大数据处理_大数据处理能力测算 - CSDN
精华内容
参与话题
  • 大数据处理的四大步骤

    千次阅读 2019-06-12 21:59:41
    具体的大数据处理方法确实有很多,但是根据笔者长时间的实践,总结了一个普遍适用的大数据处理流程,并且这个流程应该能够对大家理顺大数据的处理有所帮助。整个处理流程可以概括为四步,分别是采集、导入...

    大数据时代处理数据理念的三大转变:要全体不要抽样,要效率不要绝对精确,要相关不要因果。

    大数据时代处理数据理念的三大转变:要全体不要抽样,要效率不要绝对精确,要相关不要因果。

    大数据处理的流程   

    具体的大数据处理方法确实有很多,但是根据笔者长时间的实践,总结了一个普遍适用的大数据处理流程,并且这个流程应该能够对大家理顺大数据的处理有所帮助。整个处理流程可以概括为四步,分别是采集、导入和预处理、统计和分析,最后是数据挖掘。

    大数据处理之一:采集

    大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。

    在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的思考和设计。

    大数据处理之二:导入/预处理

    虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。

    导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。

    大数据处理之三:统计/分析

    统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。

    统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。

    大数据处理之四:挖掘

    与前面统计和分析过程不同的是,大数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。

    整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。

    推荐阅读文章

    大数据时代需要了解的六件事

    大数据框架hadoop十大误解

    年薪30K的大数据开发工程师的工作经验总结?

    大数据框架hadoop我们遇见过的问题

    展开全文
  • 最好的6个大数据处理分析工具

    万次阅读 2017-01-19 13:55:32
    导读 大数据是一个含义广泛的术语,是指数据集,如此庞大而复杂的,他们需要专门设计的硬件和软件工具进行处理。该数据集通常是万亿或EB的大小。...在大数据和大数据分析,他们对企业的影响有一个兴趣高涨。大数据分

    导读 大数据是一个含义广泛的术语,是指数据集,如此庞大而复杂的,他们需要专门设计的硬件和软件工具进行处理。该数据集通常是万亿或EB的大小。这些数据集收集自各种各样的来源:传感器,气候信息,公开的信息,如杂志,报纸,文章。大数据产生的其他例子包括购买交易记录,网络日志,病历,军事监控,视频和图像档案,及大型电子商务。

    在大数据和大数据分析,他们对企业的影响有一个兴趣高涨。大数据分析是研究大量的数据的过程中寻找模式,相关性和其他有用的信息,可以帮助企业更好地适应变化,并做出更明智的决策。

    一、Hadoop

    20131028112945925
    Hadoop 是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop 还是可伸缩的,能够处理 PB 级数据。此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。

    Hadoop是一个能够让用户轻松架构和使用的分布式计算平台。用户可以轻松地在Hadoop上开发和运行处理海量数据的应用程序。它主要有以下几个优点:

    ⒈高可靠性。Hadoop按位存储和处理数据的能力值得人们信赖。

    ⒉高扩展性。Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中。

    ⒊高效性。Hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快。

    ⒋高容错性。Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配。

    Hadoop带有用 Java 语言编写的框架,因此运行在 Linux 生产平台上是非常理想的。Hadoop 上的应用程序也可以使用其他语言编写,比如 C++。

    二、HPCC

    HPCC,High Performance Computing and Communications(高性能计算与通信)的缩写。1993年,由美国科学、工程、技术联邦协调理事会向国会提交了“重大挑战项目:高性能计算与 通信”的报告,也就是被称为HPCC计划的报告,即美国总统科学战略项目,其目的是通过加强研究与开发解决一批重要的科学与技术挑战问题。HPCC是美国 实施信息高速公路而上实施的计划,该计划的实施将耗资百亿美元,其主要目标要达到:开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆 比特网络技术,扩展研究和教育机构及网络连接能力。

    大数据

      该项目主要由五部分组成:

    1、高性能计算机系统(HPCS),内容包括今后几代计算机系统的研究、系统设计工具、先进的典型系统及原有系统的评价等;

    2、先进软件技术与算法(ASTA),内容有巨大挑战问题的软件支撑、新算法设计、软件分支与工具、计算计算及高性能计算研究中心等;

    3、国家科研与教育网格(NREN),内容有中接站及10亿位级传输的研究与开发;

    4、基本研究与人类资源(BRHR),内容有基础研究、培训、教育及课程教材,被设计通过奖励调查者-开始的,长期 的调查在可升级的高性能计算中来增加创新意识流,通过提高教育和高性能的计算训练和通信来加大熟练的和训练有素的人员的联营,和来提供必需的基础架构来支 持这些调查和研究活动;

    5、信息基础结构技术和应用(IITA ),目的在于保证美国在先进信息技术开发方面的领先地位。

    三、Storm

    Storm是自由的开源软件,一个分布式的、容错的实时计算系统。Storm可以非常可靠的处理庞大的数据流,用于处理Hadoop的批量数据。Storm很简单,支持许多种编程语言,使用起来非常有趣。Storm由Twitter开源而来,其它知名的应用企业包括Groupon、淘宝、支付宝、阿里巴巴、乐元素、 Admaster等等。

    Storm有许多应用领域:实时分析、在线机器学习、不停顿的计算、分布式RPC(远过程调用协议,一种通过网络从远程计算机程序上请求服务)、 ETL(Extraction-Transformation-Loading的缩写,即数据抽取、转换和加载)等等。Storm的处理速度惊人:经测 试,每个节点每秒钟可以处理100万个数据元组。Storm是可扩展、容错,很容易设置和操作。

    四、Apache Drill

    u2943664272179852238fm11gp0
    为了帮助企业用户寻找更为有效、加快Hadoop数据查询的方法,Apache软件基金会近日发起了一项名为“Drill”的开源项目。Apache Drill 实现了 Google’s Dremel.

    据Hadoop厂商MapR Technologies公司产品经理Tomer Shiran介绍,“Drill”已经作为Apache孵化器项目来运作,将面向全球软件工程师持续推广。

    该项目将会创建出开源版本的谷歌Dremel Hadoop工具(谷歌使用该工具来为Hadoop数据分析工具的互联网应用提速)。而“Drill”将有助于Hadoop用户实现更快查询海量数据集的目的。

    “Drill”项目其实也是从谷歌的Dremel项目中获得灵感:该项目帮助谷歌实现海量数据集的分析处理,包括分析抓取Web文档、跟踪安装在Android Market上的应用程序数据、分析垃圾邮件、分析谷歌分布式构建系统上的测试结果等等。

    通过开发“Drill”Apache开源项目,组织机构将有望建立Drill所属的API接口和灵活强大的体系架构,从而帮助支持广泛的数据源、数据格式和查询语言。

    五、RapidMiner

    u11741276523898298278fm23gp0
    RapidMiner是世界领先的数据挖掘解决方案,在一个非常大的程度上有着先进技术。它数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。

    功能和特点

    免费提供数据挖掘技术和库

    100%用Java代码(可运行在操作系统)

    数据挖掘过程简单,强大和直观

    内部XML保证了标准化的格式来表示交换数据挖掘过程

    可以用简单脚本语言自动进行大规模进程

    多层次的数据视图,确保有效和透明的数据

    图形用户界面的互动原型

    命令行(批处理模式)自动大规模应用

    Java API(应用编程接口)

    简单的插件和推广机制

    强大的可视化引擎,许多尖端的高维数据的可视化建模

    400多个数据挖掘运营商支持

    耶鲁大学已成功地应用在许多不同的应用领域,包括文本挖掘,多媒体挖掘,功能设计,数据流挖掘,集成开发的方法和分布式数据挖掘。

    六、 Pentaho BI

    231659393753409
    Pentaho BI 平台不同于传统的BI 产品,它是一个以流程为中心的,面向解决方案(Solution)的框架。其目的在于将一系列企业级BI产品、开源软件、API等等组件集成起来,方便商务智能应用的开发。它的出现,使得一系列的面向商务智能的独立产品如Jfree、Quartz等等,能够集成在一起,构成一项项复杂的、完整的商务智能解决方案。

    Pentaho BI 平台,Pentaho Open BI 套件的核心架构和基础,是以流程为中心的,因为其中枢控制器是一个工作流引擎。工作流引擎使用流程定义来定义在BI 平台上执行的商业智能流程。流程可以很容易的被定制,也可以添加新的流程。BI 平台包含组件和报表,用以分析这些流程的性能。目前,Pentaho的主要组成元素包括报表生成、分析、数据挖掘和工作流管理等等。这些组件通过 J2EE、WebService、SOAP、HTTP、Java、JavaScript、Portals等技术集成到Pentaho平台中来。 Pentaho的发行,主要以Pentaho SDK的形式进行。

    Pentaho SDK共包含五个部分:Pentaho平台、Pentaho示例数据库、可独立运行的Pentaho平台、Pentaho解决方案示例和一个预先配制好的 Pentaho网络服务器。其中Pentaho平台是Pentaho平台最主要的部分,囊括了Pentaho平台源代码的主体;Pentaho数据库为 Pentaho平台的正常运行提供的数据服务,包括配置信息、Solution相关的信息等等,对于Pentaho平台来说它不是必须的,通过配置是可以用其它数据库服务取代的;可独立运行的Pentaho平台是Pentaho平台的独立运行模式的示例,它演示了如何使Pentaho平台在没有应用服务器支持的情况下独立运行;Pentaho解决方案示例是一个Eclipse工程,用来演示如何为Pentaho平台开发相关的商业智能解决方案。

    Pentaho BI 平台构建于服务器,引擎和组件的基础之上。这些提供了系统的J2EE 服务器,安全,portal,工作流,规则引擎,图表,协作,内容管理,数据集成,分析和建模功能。这些组件的大部分是基于标准的,可使用其他产品替换之。


    本文转载自:http://www.linuxprobe.com/six-best-analysis.html

    免费提供最新Linux技术教程书籍,为开源技术爱好者努力做得更多更好:http://www.linuxprobe.com/

    展开全文
  • 大数据处理基本过程

    万次阅读 多人点赞 2018-05-06 13:50:47
    把一些基本知识,总体架构记录一下,感觉坑很多,要学习的东西也很多,先简单了解一下基本知识什么是大数据:大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理数据集合,是需要新...

    刚接触大数据一个月,把一些基本知识,总体架构记录一下,感觉坑很多,要学习的东西也很多,先简单了解一下基本知识

    什么是大数据:大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

    大数据的5V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性),百度随便找找都有。 

    大数据处理流程:


        1.是数据采集,搭建数据仓库,数据采集就是把数据通过前端埋点,接口日志调用流数据,数据库抓取,客户自己上传数据,把这些信息基础数据把各种维度保存起来,感觉有些数据没用(刚开始做只想着功能,有些数据没采集,  后来被老大训了一顿)。

        2.数据清洗/预处理:就是把收到数据简单处理,比如把ip转换成地址,过滤掉脏数据等。

        3.有了数据之后就可以对数据进行加工处理,数据处理的方式很多,总体分为离线处理,实时处理,离线处理就是每天定时处理,常用的有阿里的maxComputer,hive,MapReduce,离线处理主要用storm,spark,hadoop,通过一些数据处理框架,可以吧数据计算成各种KPI,在这里需要注意一下,不要只想着功能,主要是把各种数据维度建起来,基本数据做全,还要可复用,后期就可以把各种kpi随意组合展示出来。

        4.数据展现,数据做出来没用,要可视化,做到MVP,就是快速做出来一个效果,不合适及时调整,这点有点类似于Scrum敏捷开发,数据展示的可以用datav,神策等,前端好的可以忽略,自己来画页面。

    数据采集:

        1.批数据采集,就是每天定时去数据库抓取数据快照,我们用的maxComputer,可以根据需求,设置每天去数据库备份一次快照,如何备份,如何设置数据源,如何设置出错,在maxComputer都有文档介绍,使用maxComputer需要注册阿里云服务,https://help.aliyun.com/product/27797.html,链接是maxComputer文档。

        2.实时接口调用数据采集,可以用logHub,dataHub,流数据处理技术,DataHub具有高可用,低延迟,高可扩展,高吞吐的特点。

    高吞吐:最高支持单主题(Topic)每日T级别的数据量写入,每个分片(Shard)支持最高每日8000万Record级别的写入量。

    实时性:通过DataHub ,您可以实时的收集各种方式生成的数据并进行实时的处理,

    设计思路:首先写一个sdk把公司所有后台服务调用接口调用情况记录下来,开辟线程池,把记录下来的数据不停的往dataHub,logHub存储,前提是设置好接收数据的dataHub表结构,https://help.aliyun.com/document_detail/47448.html?spm=a2c4g.11186623.3.2.nuizA4,这是dataHub文档,下图是数据监控,会看到数据会不停流入

    3.前台数据埋点,这些就要根据业务需求来设置了,也是通过流数据传输到数据仓库,如上述第二步。

    数据处理:

    数据采集完成就可以对数据进行加工处理,可分为离线批处理,实时处理。

        1.离线批处理maxComputer,这是阿里提供的一项大数据处理服务,是一种快速,完全托管的TB/PB级数据仓库解决方案,编写数据处理脚本,设置任务执行时间,任务执行条件,就可以按照你的要求,每天产生你需要的数据,https://help.aliyun.com/document_detail/30267.html?spm=a2c4g.11174283.3.2.0aBtdh,链接dataworks为文档。下图是检测任务实例运行状态


        2.实时处理:采用storm/spark,目前接触的只有storm,strom基本概念网上一大把,在这里讲一下大概处理过程,首先设置要读取得数据源,只要启动storm就会不停息的读取数据源。Spout,用来读取数据。Tuple:一次消息传递的基本单元,理解为一组消息就是一个Tuple。stream,用来传输流,Tuple的集合。Bolt:接受数据然后执行处理的组件,用户可以在其中执行自己想要的操作。可以在里边写业务逻辑,storm不会保存结果,需要自己写代码保存,把这些合并起来就是一个拓扑,总体来说就是把拓扑提交到服务器启动后,他会不停读取数据源,然后通过stream把数据流动,通过自己写的Bolt代码进行数据处理,然后保存到任意地方,关于如何安装部署storm,如何设置数据源,网上都有教程,这里不多说。


    数据展现:做了上述那么多,终于可以直观的展示了,于前端技术不行,借用了第三方展示平台datav,datav支持两种数据读取模式,第一种,直接读取数据库,把你计算好的数据,通过sql查出来,需要配置数据源,读取数据之后按照给定的格式,进行格式化就可以展现出来,https://help.aliyun.com/document_detail/30360.html,链接为datav文档。可以设置图标的样式,也可以设置参数,


    第二种采用接口的形式,可以直接采用api,在数据区域配置为api,填写接口地址,需要的参数即可,这里就不多说了。

    这次先记录这么多,以后再补充,内容为原创,若是有不对的地方还请评论纠正。

    展开全文
  • 1. 大数据处理之一:采集 大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的 数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL...

    1. 大数据处理之一:采集

    大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的 数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除 此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。

    在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户 来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间 进行负载均衡和分片的确是需要深入的思考和设计。

    2. 大数据处理之二:导入/预处理

    虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这 些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使 用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。

    导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。

    3. 大数据处理之三:统计/分析

    统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通 的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于 MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。

    统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。

    4. 大数据处理之四:挖掘

    与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数 据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于 统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并 且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。

    在这里我还是要推荐下我自己建的大数据学习交流qq裙:522189307 , 裙 里都是学大数据开发的,如果你正在学习大数据 ,小编欢迎你加入,大家都是软件开发党,不定期分享干货(只有大数据开发相关的),包括我自己整理的一份最新的大数据进阶资料和高级开发教程,欢迎进阶中和进想深入大数据的小伙伴。上述资料加群可以领取

    展开全文
  • 大数据处理流程

    万次阅读 2019-04-10 12:31:10
    大数据处理流程 1. 数据处理流程 网站流量日志数据分析是一个纯粹的数据分析项目,其整体流程基本上就是依据数据的处理流程进行。有以下几个大的步骤: 1.1 数据采集     &...
  • 大数据处理流水线

    千次阅读 2018-01-10 21:33:20
    大数据处理流水线:一种数据流方法 看完本文,不妨回头看看这些要求都做到了吗: 理解数据流及其在数据科学中扮演的角色用实例解释‘split-do-merge’,一种大数据流水线给出‘data parallel’的定义列举大数据...
  • 大数据处理技术的总结与分析

    千次阅读 2019-05-26 17:29:55
    在我们实际生活中,事务型数据处理需求非常常见,例如:淘宝网站交易系统、12306网站火车票交易系统、超市POS系统等都属于事务型数据处理系统。 一数据分析处理需求分类 1 事务型处理 在我们实际生活中,事务型...
  • 2、大数据处理无捷径,对分析处理技术提出了更高的要求 二、大数据的处理流程 下图是数据处理流程: 1、底层是数以千亿计的数据源,数据源可以是SCM(供应链数据),4PL(物流数据),CRM(客...
  • 大数据处理与并行计算

    万次阅读 2019-03-27 19:24:33
    大数据处理与并行计算随着对地观测技术的发展,获取到的地理数据越来越精细,而数据量也越来越大,地理数据数据处理与分析的时间耗费就越大。因此,传统的数据处理技术和串行计算技术难以满足高精细地理大数据处理的...
  • 在大数据时代,传统的大数据处理技术还管用吗?大数据处理环节下的需求大数据环节下的数据来源是非常多,而且类型也很多花样,存储和数据处理的需求量很大,对于数据展现也非常的高,并且很看重数据处理的高效性和...
  • hadoop大数据处理平台与案例

    千次阅读 2018-04-16 16:27:54
    大数据可以说是从搜索引擎诞生之处就有了,我们熟悉的搜索引擎,如百度搜索引擎、360搜索引擎等可以说是...整个大数据处理技术的核心基础hadoop、mapreduce、nosql系统,而这三个系统是建立在谷歌提出的大表、分...
  • PHP 大数据处理思路

    千次阅读 2018-03-09 11:20:17
    问题(来自lunacyfoundme) 我正在重建我们公司内部网,期间遇到一个与大量数据处理报告有关的前一个版本的问题。此前我曾用同步处理程序代码解决过这个问题,只是运行的很慢很慢,这导致我不得不延长最大脚本运行...
  • 大数据处理的关键架构

    千次阅读 2016-06-08 12:11:52
    下图是大数据处理的各个架构层: 以下一一简介各个层,使大家对这块知识有个总体把握: 一、数据存储层 宽泛地讲,据对一致性(consistency)要求的强弱不同,分布式数据存储策略,可分为ACID和BASE两大阵营。
  • 大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。 在这里还是要推荐下我自己建的大数据...
  • 大数据这几年火得不要不要,如同“站在风口上的猪”,但很多人只是停留在耳闻的阶段,并不知道大数据真正的用途或是实操在哪,这其中也包括从事数据的朋友... 一般而言,大数据处理流程,我们可分为四步骤:数据采集、
  • 顶级大数据处理框架

    万次阅读 2016-11-16 18:22:05
    摘要讨论了五个大数据处理框架:Hadoop,Spark,Flink,Storm,Samaza如今大量数据不断产生,去纠结具体多大才算大数据没什么意义。 就像“人工智能”一样,大数据这个词的具体含义是变化的。几十年前对人工智能的...
  • 浅谈大数据处理

    千次阅读 2018-08-02 11:42:58
    刚接触大数据处理,将大数据处理的框架记录下来,之后深入的研究。 大数据处理的必要性 目前互联网中数据的数量正在飞速的增长,首先是G为单位,然后是T级别、P级别、E级别。数据虽然很多,但是我们往往只惯性我们...
  • 五种大数据处理架构

    万次阅读 多人点赞 2017-12-14 14:12:21
    大数据是收集、整理、处理大容量数据集,并从中获得见解所需的非传统战略和技术的总称。虽然处理数据所需的计算能力或存储容量早已超过一台计算机的上限,但这种计算类型的普遍性、规模,以及价值在最近几年才经历了...
  • ... ...问题(来自lunacyfoundme) ... 我正在重建我们公司内部网,期间遇到一个与大量数据处理报告有关的前一个版本的问题。此前我曾用同步处理程序代码解决过这个问题,只是运行的很慢很慢,这导致我不得不延长最大
  • 谈谈MATLAB大数据处理

    千次阅读 2019-07-05 10:06:51
    摘要: 今天多数的大数据方案都是依托Hadoop环境来做结构化和非结构化数据处理,如何把自己的Hadoop算法快速部署到实际的生产环境当中去,对很多企业的大数据部署也提出了挑战。CSDN专访MathWorks中国资深技术专家...
1 2 3 4 5 ... 20
收藏数 3,541,241
精华内容 1,416,496
关键字:

大数据处理