图像处理膨胀和腐蚀处理

2019-11-26 19:26:06 qq_35985044 阅读数 167

图像形态学即数学形态学(Mathematical morphology)是一门建立在格伦和拓扑学基础上的图像分析学科,是数学形态学图像处理的基本理论;

常见图像形态学运算:腐蚀、膨胀、开运算、闭运算、骨架抽取、极线腐蚀、击中击不中变换、Top-hat变换、颗粒分析、流域变换、形态学梯度等;

最基本的形态学操作是:膨胀(dilation)和腐蚀(erosion)

膨胀和腐蚀的主要用途:

消除噪声;

分割出独立的图像元素,在图像中连接相邻的元素;

寻找图像中明显的极大值或极小值区;

求出图像的梯度;

【注】:

腐蚀和膨胀是对像素值大的部分而言的,即高亮白部分而不是黑色部分;

膨胀是图像中的高亮部分进行膨胀,领域扩张,效果图拥有比原图更大的高亮区域;

腐蚀是图像中的高亮部分被腐蚀掉,领域缩减,效果图拥有比原图更小的高亮区域;

膨胀原理:

膨胀:求局部最大值;

①定义一个卷积核B,

核可以是任何的形状和大小,且拥有一个单独定义出来的参考点-锚点(anchorpoint);

通常和为带参考点的正方形或者圆盘,可将核称为模板或掩膜;

②将核B与图像A进行卷积,计算核B覆盖区域的像素点最大值;

③将这个最大值赋值给参考点指定的像素;

因此,图像中的高亮区域逐渐增长。

 

腐蚀原理:

腐蚀:局部最小值(与膨胀相反);

①定义一个卷积核B,

核可以是任何的形状和大小,且拥有一个单独定义出来的参考点-锚点(anchorpoint);

通常和为带参考点的正方形或者圆盘,可将核称为模板或掩膜;

②将核B与图像A进行卷积,计算核B覆盖区域的像素点最小值;

③将这个最小值赋值给参考点指定的像素;

因此,图像中的高亮区域逐渐减小。

2018-04-16 11:48:18 junpengxue 阅读数 15760

网上找到很多个版本,经过自己分析对比概念,发现有些说自己方法是正确的,但是我觉得这个大牛的分析才是正确的。


图像的膨胀与腐蚀、细化

原理:在特殊领域运算形式——结构元素(Sturcture Element),在每个像素位置上与二值图像对应的区域进行特定的逻辑运算。运算结构是输出图像的相应像素。运算效果取决于结构元素大小内容以及逻辑运算性质。

结构元素:膨胀和腐蚀操作的最基本组成部分,用于测试输出图像,通常要比待处理的图像小还很多。二维平面结构元素由一个数值为0或1的矩阵组成。结构元素的原点指定了图像中需要处理的像素范围,结构元素中数值为1的点决定结构元素的邻域像素在进行膨胀或腐蚀操作时是否需要参与计算。

先来定义一些基本符号和关系。

1.         元素

设有一幅图象X,若点aX的区域以内,则称aX的元素,记作aX,如图6.1所示。

2.         B包含于X

设有两幅图象BX。对于B中所有的元素ai,都有aiX,则称B包含于(included in)X,记作B  X,如图6.2所示。

3.         B击中X

设有两幅图象BX。若存在这样一个点,它即是B的元素,又是X的元素,则称B击中(hit)X,记作BX,如图6.3所示。

4.         B不击中X

设有两幅图象BX。若不存在任何一个点,它即是B的元素,又是X的元素,即BX的交集是空,则称B不击中(miss)X,记作BX=Ф;其中∩是集合运算相交的符号,Ф表示空集。如图6.4所示。

6.1     元素

6.2     包含

6.3     击中

6.4     不击中

5.         补集

设有一幅图象X,所有X区域以外的点构成的集合称为X的补集,记作Xc,如图6.5所示。显然,如果BX=Ф,则BX的补集内,即B  Xc

6.5     补集的示意图

6.         结构元素

设有两幅图象BX。若X是被处理的对象,而B是用来处理X的,则称B为结构元素(structure element),又被形象地称做刷子。结构元素通常都是一些比较小的图象。

7.         对称集

设有一幅图象B,将B中所有元素的坐标取反,即令(xy)变成(-x-y),所有这些点构成的新的集合称为B的对称集,记作Bv,如图6.6所示。

8.         平移

设有一幅图象B,有一个点a(x0,y0),将B平移a后的结果是,把B中所有元素的横坐标加x0,纵坐标加y0,即令(xy)变成(x+x0y+y0),所有这些点构成的新的集合称为B的平移,记作Ba,如图6.7所示。

6.6     对称集的示意图

6.7     平移的示意图

好了,介绍了这么多基本符号和关系,现在让我们应用这些符号和关系,看一下形态学的基本运算。

6.1 腐蚀

把结构元素B平移a后得到Ba,若Ba包含于X,我们记下这个a点,所有满足上述条件的a点组成的集合称做XB腐蚀(Erosion)的结果。用公式表示为:E(X)={a| Ba  X}=X  B,如图6.8所示。

6.8     腐蚀的示意图

6.8X是被处理的对象,B是结构元素。不难知道,对于任意一个在阴影部分的点aBa 包含于X,所以XB腐蚀的结果就是那个阴影部分。阴影部分在X的范围之内,且比X小,就象X被剥掉了一层似的,这就是为什么叫腐蚀的原因。

值得注意的是,上面的B是对称的,即B的对称集Bv=B,所以XB腐蚀的结果和X Bv腐蚀的结果是一样的。如果B不是对称的,让我们看看图6.9,就会发现XB腐蚀的结果和X Bv腐蚀的结果不同。

6.9     结构元素非对称时,腐蚀的结果不同

6.8和图6.9都是示意图,让我们来看看实际上是怎样进行腐蚀运算的。

在图6.10中,左边是被处理的图象X(二值图象,我们针对的是黑点),中间是结构元素B,那个标有origin的点是中心点,即当前处理元素的位置,我们在介绍模板操作时也有过类似的概念。腐蚀的方法是,拿B的中心点和X上的点一个一个地对比,如果B上的所有点都在X的范围内,则该点保留,否则将该点去掉;右边是腐蚀后的结果。可以看出,它仍在原来X的范围内,且比X包含的点要少,就象X被腐蚀掉了一层。

6.10   腐蚀运算

6.11为原图,图6.12为腐蚀后的结果图,能够很明显地看出腐蚀的效果。

6.11    原图

6.12   腐蚀后的结果图

下面的这段程序,实现了上述的腐蚀运算,针对的都是黑色点。参数中有一个BOOL变量,为真时,表示在水平方向进行腐蚀运算,即结构元素B  ;否则在垂直方向上进行腐蚀运算,即结构元素B  

复制代码
BOOL Erosion(HWND hWnd,BOOL Hori)

{

       DWORD                             OffBits,BufSize;

LPBITMAPINFOHEADER    lpImgData;

       LPSTR                   lpPtr;

       HLOCAL                  hTempImgData;

       LPBITMAPINFOHEADER    lpTempImgData;

       LPSTR                            lpTempPtr;

       HDC                      hDc;

       HFILE                    hf;

       LONG                    x,y;

       unsigned char              num;

       int                        i;

//为了处理方便,仍采用256级灰度图,不过只用调色板中0和255两项

if( NumColors!=256){  

           MessageBox(hWnd,"Must be a mono bitmap with grayscale palette!",

"Error Message",MB_OK|MB_ICONEXCLAMATION);

return FALSE;

}

OffBits=bf.bfOffBits-sizeof(BITMAPFILEHEADER);

//BufSize为缓冲区大小

       BufSize=OffBits+bi.biHeight*LineBytes;

       //为新的缓冲区分配内存

       if((hTempImgData=LocalAlloc(LHND,BufSize))==NULL)

{

            MessageBox(hWnd,"Error alloc memory!","Error Message",

MB_OK|MB_ICONEXCLAMATION);

return FALSE;

    }

     lpImgData=(LPBITMAPINFOHEADER)GlobalLock(hImgData);    

       lpTempImgData=(LPBITMAPINFOHEADER)LocalLock(hTempImgData);

       //拷贝头信息和位图数据     

       memcpy(lpTempImgData,lpImgData,BufSize);

       if(Hori)

       {   

//在水平方向进行腐蚀运算

              for(y=0;y<bi.biHeight;y++){

                     //lpPtr指向原图数据,lpTempPtr指向新图数据

                     lpPtr=(char *)lpImgData+(BufSize-LineBytes-y*LineBytes)+1;

                     lpTempPtr=(char*)lpTempImgData+

(BufSize-LineBytes-y*LineBytes)+1;

                     for(x=1;x<bi.biWidth-1;x++){ 

//注意为防止越界,x的范围从1到宽度-2

                            num=(unsigned char)*lpPtr;

                            if (num==0){  //因为腐蚀掉的是黑点,所以只对黑点处理

                                   *lpTempPtr=(unsigned char)0;  //先置成黑点

                                   for(i=0;i<3;i++){

                                          num=(unsigned char)*(lpPtr+i-1);

                                          if(num==255){ 

//自身及上下邻居中若有一个不是黑点,则将该点腐

//蚀成白点

                                                 *lpTempPtr=(unsigned char)255;

                                                 break;

                                          }

                                   }

                            }

//原图中就是白点的,新图中仍是白点

                            else *lpTempPtr=(unsigned char)255;  

                            //指向下一个象素

                            lpPtr++; 

                            lpTempPtr++;

                     }

              }

       }

else{ 

//在垂直方向进行腐蚀运算

              for(y=1;y<bi.biHeight-1;y++){ //注意为防止越界,y的范围从1到高度-2

                     //lpPtr指向原图数据,lpTempPtr指向新图数据

                     lpPtr=(char *)lpImgData+(BufSize-LineBytes-y*LineBytes);

                     lpTempPtr=(char *)lpTempImgData+(BufSize-LineBytes-y*LineBytes);

                     for(x=0;x<bi.biWidth;x++){

                            num=(unsigned char)*lpPtr;

                            if (num==0){ //因为腐蚀掉的是黑点,所以只对黑点处理

                                   *lpTempPtr=(unsigned char)0; //先置成黑点

                                   for(i=0;i<3;i++){

                                          num=(unsigned char)*(lpPtr+(i-1)*LineBytes);

                                          if(num==255){

//自身及上下邻居中若有一个不是黑点,则将该点腐

//蚀成白点

                                                 *lpTempPtr=(unsigned char)255;

                                                 break;

                                          }

                                   }

                            }

//原图中就是白点的,新图中仍是白点

                            else *lpTempPtr=(unsigned char)255;

                            //指向下一个象素

                            lpPtr++;

                            lpTempPtr++;

                     }

              }

       }

    if(hBitmap!=NULL)

           DeleteObject(hBitmap);

       hDc=GetDC(hWnd);     

       //产生新的位图

       hBitmap=CreateDIBitmap(hDc,(LPBITMAPINFOHEADER)lpTempImgData,

(LONG)CBM_INIT,

(LPSTR)lpTempImgData+

sizeof(BITMAPINFOHEADER)+

                                         NumColors*sizeof(RGBQUAD),

(LPBITMAPINFO)lpTempImgData, DIB_RGB_COLORS);

       //起不同的结果文件名

       if(Hori)

              hf=_lcreat("c:\\herosion.bmp",0);

       else

              hf=_lcreat("c:\\verosion.bmp",0);

       _lwrite(hf,(LPSTR)&bf,sizeof(BITMAPFILEHEADER)); 

       _lwrite(hf,(LPSTR)lpTempImgData,BufSize);

       _lclose(hf);

       //释放内存及资源

ReleaseDC(hWnd,hDc);

       LocalUnlock(hTempImgData);

       LocalFree(hTempImgData);

       GlobalUnlock(hImgData);

       return TRUE;

}
复制代码

膨胀

膨胀(dilation)可以看做是腐蚀的对偶运算,其定义是:把结构元素B平移a后得到Ba,若Ba击中X,我们记下这个a点。所有满足上述条件的a点组成的集合称做XB膨胀的结果。用公式表示为:D(X)={a | BaX}=X  B,如图6.13所示。图6.13X是被处理的对象,B是结构元素,不难知道,对于任意一个在阴影部分的点aBa击中X,所以XB膨胀的结果就是那个阴影部分。阴影部分包括X的所有范围,就象X膨胀了一圈似的,这就是为什么叫膨胀的原因。

同样,如果B不是对称的,XB膨胀的结果和X Bv膨胀的结果不同。

让我们来看看实际上是怎样进行膨胀运算的。在图6.14中,左边是被处理的图象X(二值图象,我们针对的是黑点),中间是结构元素B。膨胀的方法是,拿B的中心点和X上的点及X周围的点一个一个地对,如果B上有一个点落在X的范围内,则该点就为黑;右边是膨胀后的结果。可以看出,它包括X的所有范围,就象X膨胀了一圈似的。

6.13   膨胀的示意图

6.14   膨胀运算

6.15为图6.11膨胀后的结果图,能够很明显的看出膨胀的效果。

6.15   6.11膨胀后的结果图

下面的这段程序,实现了上述的膨胀运算,针对的都是黑色点。参数中有一个BOOL变量,为真时,表示在水平方向进行膨胀运算,即结构元素B  ;否则在垂直方向上进行膨胀运算,即结构元素B  

复制代码
BOOL Dilation(HWND hWnd,BOOL Hori)

{

       DWORD                             OffBits,BufSize;

LPBITMAPINFOHEADER    lpImgData;

       LPSTR                   lpPtr;

       HLOCAL                  hTempImgData;

       LPBITMAPINFOHEADER    lpTempImgData;

       LPSTR                     lpTempPtr;

       HDC                     hDc;

       HFILE                    hf;

       LONG                    x,y;

       unsigned char              num;

       int                        i;

//为了处理的方便,仍采用256级灰度图,不过只调色板中0和255两项

if( NumColors!=256){  

            MessageBox(hWnd,"Must be a mono bitmap with grayscale palette!",

"Error Message",MB_OK|MB_ICONEXCLAMATION);

return FALSE;

}

OffBits=bf.bfOffBits-sizeof(BITMAPFILEHEADER);

//BufSize为缓冲区大小

       BufSize=OffBits+bi.biHeight*LineBytes;

//为新的缓冲区分配内存

       if((hTempImgData=LocalAlloc(LHND,BufSize))==NULL)

    {

           MessageBox(hWnd,"Error alloc memory!","Error Message",

MB_OK|MB_ICONEXCLAMATION);

return FALSE;

    }

     lpImgData=(LPBITMAPINFOHEADER)GlobalLock(hImgData);    

       lpTempImgData=(LPBITMAPINFOHEADER)LocalLock(hTempImgData);

       //拷贝头信息和位图数据     

       memcpy(lpTempImgData,lpImgData,BufSize);

       if(Hori)

       {   

//在水平方向进行膨胀运算

              for(y=0;y<bi.biHeight;y++){

                     //lpPtr指向原图数据,lpTempPtr指向新图数据

                     lpPtr=(char *)lpImgData+(BufSize-LineBytes-y*LineBytes)+1;

                     lpTempPtr=(char*)lpTempImgData+

(BufSize-LineBytes-y*LineBytes)+1;

                     for(x=1;x<bi.biWidth-1;x++){ 

//注意为防止越界,x的范围从1到宽度-2

                            num=(unsigned char)*lpPtr;

//原图中是黑点的,新图中肯定也是,所以要考虑的是那些原图

//中的白点,看是否有可能膨胀成黑点

                            if (num==255){

                                   *lpTempPtr=(unsigned char)255; //先置成白点

                                   for(i=0;i<3;i++){ 

                                          num=(unsigned char)*(lpPtr+i-1);

//只要左右邻居中有一个是黑点,就膨胀成黑点

                                          if(num==0){

*lpTempPtr=(unsigned char)0;

                                                 break;

                                          }

                                   }

                            }

//原图中就是黑点的,新图中仍是黑点

                            else *lpTempPtr=(unsigned char)0;

                            //指向下一个象素

                            lpPtr++;

                            lpTempPtr++;

                     }

              }

       }

       else{

//在垂直方向进行腐蚀运算

              for(y=1;y<bi.biHeight-1;y++){ //注意为防止越界,y的范围从1到高度-2

              lpPtr=(char *)lpImgData+(BufSize-LineBytes-y*LineBytes);

                     lpTempPtr=(char *)lpTempImgData+(BufSize-LineBytes-y*LineBytes);

                     for(x=0;x<bi.biWidth;x++){

                            num=(unsigned char)*lpPtr;

                            if (num==255){

                                   *lpTempPtr=(unsigned char)255;

                                   for(i=0;i<3;i++){

                                          num=(unsigned char)*(lpPtr+(i-1)*LineBytes);

//只要上下邻居中有一个是黑点,就膨胀成黑点

                                          if(num==0){

                                                 *lpTempPtr=(unsigned char)0;

                                                 break;

                                          }

                                   }

                            }

                            else *lpTempPtr=(unsigned char)0;

                            lpPtr++;

                            lpTempPtr++;

                     }

              }

       }

    if(hBitmap!=NULL)

           DeleteObject(hBitmap);

       hDc=GetDC(hWnd);     

       //产生新的位图

       hBitmap=CreateDIBitmap(hDc,(LPBITMAPINFOHEADER)lpTempImgData,

(LONG)CBM_INIT,

(LPSTR)lpTempImgData+

sizeof(BITMAPINFOHEADER)+

                                         NumColors*sizeof(RGBQUAD),

(LPBITMAPINFO)lpTempImgData,

DIB_RGB_COLORS);

       //起不同的结果文件名

       if(Hori)

              hf=_lcreat("c:\\hdilation.bmp",0);

       else

              hf=_lcreat("c:\\vdilation.bmp",0);

       _lwrite(hf,(LPSTR)&bf,sizeof(BITMAPFILEHEADER)); 

       _lwrite(hf,(LPSTR)lpTempImgData,BufSize);

       _lclose(hf);

       //释放内存及资源

      ReleaseDC(hWnd,hDc);

       LocalUnlock(hTempImgData);

       LocalFree(hTempImgData);

       GlobalUnlock(hImgData);

       return TRUE;

}
复制代码

腐蚀运算和膨胀运算互为对偶的,用公式表示为(X  B)c=(Xc  B),即B腐蚀后的补集等于X的补集被B膨胀。这句话可以形象的理解为:河岸的补集为河面,河岸的腐蚀等价于河面的膨胀。你可以自己举个例子来验证一下这个关系。在有些情况下,这个对偶关系是非常有用的。例如:某个图象处理系统用硬件实现了腐蚀运算,那么不必再另搞一套膨胀的硬件,直接利用该对偶就可以实现了。

先腐蚀后膨胀称为开(open),即OPEN(X)=D(E(X))

让我们来看一个开运算的例子(见图6.16)

6.16开运算

在图16上面的两幅图中,左边是被处理的图象X(二值图象,我们针对的是黑点),右边是结构元素B,下面的两幅图中左边是腐蚀后的结果;右边是在此基础上膨胀的结果。可以看到,原图经过开运算后,一些孤立的小点被去掉了。一般来说,开运算能够去除孤立的小点,毛刺和小桥(即连通两块区域的小点),而总的位置和形状不变。这就是开运算的作用。要注意的是,如果B是非对称的,进行开运算时要用B的对称集Bv膨胀,否则,开运算的结果和原图相比要发生平移。图6.17和图6.18能够说明这个问题。

6.17 B膨胀后,结果向左平移了

6.18   Bv膨胀后位置不变

6.17是用B膨胀的,可以看到,OPEN(X)向左平移了。图18是用Bv膨胀的,可以看到,总的位置和形状不变。

6.19为图6.11经过开运算后的结果。

6.19   6.11经过开运算后的结果

开运算的源程序可以很容易的根据上面的腐蚀,膨胀程序得到,这里就不给出了。

先膨胀后腐蚀称为闭(close),即CLOSE(X)=E(D(X))

让我们来看一个闭运算的例子(见图6.20)

6.20   闭运算

在图6.20上面的两幅图中,左边是被处理的图象X(二值图象,我们针对的是黑点),右边是结构元素B,下面的两幅图中左边是膨胀后的结果,右边是在此基础上腐蚀的结果可以看到,原图经过闭运算后,断裂的地方被弥合了。一般来说,闭运算能够填平小湖(即小孔),弥合小裂缝,而总的位置和形状不变。这就是闭运算的作用。同样要注意的是,如果B是非对称的,进行闭运算时要用B的对称集Bv膨胀,否则,闭运算的结果和原图相比要发生平移。

6.21为图6.11经过闭运算后的结果。

6.21   .611经过闭运算后的结果

闭运算的源程序可以很容易的根据上面的膨胀,腐蚀程序得到,这里就不给出了。

你大概已经猜到了,开和闭也是对偶运算,的确如此。用公式表示为(OPEN(X))c=CLOSE((Xc)),或者(CLOSE(X))c =OPEN((Xc))。即开运算的补集等于X的补集的闭运算,或者闭运算的补集等于X的补集的开运算。这句话可以这样来理解:在两个小岛之间有一座小桥,我们把岛和桥看做是处理对象X,则X的补集为大海。如果涨潮时将小桥和岛的外围淹没(相当于用尺寸比桥宽大的结构元素对X进行开运算),那么两个岛的分隔,相当于小桥两边海域的连通(Xc做闭运算)

细化

细化(thinning)算法有很多,我们在这里介绍的是一种简单而且效果很好的算法,用它就能够实现从文本抽取骨架的功能。我们的对象是白纸黑字的文本,但在程序中为了处理的方便,还是采用256级灰度图,不过只用到了调色板中0255两项。

所谓细化,就是从原来的图中去掉一些点,但仍要保持原来的形状。实际上,是保持原图的骨架。所谓骨架,可以理解为图象的中轴,例如一个长方形的骨架是它的长方向上的中轴线;正方形的骨架是它的中心点;圆的骨架是它的圆心,直线的骨架是它自身,孤立点的骨架也是自身。文本的骨架嘛,前言中的例子显示的很明白。那么怎样判断一个点是否能去掉呢?显然,要根据它的八个相邻点的情况来判断,我们给几个例子(如图6.22所示)

6.22   根据某点的八个相邻点的情况来判断该点是否能删除

6.22中,(1)不能删,因为它是个内部点,我们要求的是骨架,如果连内部点也删了,骨架也会被掏空的;(2)不能删,和(1)是同样的道理;(3)可以删,这样的点不是骨架;(4)不能删,因为删掉后,原来相连的部分断开了;(5)可以删,这样的点不是骨架;(6)不能删,因为它是直线的端点,如果这样的点删了,那么最后整个直线也被删了,剩不下什么;(7)不能删,因为孤立点的骨架就是它自身。

总结一下,有如下的判据:(1)内部点不能删除;(2)孤立点不能删除;(3)直线端点不能删除;(4)如果P是边界点,去掉P后,如果连通分量不增加,则P可以删除。

我们可以根据上述的判据,事先做出一张表,从0255共有256个元素,每个元素要么是0,要么是1。我们根据某点(当然是要处理的黑色点了)的八个相邻点的情况查表,若表中的元素是1,则表示该点可删,否则保留。

查表的方法是,设白点为1,黑点为0;左上方点对应一个8位数的第一位(最低位),正上方点对应第二位,右上方点对应的第三位,左邻点对应第四位,右邻点对应第五位,左下方点对应第六位,正下方点对应第七位,右下方点对应的第八位,按这样组成的8位数去查表即可。例如上面的例子中(1)对应表中的第0项,该项应该为0(2)对应37,该项应该为0(3)对应173,该项应该为1(4)对应231,该项应该为0(5)对应237,该项应该为1(6)对应254,该项应该为0(7)对应255,该项应该为0

这张表我已经替大家做好了,可花了我不少时间呢!

static int erasetable[256]={

                                         0,0,1,1,0,0,1,1,          1,1,0,1,1,1,0,1,

                                   1,1,0,0,1,1,1,1,             0,0,0,0,0,0,0,1,

                                          0,0,1,1,0,0,1,1,             1,1,0,1,1,1,0,1,

                                          1,1,0,0,1,1,1,1,             0,0,0,0,0,0,0,1,

                                          1,1,0,0,1,1,0,0,             0,0,0,0,0,0,0,0,

                                          0,0,0,0,0,0,0,0,             0,0,0,0,0,0,0,0,

                                          1,1,0,0,1,1,0,0,             1,1,0,1,1,1,0,1,

                                   0,0,0,0,0,0,0,0,             0,0,0,0,0,0,0,0,

                           0,0,1,1,0,0,1,1,             1,1,0,1,1,1,0,1,

                                          1,1,0,0,1,1,1,1,             0,0,0,0,0,0,0,1,

                                          0,0,1,1,0,0,1,1,             1,1,0,1,1,1,0,1,

                                          1,1,0,0,1,1,1,1,             0,0,0,0,0,0,0,0,

                                          1,1,0,0,1,1,0,0,             0,0,0,0,0,0,0,0,

                                1,1,0,0,1,1,1,1,             0,0,0,0,0,0,0,0,

                                          1,1,0,0,1,1,0,0,             1,1,0,1,1,1,0,0,

                                   1,1,0,0,1,1,1,0,             1,1,0,0,1,0,0,0

                                     };

有了这张表,算法就很简单了,每次对一行一行的将整个图象扫描一遍,对于每个点(不包括边界点),计算它在表中对应的索引,若为0,则保留,否则删除该点。如果这次扫描没有一个点被删除,则循环结束,剩下的点就是骨架点,如果有点被删除,则进行新的一轮扫描,如此反复,直到没有点被删除为止。

实际上,该算法有一些缺陷。举个简单的例子,有一个黑色矩形,如图6.23所示。

6.23经过细化后,我们预期的结果是一条水平直线,且位于该黑色矩形的中心。实际的结果确实是一条水平直线,但不是位于黑色矩形的中心,而是最下面的一条边。

为什么会这样,我们来分析一下:在从上到下,从左到右的扫描过程中,我们遇到的第一个黑点就是黑色矩形的左上角点,经查表,该点可以删。下一个点是它右边的点,经查表,该点也可以删,如此下去,整个一行被删了。每一行都是同样的情况,所以都被删除了。到了最后一行时,黑色矩形已经变成了一条直线,最左边的黑点不能删,因为它是直线的端点,它右边的点也不能删,因为如果删除,直线就断了,如此下去,直到最右边的点,也不能删,因为它是直线的右端点。所以最下面的一条边保住了,但这并不是我们希望的结果。

解决的办法是,在每一行水平扫描的过程中,先判断每一点的左右邻居,如果都是黑点,则该点不做处理。另外,如果某个黑点被删除了,那么跳过它的右邻居,处理下一个点。这样就避免了上述的问题。

6.23  黑色矩形

6.24  6.23细化后的结果

解决了上面的问题,我们来看看处理后的结果,如图6.24所示。这次变成一小段竖线了,还是不对,是不是很沮丧?别着急,让我们再来分析一下:在上面的算法中,我们遇到的第一个能删除的点就是黑色矩形的左上角点;第二个是第一行的最右边的点,即黑色矩形的右上角点;第三个是第二行的最左边的点;第四个是第二行的最右边的点;……;整个图象处理这样一次后,宽度减少2。每次都是如此,直到剩最中间一列,就不能再删了。为什么会这样呢?原因是这样的处理过程只实现了水平细化,如果在每一次水平细化后,再进行一次垂直方向的细化(只要把上述过程的行列换一下),就可以了。

这样一来,每处理一次,删除点的顺序变成:(先是水平方向扫描)第一行最左边的点;第一行最右边的点;第二行最左边的点;第二行最右边的点;……最后一行最左边的点;最后一行最右边的点;(然后是垂直方向扫描)第二列最上边的点(因为第一列最上边的点已被删除);第二列最下边的点;第三列最上边的点;第三列最下边的点;……倒数第二列最上边的点(因为倒数第一列最上边的点已被删除);倒数第二列最下边的点。我们发现,刚好剥掉了一圈,这也正是细化要做的事。实际的结果也验证了我们的想法。

以下是源程序,黑体字部分是值得注意的地方。

复制代码
BOOL Thinning(HWND hWnd)

{

       DWORD                             OffBits,BufSize;

     LPBITMAPINFOHEADER    lpImgData;

       LPSTR                            lpPtr;

       HLOCAL                  hTempImgData;

       LPBITMAPINFOHEADER    lpTempImgData;

       LPSTR                   lpTempPtr;

       HDC                      hDc;

       HFILE                    hf;

       LONG                    x,y;

       int                                        num;

       BOOL                     Finished;

       int                        nw,n,ne,w,e,sw,s,se;

//为了处理的方便,仍采用256级灰度图,不过只用调色板中0和255两项

       if( NumColors!=256){

MessageBox(hWnd,"Must be a mono bitmap with grayscale palette!",

"Error Message",MB_OK|MB_ICONEXCLAMATION);

return FALSE;

}

OffBits=bf.bfOffBits-sizeof(BITMAPFILEHEADER);

//BufSize为缓冲区大小

       BufSize=OffBits+bi.biHeight*LineBytes;

//为新的缓冲区分配内存

       if((hTempImgData=LocalAlloc(LHND,BufSize))==NULL)

{

            MessageBox(hWnd,"Error alloc memory!","Error Message",

MB_OK|MB_ICONEXCLAMATION);

return FALSE;

}

     lpImgData=(LPBITMAPINFOHEADER)GlobalLock(hImgData);    

       lpTempImgData=(LPBITMAPINFOHEADER)LocalLock(hTempImgData);

       //拷贝头信息和位图数据     

       memcpy(lpTempImgData,lpImgData,BufSize);

       //结束标志置成假

       Finished=FALSE;

while(!Finished){ //还没有结束

              //结束标志置成假

            Finished=TRUE;

       //先进行水平方向的细化

              for (y=1;y<bi.biHeight-1;y++){ //注意为防止越界,y的范围从1到高度-2

                     //lpPtr指向原图数据,lpTempPtr指向新图数据

                     lpPtr=(char *)lpImgData+(BufSize-LineBytes-y*LineBytes);

                     lpTempPtr=(char *)lpTempImgData+(BufSize-LineBytes-y*LineBytes);

                     x=1; //注意为防止越界,x的范围从1到宽度-2

                     while(x<bi.biWidth-1){

                            if(*(lpPtr+x)==0){ //是黑点才做处理

                                   w=(unsigned char)*(lpPtr+x-1);  //左邻点

                                   e=(unsigned char)*(lpPtr+x+1);  //右邻点

                                   if( (w==255)|| (e==255)){ 

//如果左右两个邻居中至少有一个是白点才处理

                                          nw=(unsigned char)*(lpPtr+x+LineBytes-1); //左上邻点

                                          n=(unsigned char)*(lpPtr+x+LineBytes); //上邻点

                                          ne=(unsigned char)*(lpPtr+x+LineBytes+1); //右上邻点

                                          sw=(unsigned char)*(lpPtr+x-LineBytes-1); //左下邻点

                                          s=(unsigned char)*(lpPtr+x-LineBytes); //下邻点

                                          se=(unsigned char)*(lpPtr+x-LineBytes+1); //右下邻点

                                          //计算索引

                            num=nw/255+n/255*2+ne/255*4+w/255*8+e/255*16+

sw/255*32+s/255*64+se/255*128;

                                          if(erasetable[num]==1){ //经查表,可以删除

//在原图缓冲区中将该黑点删除

                                                 *(lpPtr+x)=(BYTE)255; 

//结果图中该黑点也删除

                                                 *(lpTempPtr+x)=(BYTE)255; 

                                                 Finished=FALSE; //有改动,结束标志置成假

                                                 x++; //水平方向跳过一个象素

                                          }

                                   }

                            }

                            x++; //扫描下一个象素

                     }

              }

       //再进行垂直方向的细化

              for (x=1;x<bi.biWidth-1;x++){ //注意为防止越界,x的范围从1到宽度-2

                     y=1; //注意为防止越界,y的范围从1到高度-2

                     while(y<bi.biHeight-1){

                            lpPtr=(char *)lpImgData+(BufSize-LineBytes-y*LineBytes);

                            lpTempPtr=(char*)lpTempImgData+

(BufSize-LineBytes-y*LineBytes);

                            if(*(lpPtr+x)==0){ //是黑点才做处理

                                   n=(unsigned char)*(lpPtr+x+LineBytes);

                                   s=(unsigned char)*(lpPtr+x-LineBytes);

                                   if( (n==255)|| (s==255)){

//如果上下两个邻居中至少有一个是白点才处理

                                          nw=(unsigned char)*(lpPtr+x+LineBytes-1);

                                          ne=(unsigned char)*(lpPtr+x+LineBytes+1);

                                          w=(unsigned char)*(lpPtr+x-1);

                                          e=(unsigned char)*(lpPtr+x+1);

                                          sw=(unsigned char)*(lpPtr+x-LineBytes-1);

                                          se=(unsigned char)*(lpPtr+x-LineBytes+1);

                                          //计算索引

num=nw/255+n/255*2+ne/255*4+w/255*8+e/255*16+

sw/255*32+s/255*64+se/255*128;

                                          if(erasetable[num]==1){ //经查表,可以删除

//在原图缓冲区中将该黑点删除

                                                 *(lpPtr+x)=(BYTE)255; 

//结果图中该黑点也删除

                                                 *(lpTempPtr+x)=(BYTE)255; 

                                                 Finished=FALSE; //有改动,结束标志置成假

                                                 y++;//垂直方向跳过一个象素

                                          }

                                   }

                            }

                            y++; //扫描下一个象素

                     }

              } 

}

     if(hBitmap!=NULL)

           DeleteObject(hBitmap);

       hDc=GetDC(hWnd);     

       //产生新的位图

       hBitmap=CreateDIBitmap(hDc,(LPBITMAPINFOHEADER)lpTempImgData,

(LONG)CBM_INIT,

(LPSTR)lpTempImgData+

sizeof(BITMAPINFOHEADER)+

NumColors*sizeof(RGBQUAD),

(LPBITMAPINFO)lpTempImgData,

DIB_RGB_COLORS);

hf=_lcreat("c:\\thinning.bmp",0);

       _lwrite(hf,(LPSTR)&bf,sizeof(BITMAPFILEHEADER)); 

       _lwrite(hf,(LPSTR)lpTempImgData,BufSize);

       _lclose(hf);

       //释放内存及资源

      ReleaseDC(hWnd,hDc);

       LocalUnlock(hTempImgData);

       LocalFree(hTempImgData);

       GlobalUnlock(hImgData);

       return TRUE;

}
复制代码

题外话:

腐蚀:删除对象边界的某些像素

膨胀:给图像中的对象边界添加像素

算法:

膨胀算法:用3X3的结构元素,扫描二值图像的每一个像素,用结构元素与其覆盖的二值图像做“与”运算,如果都为0,结构图像的该像素为0,否则为1.结果:使二值图像扩大一圈。

腐蚀算法:用3X3的结构元素,扫描二值图像的每一个像素,用结构元素与其覆盖的二值图像做“与”运算,如果都为1,结构图像的该像素为1,否则为0.结果:使二值图像减小一圈。



2016-07-05 21:54:45 zhougynui 阅读数 21299

背景知识

结构元素:二维结构元素可以理解成一个二维矩阵,矩阵元素的值为0或者1;通常结构元素要小于待处理的图像。

腐蚀与膨胀基本原理:就是用一个特定的结构元素来与待处理图像按像素做逻辑操作;可以理解成拿一个带孔的网格板(结构元素矩阵中元素为1的为孔)盖住图像的某一部分,然后按照各种不同的观察方式来确定操作类型。

比如:腐蚀操作就是拿这个结构元素的中心位置(假设参与逻辑计算的元素对应与二维矩阵中元素为1的点,即网格板上的孔),在图像上移动时,如果透过所有的孔都能看到底下的图像,那么这个中心点处的图像就保留,否则去除。

腐蚀

       把结构元素B平移a后得到Ba,若Ba包含于X,我们记下这个a点,所有满足上述条件的a点组成的集合称做X被B腐蚀(Erosion)的结果。用公式表示为:E(X)={a| Ba∈X}=XB。原理图如下:


       实际使用时示意图:


      说明:左边是被处理的图象X(二值图象,我们针对的是黑点),中间是结构元素B,那个标有origin的点是中心点,即当前处理元素的位置,我们在介绍模板操作时也有过类似的概念。腐蚀的方法是,拿B的中心点和X上的点一个一个地对比,如果B上的所有点都在X的范围内,则该点保留,否则将该点去掉;右边是腐蚀后的结果。可以看出,它仍在原来X的范围内,且比X包含的点要少,就象X被腐蚀掉了一层。


膨胀

          膨胀(dilation)可以看做是腐蚀的对偶运算,其定义是:把结构元素B平移a后得到Ba,若Ba击中X,我们记下这个a点。所有满足上述条件的a点组成的集合称做XB膨胀的结果。用公式表示为:D(X)={a | BaX}=X  B,如图6.13所示。图6.13X是被处理的对象,B是结构元素,不难知道,对于任意一个在阴影部分的点aBa击中X,所以XB膨胀的结果就是那个阴影部分。阴影部分包括X的所有范围,就象X膨胀了一圈似的,这就是为什么叫膨胀的原因。原理图如下:


实际使用时示意图:



说明:左边是被处理的图象X(二值图象,我们针对的是黑点),中间是结构元素B。膨胀的方法是,拿B的中心点和X上的点及X周围的点一个一个地对,如果B上有一个点落在X的范围内,则该点就为黑;右边是膨胀后的结果。可以看出,它包括X的所有范围,就象X膨胀了一圈似的。


2014-04-14 23:12:24 zhmxy555 阅读数 139892


本系列文章由@浅墨_毛星云 出品,转载请注明出处。  

文章链接: http://blog.csdn.net/poem_qianmo/article/details/23710721

作者:毛星云(浅墨)    邮箱: happylifemxy@163.com 

写作当前博文时配套使用的OpenCV版本: 2.4.8



本篇文章中,我们一起探究了图像处理中,最基本的形态学运算——膨胀与腐蚀。浅墨在文章开头友情提醒,用人物照片做腐蚀和膨胀的素材图片得到的效果会比较惊悚,毁三观的,不建议尝试。。。。。。。。。。


OK,开始吧,依然是先放一张截图:





一、理论与概念讲解——从现象到本质



1.1 形态学概述

 

形态学(morphology)一词通常表示生物学的一个分支,该分支主要研究动植物的形态和结构。而我们图像处理中指的形态学,往往表示的是数学形态学。下面一起来了解数学形态学的概念。

数学形态学(Mathematical morphology) 是一门建立在格论和拓扑学基础之上的图像分析学科,是数学形态学图像处理的基本理论。其基本的运算包括:二值腐蚀和膨胀、二值开闭运算、骨架抽取、极限腐蚀、击中击不中变换、形态学梯度、Top-hat变换、颗粒分析、流域变换、灰值腐蚀和膨胀、灰值开闭运算、灰值形态学梯度等。

 

简单来讲,形态学操作就是基于形状的一系列图像处理操作。OpenCV为进行图像的形态学变换提供了快捷、方便的函数。最基本的形态学操作有二种,他们是:膨胀与腐蚀(Dilation与Erosion)。

膨胀与腐蚀能实现多种多样的功能,主要如下:

  • 消除噪声
  • 分割(isolate)出独立的图像元素,在图像中连接(join)相邻的元素。
  • 寻找图像中的明显的极大值区域或极小值区域
  • 求出图像的梯度

 


我们在这里给出下文会用到的,用于对比膨胀与腐蚀运算的“浅墨”字样毛笔字原图:

 

在进行腐蚀和膨胀的讲解之前,首先需要注意,腐蚀和膨胀是对白色部分(高亮部分)而言的,不是黑色部分。膨胀就是图像中的高亮部分进行膨胀,“领域扩张”,效果图拥有比原图更大的高亮区域。腐蚀就是原图中的高亮部分被腐蚀,“领域被蚕食”,效果图拥有比原图更小的高亮区域。

 





1.2 膨胀

 

其实,膨胀就是求局部最大值的操作。

按数学方面来说,膨胀或者腐蚀操作就是将图像(或图像的一部分区域,我们称之为A)与核(我们称之为B)进行卷积。

核可以是任何的形状和大小,它拥有一个单独定义出来的参考点,我们称其为锚点(anchorpoint)。多数情况下,核是一个小的中间带有参考点和实心正方形或者圆盘,其实,我们可以把核视为模板或者掩码。

 

而膨胀就是求局部最大值的操作,核B与图形卷积,即计算核B覆盖的区域的像素点的最大值,并把这个最大值赋值给参考点指定的像素。这样就会使图像中的高亮区域逐渐增长。如下图所示,这就是膨胀操作的初衷。



膨胀的数学表达式:


膨胀效果图(毛笔字):

 

照片膨胀效果图:


 



1.3 腐蚀


再来看一下腐蚀,大家应该知道,膨胀和腐蚀是一对好基友,是相反的一对操作,所以腐蚀就是求局部最小值的操作。

我们一般都会把腐蚀和膨胀对应起来理解和学习。下文就可以看到,两者的函数原型也是基本上一样的。

 

原理图:

 

腐蚀的数学表达式:

 

腐蚀效果图(毛笔字):


照片腐蚀效果图:

 

 浅墨表示这张狗狗超可爱:D

 

 



二、深入——OpenCV源码分析溯源

 


直接上源码吧,在…\opencv\sources\modules\imgproc\src\ morph.cpp路径中 的第1353行开始就为erode(腐蚀)函数的源码,1361行为dilate(膨胀)函数的源码。

//-----------------------------------【erode()函数中文注释版源代码】---------------------------- 
//    说明:以下代码为来自于计算机开源视觉库OpenCV的官方源代码 
//    OpenCV源代码版本:2.4.8 
//    源码路径:…\opencv\sources\modules\imgproc\src\ morph.cpp 
//    源文件中如下代码的起始行数:1353行 
//    中文注释by浅墨 
//--------------------------------------------------------------------------------------------------------  
void cv::erode( InputArray src, OutputArraydst, InputArray kernel,
                Point anchor, int iterations,
                int borderType, constScalar& borderValue )
{
//调用morphOp函数,并设定标识符为MORPH_ERODE
   morphOp( MORPH_ERODE, src, dst, kernel, anchor, iterations, borderType,borderValue );
}

//-----------------------------------【dilate()函数中文注释版源代码】---------------------------- 
//    说明:以下代码为来自于计算机开源视觉库OpenCV的官方源代码 
//    OpenCV源代码版本:2.4.8 
//    源码路径:…\opencv\sources\modules\imgproc\src\ morph.cpp 
//    源文件中如下代码的起始行数:1361行 
//    中文注释by浅墨 
//-------------------------------------------------------------------------------------------------------- 
void cv::dilate( InputArray src,OutputArray dst, InputArray kernel,
                 Point anchor, int iterations,
                 int borderType, constScalar& borderValue )
{
//调用morphOp函数,并设定标识符为MORPH_DILATE
   morphOp( MORPH_DILATE, src, dst, kernel, anchor, iterations, borderType,borderValue );
}


可以发现erode和dilate这两个函数内部就是调用了一下morphOp,只是他们调用morphOp时,第一个参数标识符不同,一个为MORPH_ERODE(腐蚀),一个为MORPH_DILATE(膨胀)。

morphOp函数的源码在…\opencv\sources\modules\imgproc\src\morph.cpp中的第1286行,有兴趣的朋友们可以研究研究,这里就不费时费力花篇幅展开分析了。

 

 

 

三、浅出——API函数快速上手

 



3.1  形态学膨胀——dilate函数

 


erode函数,使用像素邻域内的局部极大运算符来膨胀一张图片,从src输入,由dst输出。支持就地(in-place)操作。

函数原型:

C++: void dilate(
	InputArray src,
	OutputArray dst,
	InputArray kernel,
	Point anchor=Point(-1,-1),
	int iterations=1,
	int borderType=BORDER_CONSTANT,
	const Scalar& borderValue=morphologyDefaultBorderValue() 
);

参数详解:

  • 第一个参数,InputArray类型的src,输入图像,即源图像,填Mat类的对象即可。图像通道的数量可以是任意的,但图像深度应为CV_8U,CV_16U,CV_16S,CV_32F或 CV_64F其中之一。
  • 第二个参数,OutputArray类型的dst,即目标图像,需要和源图片有一样的尺寸和类型。
  • 第三个参数,InputArray类型的kernel,膨胀操作的核。若为NULL时,表示的是使用参考点位于中心3x3的核。

我们一般使用函数 getStructuringElement配合这个参数的使用。getStructuringElement函数会返回指定形状和尺寸的结构元素(内核矩阵)。

其中,getStructuringElement函数的第一个参数表示内核的形状,我们可以选择如下三种形状之一:

    • 矩形: MORPH_RECT
    • 交叉形: MORPH_CROSS
    • 椭圆形: MORPH_ELLIPSE

而getStructuringElement函数的第二和第三个参数分别是内核的尺寸以及锚点的位置。

我们一般在调用erode以及dilate函数之前,先定义一个Mat类型的变量来获得getStructuringElement函数的返回值。对于锚点的位置,有默认值Point(-1,-1),表示锚点位于中心。且需要注意,十字形的element形状唯一依赖于锚点的位置。而在其他情况下,锚点只是影响了形态学运算结果的偏移。

getStructuringElement函数相关的调用示例代码如下:

 int g_nStructElementSize = 3; //结构元素(内核矩阵)的尺寸
 
//获取自定义核
Mat element = getStructuringElement(MORPH_RECT,
	Size(2*g_nStructElementSize+1,2*g_nStructElementSize+1),
	Point( g_nStructElementSize, g_nStructElementSize ));


调用这样之后,我们便可以在接下来调用erode或dilate函数时,第三个参数填保存了getStructuringElement返回值的Mat类型变量。对应于我们上面的示例,就是填element变量。


  • 第四个参数,Point类型的anchor,锚的位置,其有默认值(-1,-1),表示锚位于中心。
  • 第五个参数,int类型的iterations,迭代使用erode()函数的次数,默认值为1。
  • 第六个参数,int类型的borderType,用于推断图像外部像素的某种边界模式。注意它有默认值BORDER_DEFAULT。
  • 第七个参数,const Scalar&类型的borderValue,当边界为常数时的边界值,有默认值morphologyDefaultBorderValue(),一般我们不用去管他。需要用到它时,可以看官方文档中的createMorphologyFilter()函数得到更详细的解释。
  •  

使用erode函数,一般我们只需要填前面的三个参数,后面的四个参数都有默认值。而且往往结合getStructuringElement一起使用。

调用范例:

       	//载入原图 
       	Mat image = imread("1.jpg");
	//获取自定义核
       	Mat element = getStructuringElement(MORPH_RECT, Size(15, 15));
       	Mat out;
       	//进行膨胀操作
       	dilate(image, out, element);

用上面核心代码架起来的完整程序代码:

 

//-----------------------------------【头文件包含部分】---------------------------------------
//     描述:包含程序所依赖的头文件
//----------------------------------------------------------------------------------------------
#include <opencv2/core/core.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/imgproc/imgproc.hpp>
#include <iostream>
 
//-----------------------------------【命名空间声明部分】---------------------------------------
//     描述:包含程序所使用的命名空间
//----------------------------------------------------------------------------------------------- 
using namespace std;
using namespace cv;
 
//-----------------------------------【main( )函数】--------------------------------------------
//     描述:控制台应用程序的入口函数,我们的程序从这里开始
//-----------------------------------------------------------------------------------------------
int main(  )
{
 
       //载入原图 
       Mat image = imread("1.jpg");
 
       //创建窗口 
       namedWindow("【原图】膨胀操作");
       namedWindow("【效果图】膨胀操作");
 
       //显示原图
       imshow("【原图】膨胀操作", image);
 
	//获取自定义核
       Mat element = getStructuringElement(MORPH_RECT, Size(15, 15));
       Mat out;
	//进行膨胀操作
       dilate(image,out, element);
 
       //显示效果图
       imshow("【效果图】膨胀操作", out);
 
       waitKey(0);
 
       return 0;
}

 运行截图:



 

 

 

3.2 形态学腐蚀——erode函数



erode函数,使用像素邻域内的局部极小运算符来腐蚀一张图片,从src输入,由dst输出。支持就地(in-place)操作。

 

看一下函数原型:

C++: void erode(
	InputArray src,
	OutputArray dst,
	InputArray kernel,
	Point anchor=Point(-1,-1),
	int iterations=1,
	int borderType=BORDER_CONSTANT,
	const Scalar& borderValue=morphologyDefaultBorderValue()
 );

参数详解:

  • 第一个参数,InputArray类型的src,输入图像,即源图像,填Mat类的对象即可。图像通道的数量可以是任意的,但图像深度应为CV_8U,CV_16U,CV_16S,CV_32F或 CV_64F其中之一。
  • 第二个参数,OutputArray类型的dst,即目标图像,需要和源图片有一样的尺寸和类型。
  • 第三个参数,InputArray类型的kernel,腐蚀操作的内核。若为NULL时,表示的是使用参考点位于中心3x3的核。我们一般使用函数 getStructuringElement配合这个参数的使用。getStructuringElement函数会返回指定形状和尺寸的结构元素(内核矩阵)。(具体看上文中浅出部分dilate函数的第三个参数讲解部分)
  • 第四个参数,Point类型的anchor,锚的位置,其有默认值(-1,-1),表示锚位于单位(element)的中心,我们一般不用管它。
  • 第五个参数,int类型的iterations,迭代使用erode()函数的次数,默认值为1。
  • 第六个参数,int类型的borderType,用于推断图像外部像素的某种边界模式。注意它有默认值BORDER_DEFAULT。
  • 第七个参数,const Scalar&类型的borderValue,当边界为常数时的边界值,有默认值morphologyDefaultBorderValue(),一般我们不用去管他。需要用到它时,可以看官方文档中的createMorphologyFilter()函数得到更详细的解释。

同样的,使用erode函数,一般我们只需要填前面的三个参数,后面的四个参数都有默认值。而且往往结合getStructuringElement一起使用。

调用范例:

       	//载入原图 
       	Mat image = imread("1.jpg");
	//获取自定义核
       	Mat element = getStructuringElement(MORPH_RECT, Size(15, 15));
       	Mat out;
       	//进行腐蚀操作
       	erode(image,out, element);

用上面核心代码架起来的完整程序代码:

 

//-----------------------------------【头文件包含部分】---------------------------------------
//     描述:包含程序所依赖的头文件
//----------------------------------------------------------------------------------------------
#include <opencv2/core/core.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/imgproc/imgproc.hpp>
#include <iostream>
 
//-----------------------------------【命名空间声明部分】---------------------------------------
//     描述:包含程序所使用的命名空间
//----------------------------------------------------------------------------------------------- 
using namespace std;
using namespace cv;
 
//-----------------------------------【main( )函数】--------------------------------------------
//     描述:控制台应用程序的入口函数,我们的程序从这里开始
//-----------------------------------------------------------------------------------------------
int main(  )
{
       //载入原图 
       Matimage = imread("1.jpg");
 
        //创建窗口 
       namedWindow("【原图】腐蚀操作");
       namedWindow("【效果图】腐蚀操作");
 
       //显示原图
       imshow("【原图】腐蚀操作", image);
 
        
//获取自定义核
       Mat element = getStructuringElement(MORPH_RECT, Size(15, 15));
       Mat out;
 
//进行腐蚀操作
       erode(image,out, element);
 
       //显示效果图
       imshow("【效果图】腐蚀操作", out);
 
       waitKey(0);
 
       return 0;
}


运行结果:

 

 

 

 

四、综合示例——在实战中熟稔

 

 

依然是每篇文章都会配给大家的一个详细注释的博文配套示例程序,把这篇文章中介绍的知识点以代码为载体,展现给大家。

这个示例程序中的效果图窗口有两个滚动条,顾名思义,第一个滚动条“腐蚀/膨胀”用于在腐蚀/膨胀之间进行切换;第二个滚动条”内核尺寸”用于调节形态学操作时的内核尺寸,以得到效果不同的图像,有一定的可玩性。废话不多说,上代码吧:

 
//-----------------------------------【程序说明】----------------------------------------------
//            程序名称::《【OpenCV入门教程之十】形态学图像处理(一):膨胀与腐蚀  》 博文配套源码
//            开发所用IDE版本:Visual Studio 2010
//          开发所用OpenCV版本: 2.4.8
//            2014年4月14日 Create by 浅墨
//            浅墨的微博:@浅墨_毛星云
//------------------------------------------------------------------------------------------------
 
//-----------------------------------【头文件包含部分】---------------------------------------
//            描述:包含程序所依赖的头文件
//----------------------------------------------------------------------------------------------
#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include<opencv2/imgproc/imgproc.hpp>
#include <iostream>
 
//-----------------------------------【命名空间声明部分】---------------------------------------
//            描述:包含程序所使用的命名空间
//-----------------------------------------------------------------------------------------------
using namespace std;
using namespace cv;
 
 
//-----------------------------------【全局变量声明部分】--------------------------------------
//            描述:全局变量声明
//-----------------------------------------------------------------------------------------------
Mat g_srcImage, g_dstImage;//原始图和效果图
int g_nTrackbarNumer = 0;//0表示腐蚀erode, 1表示膨胀dilate
int g_nStructElementSize = 3; //结构元素(内核矩阵)的尺寸
 
 
//-----------------------------------【全局函数声明部分】--------------------------------------
//            描述:全局函数声明
//-----------------------------------------------------------------------------------------------
void Process();//膨胀和腐蚀的处理函数
void on_TrackbarNumChange(int, void *);//回调函数
void on_ElementSizeChange(int, void *);//回调函数
 
 
//-----------------------------------【main( )函数】--------------------------------------------
//            描述:控制台应用程序的入口函数,我们的程序从这里开始
//-----------------------------------------------------------------------------------------------
int main( )
{
       //改变console字体颜色
       system("color5E"); 
 
       //载入原图
       g_srcImage= imread("1.jpg");
       if(!g_srcImage.data ) { printf("Oh,no,读取srcImage错误~!\n"); return false; }
      
       //显示原始图
       namedWindow("【原始图】");
       imshow("【原始图】", g_srcImage);
      
       //进行初次腐蚀操作并显示效果图
       namedWindow("【效果图】");
       //获取自定义核
       Mat element = getStructuringElement(MORPH_RECT, Size(2*g_nStructElementSize+1,2*g_nStructElementSize+1),Point( g_nStructElementSize, g_nStructElementSize ));
       erode(g_srcImage,g_dstImage, element);
       imshow("【效果图】", g_dstImage);
 
       //创建轨迹条
       createTrackbar("腐蚀/膨胀", "【效果图】", &g_nTrackbarNumer, 1, on_TrackbarNumChange);
       createTrackbar("内核尺寸", "【效果图】",&g_nStructElementSize, 21, on_ElementSizeChange);
 
       //输出一些帮助信息
       cout<<endl<<"\t嗯。运行成功,请调整滚动条观察图像效果~\n\n"
              <<"\t按下“q”键时,程序退出~!\n"
              <<"\n\n\t\t\t\tby浅墨";
 
       //轮询获取按键信息,若下q键,程序退出
       while(char(waitKey(1))!= 'q') {}
 
       return 0;
}
 
//-----------------------------【Process( )函数】------------------------------------
//            描述:进行自定义的腐蚀和膨胀操作
//-----------------------------------------------------------------------------------------
void Process()
{
       //获取自定义核
       Mat element = getStructuringElement(MORPH_RECT, Size(2*g_nStructElementSize+1,2*g_nStructElementSize+1),Point( g_nStructElementSize, g_nStructElementSize ));
 
       //进行腐蚀或膨胀操作
       if(g_nTrackbarNumer== 0) {   
              erode(g_srcImage,g_dstImage, element);
       }
       else{
              dilate(g_srcImage,g_dstImage, element);
       }
 
       //显示效果图
       imshow("【效果图】", g_dstImage);
}
 
 
//-----------------------------【on_TrackbarNumChange( )函数】------------------------------------
//            描述:腐蚀和膨胀之间切换开关的回调函数
//-----------------------------------------------------------------------------------------------------
void on_TrackbarNumChange(int, void *)
{
       //腐蚀和膨胀之间效果已经切换,回调函数体内需调用一次Process函数,使改变后的效果立即生效并显示出来
       Process();
}
 
 
//-----------------------------【on_ElementSizeChange( )函数】-------------------------------------
//            描述:腐蚀和膨胀操作内核改变时的回调函数
//-----------------------------------------------------------------------------------------------------
void on_ElementSizeChange(int, void *)
{
       //内核尺寸已改变,回调函数体内需调用一次Process函数,使改变后的效果立即生效并显示出来
       Process();
}


 

放出一些效果图吧。原始图:

 


膨胀效果图:

 






腐蚀效果图:







腐蚀和膨胀得到的图,都特有喜感,但千变万变,还是原图好看:



OK,就放出这些吧,具体更多的运行效果大家就自己下载示例程序回去玩吧。


本篇文章到这里就基本结束了,最后放出文章配套示例程序的打包下载地址。

 

本篇文章的配套源代码请点击这里下载:


【浅墨OpenCV入门教程之十】配套源代码下载

 


OK,今天的内容大概就是这些,我们下篇文章见:)




2018-11-23 11:53:15 DKhadoop 阅读数 696

 

图像的膨胀(Dilation)和腐蚀(Erosion)是两种基本的形态学运算,主要用来寻找图像中的极大区域和极小区域。其中膨胀类似于“领域扩张”,将图像中的高亮区域或白色部分进行扩张,其运行结果图比原图的高亮区域更大;腐蚀类似于“领域被蚕食”,将图像中的高亮区域或白色部分进行缩减细化,其运行结果图比原图的高亮区域更小。

1.图像膨胀

膨胀的运算符是“⊕”,其定义如下:

 

该公式表示用B来对图像A进行膨胀处理,其中B是一个卷积模板或卷积核,其形状可以为正方形或圆形,通过模板B与图像A进行卷积计算,扫描图像中的每一个像素点,用模板元素与二值图像元素做“与”运算,如果都为0,那么目标像素点为0,否则为1。从而计算B覆盖区域的像素点最大值,并用该值替换参考点的像素值实现膨胀。下图是将左边的原始图像A膨胀处理为右边的效果图A⊕B。

 

2.图像腐蚀

腐蚀的运算符是“-”,其定义如下:

 

该公式表示图像A用卷积模板B来进行腐蚀处理,通过模板B与图像A进行卷积计算,得出B覆盖区域的像素点最小值,并用这个最小值来替代参考点的像素值。如图所示,将左边的原始图像A腐蚀处理为右边的效果图A-B。

 

处理结果如下图所示:

 

  • 图像腐蚀代码实现

1.基础理论

形态学转换主要针对的是二值图像(0或1)。图像腐蚀类似于“领域被蚕食”,将图像中的高亮区域或白色部分进行缩减细化,其运行结果图比原图的高亮区域更小。其主要包括两个输入对象:

(1)二值图像

(2)卷积核

卷积核是腐蚀中的关键数组,采用numpy库可以生成。卷积核的中心点逐个像素扫描原始图像,如下图所示:

 

被扫描到的原始图像中的像素点,只有当卷积核对应的元素值均为1时,其值才为1,否则其值修改为0。换句话说,遍历到的黄色点位置,其周围全部是白色,保留白色,否则变为黑色,图像腐蚀变小。

 

2.函数原型

图像腐蚀主要使用的函数为erode,其原型如下:

dst = cv2.erode(src, kernel, iterations)

参数dst表示处理的结果,src表示原图像,kernel表示卷积核,iterations表示迭代次数。下图表示5*5的卷积核,可以采用函数 np.ones((5,5), np.uint8) 构建。

 

注意:迭代次数默认是1,表示进行一次腐蚀,也可以根据需要进行多次迭代,进行多次腐蚀。

3.代码实现

完整代码如下所示:

 

输出结果如下图所示:

 

由图可见,干扰的细线被进行了清洗,但仍然有些轮廓,此时可设置迭代次数进行腐蚀。

erosion = cv2.erode(src, kernel,iterations=9)

输出结果如下图所示:

 

 

三. 图像膨胀代码实现

1.基础理论

图像膨胀是腐蚀操作的逆操作,类似于“领域扩张”,将图像中的高亮区域或白色部分进行扩张,其运行结果图比原图的高亮区域更大,线条变粗了,主要用于去噪。

(1) 图像被腐蚀后,去除了噪声,但是会压缩图像。

(2) 对腐蚀过的图像,进行膨胀处理,可以去除噪声,并且保持原有形状。

 

它也包括两个输入对象:

(1)二值图像或原始图像

(2)卷积核

卷积核是腐蚀中的关键数组,采用numpy库可以生成。卷积核的中心点逐个像素扫描原始图像,如下图所示:

被扫描到的原始图像中的像素点,当卷积核对应的元素值只要有一个为1时,其值就为1,否则为0。

2.函数原型

图像膨胀主要使用的函数为dilate,其原型如下:

dst = cv2.dilate(src, kernel, iterations)

参数dst表示处理的结果,src表示原图像,kernel表示卷积核,iterations表示迭代次数。下图表示5*5的卷积核,可以采用函数 np.ones((5,5), np.uint8) 构建。

 

注意:迭代次数默认是1,表示进行一次膨胀,也可以根据需要进行多次迭代,进行多次膨胀。通常进行1次膨胀即可。

3.代码实现

完整代码如下所示:

 

输出结果如下所示:

 

图像去噪通常需要先腐蚀后膨胀,这又称为开运算,下篇文章将详细介绍。如下图所示:

erosion = cv2.erode(src, kernel)

result = cv2.dilate(erosion, kernel)