102.html

牛人主页:

朱松纯 (Song-Chun Zhu

http://www.stat.ucla.edu/~sczhu/

David Lowe (SIFT) (很帅的一个老头哦 ^ ^)

http://www.cs.ubc.ca/~lowe/

Andrea Vedaldi (SIFT)

http://vision.ucla.edu/~vedaldi/index.html

Pedro F. Felzenszwalb

http://people.cs.uchicago.edu/~pff/

Dougla Dlanman (Brown的一个研究生,在其主页上搜集了大量算法教程和源码)

http://mesh.brown.edu/dlanman/courses.html

Jianbo Shi (Ncuts 的始作俑者)

http://www.cis.upenn.edu/~jshi/

Active Vision Group (Oxford的一个机器视觉研究团队,特色是SLAM,监视,导航)

http://www.robots.ox.ac.uk/ActiveVision/index.html

Juyang Weng(机器学习的专家,Autonomous Mental Development 是其特色

http://www.cse.msu.edu/~weng/

测试图片或视频:

Middlebury College‘s Stereo Vision Data Set

http://cat.middlebury.edu/stereo/data.html

Intelligent Vehicle:

IVSource

www.ivsoruce.net

Robot Car

http://www.plyojump.com/robot_cars.html

How to Build a Robot: The Computer Vision Part

http://www.societyofrobots.com/programming_computer_vision_tutorial.shtml

收集的一般牛人主页(带代码):

Xiaofei He(machine learning code)

http://people.cs.uchicago.edu/~xiaofei/

YingNian Wu(active base model code)

http://www.stat.ucla.edu/~ywu/research.html

布朗大学计算机主页(可找到该校CS牛人博客)

http://www.cs.brown.edu/research/areas.html

Navneet Dalal(Histograms of Oriented Gradients for Human Detection )

http://www.navneetdalal.com/software

Paul Viola(Robust Real-time Object Detection)

http://research.microsoft.com/en-us/um/people/viola/

Active LearningRMw平坦软件园

http://active-learning.net/,这里包括了关于Active Learning理论以及应用的一些文章,特别是那篇Survey。
Transfer LearningRMw平坦软件园

http://www.cse.ust.hk/TL/,包括经典的论文以及附带有源码,很方便。
Gaussian ProcessesRMw平坦软件园
RMw平坦软件园

http://www.gaussianprocess.org 包括相关的书籍(有 Carl Edward Rasmussen 的书),相关的程序以及分类的 paper 列表。这也是由 Carl 自己维护的,他应该是将 GP 引入 machine learning 最早的人之一了吧,Hinton 的学生。
Nonparametric Bayesian MethodsRMw平坦软件园

http://www.cs.berkeley.edu/~jordan/npb.html 这个一看就知道是 Jordan 维护的,主要包括 Dirichlet process 以及相关的其他随机过程在 machine learning 里面如何进行建模,如何进行 approximate inference。主要是文章列表。
Probabilistic Graphical ModelRMw平坦软件园

http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html 是 Kevin Murphy 所维护的关于 Bayesian belief networks 的介绍,含有最基本的概念、相关的文献和软件的链接。罕见的 UCB 出来的不是 Jordan 的学生(老板是 Stuart Russel)。
http://www.cs.berkeley.edu/~jordan/graphical.html 是 Jordan 系关于这个方面的论文汇编。
http://www.inference.phy.cam.ac.uk/hmw26/crf/ 是关于 Conditional Random Fields 方面论文和软件的收集,由 Hanna Wallach 维护。
Compressed SensingRMw平坦软件园

http://www-dsp.rice.edu/cs 这是 Rice 大学维护的论文分类列表、软件链接等。推荐 Emmanuel Candès 所写的tutorial,这人是 David Donoho 的学生。
TensorRMw平坦软件园

http://csmr.ca.sandia.gov/~tgkolda/pubs/index.html 关于 tensor 的一些偏数学的文章。
Deep Belief NetworkRMw平坦软件园

http://www.cs.toronto.edu/~hinton/csc2515/deeprefs.html 是 Geoffrey Hinton 为研究生开设的 machine learning 课程的 DBN 的 reading list。
Kernel MethodsRMw平坦软件园

http://www.cs.berkeley.edu/~jordan/kernels.html 是 Jordan 维护的关于 kernel methods 的文章列表。
Markov LogicRMw平坦软件园

http://ai.cs.washington.edu/pubs 是 UW AI 组的文章,里面关于 Markov logic 的比较多,因为 Pedro Domingos 就是这个组的。

Machine learning theory

http://hunch.net/这个网站主要是一些learning theory的东西比较多,想在machine learning 理论上有所建树的同志们可以去看看

牛人:Iasonas Kokkinos (搞统计模型视觉)

http://vision.mas.ecp.fr/Personnel/iasonas/index.html

 

2015-12-06 21:23:51 qq_22657193 阅读数 7266

Tony F. Chan

加州大学数学系教授,(似乎是香港出生的华人,待确认?)。在水平集图像分割方面,其论文《Active contourswithout edges》提出的 C-V 模型,Google学术上显示被引用 5153 次之多。

http://www.math.ucla.edu/~chan/index.html

 

Chunming Li

本科福建师范大学数学系,硕士复旦大学数学系,博士则在University of Connecticut电子工程专业。在水平集图像分割方面颇有成绩,其最有名的论文《Level Set Evolution Without Re-initialization: A New Variational Formulation》,Google学术显示被引用1128次之多。

http://www.engr.uconn.edu/~cmli/

http://scholar.google.com/citations?user=tpAgWBwAAAAJ&hl=en

 


Daniel Cremers

http://vision.in.tum.de/members/cremers

http://scholar.google.com/citations?user=cXQciMEAAAAJ&hl=en

研究领域在:计算机视觉,数字图像处理,模式识别。


Mikael Rousson

http://scholar.google.com/citations?user=SPKqz2kAAAAJ&hl=en


Michael Leventon

麻省理工人工智能实验室

http://www.leventon.com/mit/


Bernhard Schölkopf

主要研究方向是机器学习,他在 Kernel方法,尤其是 Kernel PCA 方面成就很大。

http://www.is.tuebingen.mpg.de/employee/details/bs.html 

他的文章大都在:http://www.is.tuebingen.mpg.de/research/dep/bs/publication-list-schoelkopf.html

www.kernel-machines.org 

http://scholar.google.com/citations?user=DZ-fHPgAAAAJ&hl=en

 

(说明:以下部分时转载自http://blog.sciencenet.cn/blog-672874-665865.html)

CV人物1:Jianbo Shi史建波毕业于UC Berkeley,导师是Jitendra Malik。其最有影响力的研究成果:图像分割。其于2000年在PAMI上多人合作发表”Noramlized cuts and image segmentation”。这是图像分割领域内最经典的算法。主页:www.cis.upenn.edu/~jshi/ 和 www.cs.cmu.edu/~jshi/

244x126



CV人物2:Kristen Grauman毕业于MIT,导师是Trevor Darrell。其最有影响力的研究成果:Pyramid Match Kernel,用于图像匹配。她和Darrell在2005年CVPR合作发表了”The Pyramid Match Kernel: Discriminative Classification with Sets of Image Features”。金字塔匹配核函数可快速搜索两个特征集合之间匹配的特征,可应用于图像匹配、物体识别,是该领域经典算法之一。2011年Marr奖得主。主页:www.cs.utexas.edu/~grauman/

194x244



CV人物3:Irfan Essa现任教于Georgin Tech佐治亚理工大学,毕业于MIT,其最有影响力的研究成果:人脸表情识别。Essa和Alex Penland 在1997年PAMI合作发表了”Coding, analysis,interpretation,and recognition of facial expression”, 结合了几何模型和面部肌肉无力模型,用来描述脸部结构。主页:www.ic.gatech.edu/people/irfan-essa

155x232 

CV人物4:Matthew Turk毕业于MIT,最有影响力的研究成果:人脸识别。其和Alex Pentland在1991年发表了”Eigenfaces for Face Recognition”.该论文首次将PCA(Principal Component Analysis)引入到人脸识别中,是人脸识别最早期最经典的方法,且被人实现,开源在OpenCV了。主页:www.cs.ucsb.edu/~mturk/

CV人物5:David Lowe毕业于斯坦福大学,导师是Thomas Binfold,最有影响力的研究成果:SIFT。他是SIFT特征点检测的发明人。由于SIFT具有对于图像平移、旋转和尺度变化不变性的优点,使得SIFT成为近十年来最流行的图像特征点检测方法,被广泛用于图像匹配、物体识别、分类等领域。主页:http://www.cs.ubc.ca/~lowe/

244x212


CV人物6:Pascal Fua毕业于Orsay,导师是O.D.Faugera。最有影响力的研究成果:立体视觉。其在1993年发表了”A parallel stereo algorithm that produces dense depth maps and preserves image features”,提出了利用相关性来估计dense深度图的快速并行立体视觉算法,是立体视觉领域内经典算法之一。主页:http://cvlab.epfl.ch/~fua/和 http://people.epfl.ch/pascal.fua

144x204


CV人物7:Luc Van Gool毕业于Katholieke Universiteit Leuven.最有影响力的研究成果:图像特征点检测和摄像机标定。Gool等发蒙的Surf(speeded up robust features)是除SIFT外,应用最广泛的特征点检测算法,surf具有提取速度更快、维度更低的优点,也被广泛用于物体检测、识别等。Opencv开源。Marc Pollefeys, Koch和Goolz 1999年IJCV上发表了”self-calibration and metric reconstruction inspite of varying and unknown intrinsic camera parameters”,是摄像机自标定领域内最经典论文,并获1998年Marr奖。主页:http://www.vision.ee.ethz.ch/~vangool/

CV人物8:Michal Irani毕业于Hebrew大学,最有影响力的研究成果:超分辨率。她和Peleg于1991年在Graphical Models and Image Processing发表了”Improving resolution by image registration”,提出了用迭代的、反向投影的方法来解决图像放大的问题,是图像超分辨率最经典的算法。我在公司实现的产品化清晰化增强算法就参考了该算法思想哈哈。主页:http://www.wisdom.weizmann.ac.il/~irani/

154x244


CV人物9: Jean Ponce毕业于Paris Orsay,最有影响力的研究成果:计算机视觉教育、物体识别。他和David Forsyth合写的”Computer Vision: A Modern Approach”被视为现代计算机视觉领域最经典教科书之一。其近年来的研究重点是物体识别,是Spatial Pyramid Matching算法发明人之一,比起之前广泛使用的bag-of-words方法相比,该方法考虑了一些局部特征之间的空间关系,因此更有效地描述物体特征。是目前最普遍使用的算法之一。主页:http://www.di.ens.fr/~ponce/

185x216


CV人物10: Andrew Blake毕业于Edinburgh,最有影响力的研究成果:目标跟踪、图像分割、人体姿态跟踪与分析。他是世界知名CV专家,两次荣获ECCV最佳论文奖和1次Marr奖。他和Michael Isard在1998年IJCV中合写的”Condensation—conditional density propagation for visual tracking”,将粒子滤波器用于目标跟踪,该领域的经典论文。二人1998年合写的另一篇”Active Contours”是图像分割领域经典算法,该算法用spline函数,通过最小化能量函数,是的样条逼近物体轮廓,在该算法基础上,衍生出了著名的Active shape model。Blake领导的微软剑桥研究院在人体姿态跟踪与分析上去的突破,用于Kinect中。主页:http://research.microsoft.com/~ablake

146x179

CV人物11: Antonio Criminisi毕业于牛津大学,导师是Andrew Zisserman 和 Ian Reid。最有吸影响力的研究成果:Image Inpaiting.他在2004年发表”Region filling and object removal by exemplar-based image inpainting”,该方法用于去除图像中大的遮挡物或小的刮痕,结合了采样纹理生成和结构传递的图像修补技术,获得不错效果。主页:http://research.microsoft.com/en-us/people/antcrim/

129x129


CV人物12: Paul Viola毕业于MIT,研究领域:目标检测;最有影响力的研究成果:人脸检测;他和Michael Jones在2001年CVPR发表了”Rapid object detection using a boosted cascade of simple features”,真正意义上解决了人脸检测的问题,并开启了boosting算法的一个时代,很多学者受到boosting cascade算法的影响,扩展了该算法的应用领域,牛逼的影响力。主页:http://research.microsoft.com/en-us/um/people/viola/

CV人物13: Henry Rowley毕业于CMU,导师:Takeo Kanade;研究领域:大规模图像识别和机器学习;最有影响力的研究成果:人脸检测;他使用人工神经网络用于人脸检测,该算法是Paul Viola的boosting cascade人脸检测算法出现前,最经典的人脸检测算法。主页:http://www.cs.cmu.edu/~har/

164x217


CV人物14: Dorin Comaniclu毕业于Rutgers;最有影响力的研究成果:目标跟踪、图像分割;他在2000年发表了”Real-time tracking of non-rigid objects using mean shift”。该算法首次将mean shift用于目标跟踪,并在2002年PAMI发表了”Mean shift: A robust approach toward feature space analysis”,并将Meanshift拓展应用于图像分割中。主页:http://coewww.rutgers.edu/riul/FORMER/comanici/

237x244


CV人物15: Henry Schneiderman毕业于CMU,导师:Takeo Kanade;研究领域:目标检测和识别;最有影响力的研究成果:目标检测;他在2000年CVPR上发表了”A statistical method for 3D object detection applied to faces and cars”。该算法采用多视角训练样本,可用于检测不同视角下的物体,如人脸和车,是第一个能够检测侧脸的算法。他创建了PittPatt公司,后被Google收购。主页:http://www.cs.cmu.edu/~hws/

213x244

CV人物16: William T.Freeman毕业于MIT;研究领域:应用于CV的ML、可视化感知的贝叶斯模型、计算摄影学;最有影响力的研究成果:图像纹理合成;Alex Efros和Freeman在2001年SIGGRAPH上发表了”Image quilting for texture synthesis and transfer”,其思想是从已知图像中获得小块,然后将这些小块拼接mosaic一起,形成新的图像。该算法是图像纹理合成中经典中的经典。主页:http://people.csail.mit.edu/billf/
173x150

CV人物17: Feifei Li李菲菲,毕业于Caltech;导师:Pietro Perona;研究领域:Object Bank、Scene Classification、ImageNet等;最有影响力的研究成果:图像识别;她建立了图像识别领域的标准测试库Caltech101/256。是词包方法的推动者。主页:http://vision.stanford.edu/~feifeili/

244x176


CV人物18:Jitendra Malik毕业于斯坦福大学;导师:Thomas O.Binford;研究领域:轮廓检测、图像/视频分割、图形匹配、目标识别等;最有影响力的研究成果:边缘检测、图像分割和形状匹配;Malik培养了众多牛人,牛人的导师,你说牛不牛。培养了Alexie Efros, Jianbo Shi, Paul Debevec, Pietro Perona, Serge J.Belongie, Yair Weiss等知名专家。主页:http://www.cs.berkeley.edu/~malik/

164x244

CV人物19:Alexie Efros毕业于Berkeley大学;导师:Jitendra Malik;研究领域:Qualitative Reasoning for Image Understanding、Building the Visual Memex等;最有影响力的研究成果:图像纹理合成;他在1999年ICCV发表了”Texture Synthesis by non-parametric sampling”。该论文将MRF引入到纹理合成中。该方法最大限度保留了纹理的局部结构。主页:https://www.cs.cmu.edu/~efros/

243x244


CV人物20:Andrew Zisserman毕业于剑桥大学;最有影响力的研究成果:视觉几何、目标识别、可视化搜索;他牛逼了,三次获得Marr奖。是CV界权威中的权威。搞CV的人没读过他的多视几何学一书,枉为搞CV的。我2007年起,花了2年时间阅读、编码实现了其中所有两视几何学内容。主页:http://www.robots.ox.ac.uk/~az/

CV人物21:Ian D.Reid毕业于牛津大学;最有影响力的研究成果:目标跟踪;他在2007年PAMI发表了”MonoSLAM: real-time single camera SLAM”,是跟踪和机器人导航领域经典论文。在2011年CVPR上,和Ben Benfold发表了”Stable Multi-Target Tracking in Real-time survillance video”。主页:http://www.robots.ox.ac.uk/~ian/

199x244

...