系统工程_系统工程师 - CSDN
精华内容
参与话题
  • 主要包括系统工程过程、系统分析与控制、计划、组织、管理等内容,是一本不错的国外经典教材。
  • 学习系统工程学的总结

    千次阅读 2007-10-22 17:40:00
    前一段时候我有幸发现了一门很经典的学科,叫做《系统工程学》,我上网找一些有关的资料,还去书店买了一本书,通看书和阅读资料,加上一段时间的思考,让我感到受益非浅。它让我在现有的知识储备中建立起一个高度...

    前一段时候我有幸发现了一门很经典的学科,叫做《系统工程学》,我上网找一些有关的资料,还去书店买了一本书,通看书和阅读资料,加上一段时间的思考,让我感到受益非浅。它让我在现有的知识储备中建立起一个高度抽象的模型,这模型不但加深了我对已有知识的领悟,而且它能让更快的理解新的领域。那么系统工程学(也称系统论)为何具有这样神奇的力量呢,请大家系好安全带,下面我就用一长篇大论来说明这个问题。

    首先要回答,什么是系统。系统是具有某种目的,生存于自然界的事物。也就是说,一个事物,当它具有某种特定目的时,它就是一个系统。现实世界中存在的各种各样的系统,一个追求幸福的人,一个追求利润的公司,一个具有某种功能的机器设备,一个追求生存和发展的国家,它们都是系统。

    一个系统是什么样的,这个问题也就问我们应该采用什么样的方法来认识各种各样的系统,它们是否存在本质上相同的结构。答案是肯定的,任何一个系统都是由若干个更小的相互关联的子系统组成,任何一个系统必定生存在一个更大父系统中,父系统中的其它子系统被称之为该系统的上下文。比如,细胞是身体器官的子系统,身体器官是一个人的子系统,人是公司的子系统,公司是国家的子系统。

    系统的生命周期,一个系统或长或短都存在它的生命周期,从建立,发展,衰退,灭亡。不论什么系统都会有这样的生命周期,一个人有出生、成长、衰老、死亡,一个公司有创建、发展、衰退、倒闭,没有什么系统可以幸免。

    系统的生命力,一个系统是否能够生存的更久,是否能够更有效的实现它的目的。这就是一个系统的生命力,从我们人的角度来看,就是这个事物的综合价值。一个人能为社会贡献多大,一个产品能给使用它的人带来多大的价值,一个国家能为国民和全人类起到多少积极的作用。

    看完了些概念之后,就可以引出我们学习系统论的目的。学习系统论的意义就在于,通过掌握最一般的系统规律,来提高系统生命力。我们身边有形形色色的系统,我们所开发的产品、我们所经营的企业、我们所管理的部门,还有我们自己。这些都是需要提高生命力的系统。
    是什么决定了系统的生命力呢。系统论里的观点是,决定系统生命力的关键问题就是系统内部结构和外部结构,也就是一个系统由哪此子系统组成,以及这些子系统之间的合作关系。当然子系统的质量也很重要,但子系统的质量同样也是由它的内部结构决定的。这种例子在现实中数不胜数,一个企业的生存和发展取决于最高管理者所设计的企业制度和社会环境,一个产品的好坏取决于它如何被设计和它的目标市场定义,一个人的能力取决他的能力结构和它的外界关系。
    那么什么样的结构才能提高系统的生命力呢?这是一个比较复杂的问题,其实这个问题在我学习软件设计时已经接触了很多,再后来学习系统论的时候,我惊奇的发现这些软件设计的原则可以用在任何系统的设计中,用于改善系统的结构。下面我就说说这些原则。

    划分系统:任何人造系统都应该被划分成更小的子系统,否则凭人脑的处理能力无法处理庞大的信息量。这是一个最基本的原则,我们看到现实世界中各种人造系统都会被划分,电脑被划分成主板、CPU、内存等,而主板又会被细分板基、蕊片组、供电模块等。

    子系统的数量:一个系统被划分后,它的子系统的数量不应该太多,最好在七个左右,因为数量众多的子系统会导致子系统之间的关系复杂化。

    每个子系统具有明确的相对独立的职责:子系统的职责也就是子系统为其它子系统提供什么功能,这个功能应该是明确的相对独立的,比如汽车就是提供代步的功能,电视就是提供显示图象的功能。可以说大多数产品都符合这个原则,而很多社会系统确不符合这个原则。某些企业经营了几个毫不相关的领域。某些政府机构身兼多种职能。不明确的职责都会使系统变的复杂,而使其变的低效,生命力渐失。

    系统结构中尽可能不要有重复的职责的子系统:重复的职责会严重浪费资源,从而也使系统低效。这一点是我们社会上各种系统普遍存在的问题,例如,有大量的公司从事相同的业务,这种重复导致几方面的资源浪费:专业人力资源的浪费,每个公司都要去培养专业人才去从事这些业务;专业经验的浪费,每实践一次业务就会产生一些专业的经验,对每个专业人员而言,都必须去积累这些专业经验的,因此同样的业务问题会在各种地方不段的重演;固定资产投资的浪费,该业务所需的固定资产每家企业都要分别购置;客户资源的浪费,每个企业都要投入资金来开发客户资源;等等其它资源。虽然,受很多条件的限制,重复的职责不可避免,但也有很多可以避免的重复职责。我发现现在社会上很多成功的商业模式都是对重复职责的提取。例如,大家都熟悉的淘宝网,它就是对网上交易这项功能的提取,网上交易本来是所有企业都要建立的销售渠道,但是如果每个企业都投资去建立自己的网上交易系统(这里网上交易系统不是指计算机系统,而是包括人和计算机在内的实现网上交易这个职责的系统)将是巨大的浪费,并且受专业能力的限制,其效果会很差。淘宝网则建立一个能为所有至少是大部分企业使用的网上交易平台,虽然一开始它很不完善,但是随着专业能力的积累它会越做越好。以我看来,它成功的关键就在于它提取了重复的职责,从而优化了商业系统的结构。

    以上四点我认为是一个良好系统结构的主要特征,我们可以好好的审视一下我们自己建立的系统,比如你管理的团队,你设计的软件硬件,还有最重要的---你自己的能力,它们的结构是否可以再优化。如果可以,我们可以优化它,使它变成更强大的系统,从而改善我们的生活(其实生活也是一个系统,它的目的是让人得到满足,它一般由工作、学习、娱乐、爱情等子系统组成)。

    其实关于系统论的内容还有很多,有些还涉及一些数学知识,我这里就不再详细讨论了。
    展开全文
  • 系统工程原理

    2020-07-18 11:26:20
    系统工程原理》系统地介绍了系统工程的基本概念、理论与方法,特别是系统建模与系统分析、系统预测、系统评价、系统决策、网络计划的基本理论和方法技术等,较好地解决了与运筹学课程部分内容重复的问题,尽可能...
  • 【MBSE】系统工程的本质

    千次阅读 2018-07-01 23:57:34
    本篇博文是基于模型的系统工程(MBSE)的开篇,主要对系统工程进行简要的介绍,并随着后续文章的深入,逐步揭开MBSE的神秘面纱。 文中的部分内容其实也是作者的一些读书笔记。 2. 系统的本质 我们基于这样一个...

    引言

    本篇博文是基于模型的系统工程(MBSE)的开篇,主要对系统工程进行简要的介绍,并随着后续文章的深入,逐步揭开MBSE的神秘面纱。

    文中的部分内容其实也是作者的一些读书笔记。

    2. 系统的本质

    我们基于这样一个论点:

    系统思想是系统理论的基石

    在认识系统理论之前我们有必要先了解 “系统思想” 的含义。基于辩证唯物主义的哲学观点,系统是客观存在的,系统思想也是客观存在的。系统思想的产生远在科学的系统理论诞生之前,系统思想的出现从古代先贤的思想中便端倪可见。我们从两个维度去剖析系统思想:朴素系统思想和科学系统思想。

    2.1 朴素的系统思想

    朴素系统思想主要来源于人类与自然地长期融合,而自发的形成冲一种关于系统的思想。这些思想可能是随机的、灵感式的出现,并未以科学化的方式形成统一的系统理论。体现朴素的系统思想的例子很多,例如,古希腊哲学家德谟克利特提出的 “宇宙大系统” 的概念,赫拉克利特认为 “世界是包括一切的整体”。又如,中国古代东汉时期张衡的 “浑天说”,春秋时期的思想家老子关于自然界统一性的阐述,西周时期的“五行说”等等。以上这些都是早期的系统思想的提现。同时,古人同样会基于系统的思想应用于实践。例如中国古代的“都江堰”、长城等都是典型的系统思想的实践案例。至此,我们将朴素的系统思想总结为:

    朴素的系统思想主要是人们对世界的整体性和统一性的认识。

    朴素的系统思想是片段式的、灵感式的,在当时的自然科学发展的条件限制下,无法也不可能对系统思想建立一套专门的科学方法体系。

    2.2 科学的系统思想

    科学系统思想比朴素的系统思想产生的要晚,主要伴随着19世纪自然科学的发展,科学系统思想才应运而生。科学的系统思想的本质是:

    世界是由无数相互关联、相互依赖、相互操作的过程所形成的的统一整体。这种普遍联系和整体性思想就是科学系统思想的实质。

    3. 系统理论的出现

    系统理论的出现以贝塔朗菲的“一般系统论”为典型代表。一般系统论包括了系统的科学、系统的技术以及系统的工程三个方面,从其组成可见一般系统论涵盖范围非常广泛。

    4. 系统工程的研究对象

    系统工程研究的对象是“系统”,那么,什么才是“系统”呢?一架飞机是系统,一辆汽车是系统,一个水杯也可以称之为系统。下面我们将从更为普遍的定义去阐述系统的定义。

    4.1 什么是系统?

    如下定义

    系统是由两个以上有机联系、相互作用的要素所组成,具有特定功能、结构和环境的整体。

    1. 系统及其要素

      系统并不是独立的,其由两个以上要素组成。要素可以是单个事务,也可以是一组事务。我们也可以这样描述,系统又可以开分为子系统,而子系统又可以继续拆分。系统和子系统是一个相对概念,这和我们描述系统的大小和范围相关。我们说,系统具有“统则唯一,分则无限”的特点。

    2. 系统和环境

      任何一个系统又归属于更大的一个系统,并与其相互作用和联系。

    3. 系统的结构

      构成系统的多要素间相互联系,在系统内部构成一定的结构和秩序。

    4. 系统的功能

      系统的功能是系统的价值和目的所在

    4.2 系统的一般属性

    1. 整体性

      系统的整体性是系统最核心的属性之一。系统各要素基于系统的整体功能和逻辑性要求协调于系统中,要素间的相互关系也是服从于系统的整体性功能要求。系统所表现出来的功能特性是各个要素间的相互作用和联系产生的。

    2. 关联性

      构成系统的要素不是相互独立的,而是相互联系、相互作用的。正是基于要素间的相互作用才构成了整体系统的功能特性。要素间的关联性构成了系统结构的基础。

    3. 环境适应性

      任何一个系统都不是孤立存在的,它必然是存在于一个更大的系统中,并与这个外部系统存在物质、能量或信息的交流。

    5. 系统工程

    我们聊到了系统思想和系统,那么,到底什么是“系统工程”呢?

    5.1 什么是系统工程

    关于“系统工程”的定义不同的专家或组织有着不同的阐述,例如:
    著名科学家钱学森指出:

    系统工程是组织管理系统的规划、研究、设计、制造、试验和使用的科学方法,是一种对所有系统具有普遍意义的科学方法。系统工程是一种组织管理的技术。

    日本工业标准JIS界定:

    系统工程是为了更好的达到系统目标,而对系统的构成要素、组织结构、信息流动和控制机制等进行分析和设计的技术。

    总之,系统工程是一项工程学科:

    系统工程是用定性和定量相结合的系统思想和方法处理大型复杂系统问题的一类工程实践。系统工程是一门交叉科学,系统工程的对象不限于某一特定的工程领域,任一种物质系统都可以作为系统工程的研究对象。它可以适用于自然系统、社会经济系统、经营管理系统、军事指挥等等工程领域。

    人们更为普遍的认识是:

    系统工程以大规模复杂问题为研究对象,在运筹学、系统理论、管理科学等学科的基础上发展起来的一门交叉学科。系统工程的理论基础是由一般系统论以及大系统理论、经济控制论、运筹学等学科相互渗透、交叉发展而形成的。

    5. 总结

    系统工程的核心思想是“系统思想”,系统工程研究的对象是“系统”,系统“可大可小”,具有整体性、关联性和环境适应性一般属性。系统工程是一门工程科学,也是一门多学科交叉科学。系统工程的理论基础由一般系统论、大系统理论、经济控制论、运筹学等诸多学科交叉发展而成。

    补充:
    关于 “什么是系统”:

    关于“什么是系统 ” 是一个相对的认识。系统既可以是复杂大系统,例如导弹、卫星、航天飞机、登月工程,也可以是简单系统,如水杯、手机壳等。

    关于“整体性”:

    系统的“整体性”是关键特性。我们可以这样说,虽然系统由多要素组成,但“系统”更为关注的是系统整体所呈现出来的特性。这写系统整体特性并不是简单的构成要素功能特性的并集。而多数情况下,是这些要素相互作用而形成的 “新”的特性。

    后续将对系统工程方法论、系统模型与系统工程进行介绍。

    更多请关注微信公众号
    SystemEngineeringLab

    展开全文
  • 系统工程的本质

    千次阅读 2018-11-15 16:51:16
      工程,是日常生活和工作时经常使用的一个词语,例如土木工程、电子工程、机械...还有“创新是一项系统工程”“改革是一项系统工程”等说法。这个词语本身并没有令人费解的地方,但在不同的语境中,却体现出迥...

    原文链接:https://mp.weixin.qq.com/s/9uTG1QyjOzIfeMuvioNkWw

     

    工程,是日常生活和工作时经常使用的一个词语,例如土木工程、电子工程、机械工程、系统工程,以及法制工程、希望工程、菜篮子工程;也有三峡工程、载人航天工程、探月工程等;还有“创新是一项系统工程”“改革是一项系统工程”等说法。这个词语本身并没有令人费解的地方,但在不同的语境中,却体现出迥然不同的内涵,如果不加以辨析和区分,就会导致一些基本概念的混淆。例如,对于“系统工程”到底是什么,就有各种定义和多种不同的解释,甚至大相径庭。“工程”是辨析“系统工程”本质的钥匙。本文将通过对“工程”的语意分析,辨析系统工程的本质。

       

     

     在与科学、技术的对比中理解工程 

     

    1986年,美国国家科学委员会首次提出“STEM”教育概念,STEM 是科学(science),技术(technology),工程(engineering),数学(mathematics)四门学科英文首字母的缩写,旨在强调在科学、技术、工程和数学领域综合发展,以提升美国未来人才的科技能力,从而提高美国全球竞争力。而中国人常常把科学和技术混在一起说成“科技”,而工程的概念也非常模糊,其实科学、技术和工程是不同层次和范围的概念。

       

    科学(science)源于拉丁文“scientia”,本义是知识和学问的意思。科学以探索发现为核心,主要是发现、探索研究事物运动的客观规律。科学活动由好奇心驱使,最典型的活动形式是基础科学研究,包括科学实验和理论研究。进行科学活动的主要社会角色是科学家。科学活动的成果即科学知识,其主要形式是科学概念、科学定律、科学理论甚至科学假说,科学知识与其本身是否有用、能否带来经济效益和道德上的善恶无关。科学知识的成果形式是论文、著作。

       

    技术(technology)由希腊文“techne”(工艺、技能)和“logos”(词,讲话)构成,意为工艺、技能。技术以发明革新为核心,着重解决“做什么和怎么做”的问题。技术活动由问题(problem)驱使,最典型的活动方式是技术开发,其主要社会角色是技术员、发明家。技术知识的基本形式是技术原理和操作方法,表现形式为技巧、技能、技艺。技术活动成果形式主要包括专利、图纸、配方、诀窍等。

       

    工程(engineering)最早产生于 18世纪的欧洲,其本义是兵器制造、军事目的的各项劳作,后扩展到许多领域,如制造机器、架桥修路等。工程以集成建造为核心、以新的存在物为标志,着重解决“做出了什么”的问题,强调改造客观世界的实际效果。工程活动由产品驱使,主要社会角色是工程师。工程活动的成果主要是各类人造系统(man-made systems)。将实际改造世界的物质实践活动和建造实施过程知识化,形成的就是工程方法,是一种面向实践的技能和方法,主要成果形式是工程原理、设计和施工方案等。

       

    在汉语中,“工程”一词古已有之,原意是“土木构筑”,即建筑施工,后演化为“用比较大而复杂的设备进行的工作”或“需要较多人力、物力来进行的大而复杂的工作”。“工程”这里含义是工作、任务或事业(work,task,enterprise),强调其复杂性、艰巨性。例如,口语中常说的“这可是个大工程啊!”就是这个意思。但一旦工程被设定了明确目标并加以时间、经费等约束条件,“工程”的含义就扩展到了“项目”(project 或 program)了。例如,三峡工程、南水北调工程,以及曼哈顿工程(Manhattan Project)和阿波罗工程(Apollo Project)、载人航天工程(China Manned Space Program)……所以,汉语中的“工程”对应了多个含义,需要在不同语境下加以区分,识别真正的内涵。系统工程常见于这样的说法,“某某工作是一项系统工程”。例如,“解决就业问题是一项系统工程”“安全生产是一项系统工程”等,以及日常生活中老百姓的对话,“孩子的教育是一项系统工程”等。这些话语中的“系统工程”不是我们研制卫星、飞机、舰船的系统工程(systems engineering,SE)方法,其背后的含义是首先强调这是一个复杂、艰巨的任务,即“工作、任务或者事业”(work,task,enterprise),其次是强调对于这样复杂艰巨的工作和任务,必须使用系统思维,必须整体考虑、处理好方方面面的关系,才能完成好这项工作,推动事业发展。

       

    工科高等院校里的工程学科专业,就是前面与科学、技术进行对比的工程,即“engineering”,例如,电子工程(Electronic Engineering,EE)、机械工程(Mechanics Engineering,ME)或软件工程(Software Engineering,SE)等,传授与研究的就是我们非常熟悉的关于工程的技能和方法,培养的就是各个方面的工程师(engineer)。

       

     

     明确系统工程与系统科学和系统思维的区别 

     

    就工程活动来看,系统工程与电子工程、机械工程、软件工程等一样,均是为实现项目目标,应用各类技术研制产品而实施的工程活动,只不过电子工程、机械工程或软件工程等是应用电子、机械或软件等专业技术实现电子线路、机械结构和装置、软件程序代码等的专业活动,而系统工程则是对各种专业活动进行控制、集成和协调的总体活动;电子工程、机械工程或软件工程等是各专业工程师的工作,而系统工程则是系统工程师的工作或总体工作。因此,把系统工程混同于科学层面的系统科学,以及哲学层面、方法论层面的系统思维,都是错误的。但是无论是在大学的教科书中,还是系统工程的专业著作中,我们经常看到这样的说法:“系统工程是系统科学的一个分支”“系统工程是研究复杂系统设计的科学。”这等于将科学与工程划了等号。

       

    系统科学(systems science)是一门总结复杂系统的演化规律,研究如何建设、管理和控制复杂系统的科学。系统科学汇集系统各个方面的研究,以识别、探索和理解跨越学科多个领域和应用的诸多范围的复杂性特征模式为目的。系统科学所包括的理论主要有一般系统论、信息论、控制论和耗散结构论、协同学、突变论等。

       

    还有很多教材和著作,将系统工程称为“系统工程学”也存在类似的问题。钱学森曾在《论系统工程》中明确地说:系统工程“不宜像有些人说的那样泛称为科学”,以及“提‘系统工程学’这样一个词就太泛了”“强调系统工程是要改造客观世界的,是要实践的。”系统思维或者系统思考(systems thinking)是把认识对象作为系统,从系统和要素、要素和要素、系统和环境的相互联系、相互作用中综合地考察认识对象的一种思维方法。它将面对的问题视为整个系统的组成部分,并考虑到问题的潜在影响,而不仅是对特定部分结果或事件作出反应。系统思维是整体性的思维,帮助管理者以整体的视野去认识和处理管理复杂性问题,避免“只见树木”和只顾眼前利益带来的片面性。

       

    系统思维在工程领域的实践应用是系统工程,但是不等于系统工程。既然是工程,就不能同时又是思想。所以经常有人说:“要用‘系统工程’思想作指导,把我们的单位搞得更好。”或者“要用‘系统工程’理论,把这个项目做好”的说法也有问题。系统工程不是思想、理论,系统工程就是工程方法。这些语言里面的本意,其实是系统思维或者系统论的观点和方法,能够指导单位建设、组织管理的是考虑整体、注重关系、避免局部和片面的系统思维。

       

     

     目标系统范围确定系统工程作用范围 

     

    系统工程产生于第二次世界大战后期,20世纪五六十年代霍尔(Arthur D. Hall)等的研究,特别是随着美国“曼哈顿工程”和“阿波罗工程”等重大项目的成功实践,系统工程得以快速发展,形成了一套成熟的方法体系,成为研制卫星、飞机、舰船等目标系统(systems of interest, SOI)的重要方法,得到了越来越多研究与应用。本文不妨称这些项目为工程项目,而所研制的卫星、飞机、舰船等都是人造系统(man-made systems)。人造系统一直是系统工程讨论的目标和范围。国际系统工程协会(INCOSE)在其系统工程手册中指出:“ISO/IEC/IEEE15288和本手册中所考虑的系统是人造的,被创造并使用于明确的环境中提供的产品和服务,使用户和其他利益攸关方受益。”

     

    1978年,钱学森在《文汇报》上发表《组织管理的技术——系统工程》,指出“系统工程是组织管理系统的规划、研究、设计、制造、试验和使用的科学方法,是一种对所有系统都具有普遍意义的方法。”这其中的“所有系统”是关键词,它将系统工程所瞄准的人造系统产品扩展到了社会系统,涉及到了“人”这个最活跃也最复杂的因素。以此为标志,中国的系统工程被推广到了管理领域,这篇文章也成为系统工程在中国发展的一个里程碑,掀起了全国研究和应用系统工程的热潮。随后出现了军事系统工程、农业系统工程、法制系统工程,以及环境系统工程、交通系统工程、教育系统工程、人口系统工程等,不下十几种。此后,对很多学者来说,系统工程的主攻方向转到了研究社会经济系统的组织管理问题。

       

    这些领域都提高了以系统思维指导的自觉性,更加注重工作的整体性以及处理好各个元素的关系。以“交通系统工程”为例,仍然是原有交通管理专业的内容,但加强了交通规划的整体性以及统筹协调,这些都充分体现了系统思维的强大作用。扩展到社会系统的系统工程,其本质都是系统思维而不是系统工程在这些领域组织管理中的应用,它们与系统工程是“兄弟”关系而不是“父子”关系。

       

     

     工程项目中的系统工程定义与特点 

     

    在国际上,美国电子工业协会标准 EIA/IS632定义系统工程是一个综合全部技术工作的跨学科方法。INCOSE 定义系统工程是成功研制系统的一种跨学科的方法(approach)和手段(means)。美国国家航空航天局(NASA)的系统工程手册认为系统工程是设计实现一个系统并对其进行技术管理、运行和退役处置的严格方法(approach)。欧洲空间局(ESA)的航天标准化组织(ECSS)将系统工程定义为一个跨学科的方法(approach),综合协调将需求转化为实际系统的全部技术工作。

       

    中国航天系统工程方法是从需求出发,综合多种专业技术,通过全寿命周期分析—综合—试验的反复迭代过程,开发出一个满足使用要求、整体性能优化的系统。中国商飞系统工程的定义是:以满足客户需求为目的,围绕产品全生命周期,通过产品集成与过程集成,实现全局最优的一种跨专业、跨部门、跨企业的技术和管理方法。

       

    总结上述系统工程定义可以看出:系统工程是途径、步骤、方法(不是思想、科学、理论);相对于具体专业,系统工程是跨学科、跨专业的总体方法:系统工程通过全局优化致力于满足用户要求;系统工程面向目标系统的全生命周期。

     

     

     工程的扩展含义论与项目管理的关系 

     

    将系统工程与项目管理混淆起来的现象也非常普遍。现在有很多专著、书籍和教材,以“系统工程项目管理”命名,内容将两个联系紧密但又有区别的知识体系混淆起来,其主要原因可能是汉语的“工程”包含了“项目”的含义造成的,因此必须加以区分。

       

    项目是为创造独特的产品、服务或成果而进行的临时性工作。项目管理的主要职能是对项目的计划、组织、指导、协调和控制。系统工程更多地关注所研制的系统(SOI)本身,更多地关注技术本身的问题,而项目管理致力于项目的全面成功,除了产品本身,也要考虑经费、进度以及团队多方面的成功。

       

    工程项目的实施需要开展两类工作,一类是技术工作,表现为工程活动,例如需求分析、软硬件设计、软件编码、部件加工制造、集成和组装、试验与测试等,其主要责任人是工程师;另一类是管理工作,是为保障支撑技术研制活动而开展的计划、组织、协调和控制工作,例如,制定各类工作计划,监控项目成本和进度,实施采购和进行团队建设等,主要由管理人员完成。

       

    在一个工程项目的实施中,系统工程方法首先体现为总体技术。现代几乎所有人造系统都是多个专业技术共同实现的系统,以复杂技术系统为研制目标的工程项目在这一点上更为突出。但系统工程不研究具体的专业技术问题,侧重于对系统总体问题(即系统构成要素、结构、信息交换和反馈机制等)的研究。系统工程方法一方面从需求及大系统约束条件出发,经过权衡和综合得到系统体系架构和各层级功能、性能要求;另一方面从部件、分系统到系统逐级集成并验证,最终得到满足用户需求的系统产品。

       

    同时,系统工程管理又是系统工程方法的重要组成部分。总体技术涉及多个门类的专业技术,综合集成成千上万甚至更多的部件和元器件,历经由多个阶段组成的生命期,需要不同团队人员的参与和协作,因此总体技术活动的有序开展,离不开充分的管理工作保证。例如,研制工作计划制定、技术需求管理、技术风险控制、技术状态控制等。技术管理过程是项目管理和技术团队之间的纽带。

       

    系统工程管理是项目管理的一部分,是项目管理中的技术管理。项目管理中的进度管理、经费管理以及质量管理和利益攸关方的管理等,是系统工程方法中定义用户技术需求、确定系统架构、开展技术评估评审和决策、开展验证和确认等技术过程和管理过程的输入和约束条件;系统工程又从技术管理层面提出了对项目人力资源管理、采购管理、沟通管理等的要求。

       

    工程研制项目包括两类工作,一类是技术工作,一类是管理工作;系统工程方法包括技术和管理两个方面;系统工程技术是各类专业技术中的总体技术,系统工程管理是项目管理中的技术管理。

     

     

     结 论 

     

    由于概念的外延不清晰,系统工程呈现出“打包拼盘”的情况,更有甚者将系统工程无限拔高,系统工程变成了一种无所不包、无所不能的“学问”,这样“包治百病”的拔高无异于对系统工程的“捧杀”,这很可能造成原本清晰的系统工程方法被淹没和异化,特别是系统工程的源头——航天等国防科技工业部门反倒说不清什么是系统工程了,从而在型号任务中不能顺利地实践系统工程。因此,必须还原各个概念,界定其内涵和外延,系统工程才能与系统科学、系统思维以及项目管理等各个层次各个专业的学科一起健康发展。

       

    参考文献(略) 

     

     

     

    作者简介:曹松,中国航天系统科学与工程研究院,中国科学院国家空间科学中心,副研究员,研究方向为项目管理与系统工程。

     

    本文发表于《科技导报》2018 年第20 期,敬请关注。

     

    (责任编辑   王志敏)

    展开全文
  • 系统工程新发展——体系

    千次阅读 2018-11-15 16:50:27
    系统工程”最早在20世纪40年代由美国贝尔电话公司提出,50年代在美国制造原子弹的“曼哈顿”计划及以后美国北极星导弹和阿波罗登月计划皆为系统工程取得成果的著名范例。中国自20世纪70年代末到80年代在系统工程的...

    原文链接:https://mp.weixin.qq.com/s/KchFrweZpntbcBPvWK-Crg

     

    “系统工程”最早在20世纪40年代由美国贝尔电话公司提出,50年代在美国制造原子弹的“曼哈顿”计划及以后美国北极星导弹和阿波罗登月计划皆为系统工程取得成果的著名范例。中国自20世纪70年代末到80年代在系统工程的实际应用方面有了很快的发展,最初1979年钱学森提出14门系统工程,后来随着应用的发展很快有了其他各门系统工程。20世纪90年代到21世纪初出现几门新的系统工程:计算机集成制造系统、网络系统工程、服务系统工程(供应链)、金融系统工程、大型工程(三峡、青藏铁路)、大型社会项目(亚运会、奥运会和世博会)、生物系统工程、医学系统工程、智能交通系统、社会预警系统、电子商务、电子政务、可持续发展等。

       

    从20世纪60年代贝塔朗菲提出一般系统理论以来,20世纪70年代起系统科学中出现不少新的学科分支,如耗散结构、协同学、超循环、突变理论、混沌学、分形等,从1986年起钱学森亲自参加系统学讨论班,对各个分支逐一介绍并作出点评。钱学森希望由此形成中国的系统学并给出英文名词(systematology)。这无疑是中国系统科学界一个重要发展动向。20世纪90年代出现了复杂系统,其中一个是钱学森提出的从简单系统到复杂系统、再到开放复杂巨系统(如社会、生物、经济、军事、环境等复杂系统),进而提出了从定性到定量综合集成的方法论及综合集成研讨厅;另一个是圣菲研究所20世纪90年代中提出的复杂自适应系统以及多主体仿真系统的建模、复杂网络分析和遗传算法等方法。复杂自适应系统从以下多个方面表述系统特征:1)从结构方面,它是由非常多的元素、简单子系统、很多组件组成,它们具有不同的标度,相互之间是动态的交互作用的;2)它们具有层次性、自组织性和涌现的现象;3)在时间标度上它是演化的,有可能出现混沌;4)跨学科。

       

    在20世纪末,中国系统工程学会许国志组织专家编写了一本《系统科学》(2000年出版)。该书系统阐述了对各类系统的结构、功能和演化、有普适意义的动力学系统理论(包括分岔、混沌等)、自组织理论、随机性理论,以及简单巨系统、复杂适应系统、开放的复杂巨系统的理论,对信息论、控制论、运筹学、系统工程方法论等系统工程技术也作了简要介绍。近十多年来,除了一般性的系统科学有了发展,一些专门的系统科学也在迅速发展。例如随着全球变化研究的发展出现了地球系统科学,目的是促进地球系统集成研究和变化研究,以及利用这些变化进行全球可持续发展能力研究。在生物界,从系统角度研究生物的系统生物学开始蓬勃发展起来。在物理学界同样有这样一种将物质分解成分子、原子以至夸克以后,反过来对物质世界走向系统和整体研究以及复杂性的研究的趋势,杨振宁、周光召等认为对称性造成各种事物的统一性,而对称破缺造成事物的复杂性和多样化,他们主张整体性的研究,杨振宁等在数学工具方面应用了拓扑学中纤维丛及规范建模(Gauge modeling)等,还有一些从物理和其他系统交叉起来研究的新方向,如金融物理,有人利用规范建模描述简单金融市场。再如社会物理,利用物理现象描述行人动力学,描述社会舆论的动力学,还有利用社会网络分析各种社会关系等,也值得注意。

       

    国内外从20世纪50—70年代,用得最多的系统方法论一直是以着重定量模型和讲究优化的系统方法论为主,最著名的为霍尔的系统方法论,还有运筹学、系统动力学和系统分析等,后来被切克兰特称之为硬系统方法论。到80年代,由于处理社会系统以及涉及人因素较多的系统,再加有不确定因素较多的战略问题等而出现一批软的系统方法论。这些软的方法论比较着重定性、概念模型,不再过分追求最优解而是只要能找到可行满意解,甚至使系统有好的改变就可以,而且强调是不断学习的过程。其实中国中央高层领导提出的“摸着石头过河”就是一个改革社会的很好的方法论,它强调学习、试错和试点。钱学森等针对开放复杂巨系统(如社会、生物、经济、军事、环境等复杂系统)提出了从定性到定量综合集成的方法论及为了实现这个方法论的技术和工具——综合集成研讨厅。顾基发和朱志昌提出了物理-事理-人理系统方法论。再加上另一些日本和中国学者提出的方法论由于具有东方哲学和文化特色,我们称之为东方系统方法论。

       

    为什么提出体系?以信息技术为代表的高新技术的快速发展,使得系统间的联系和交互变得愈发频繁和紧密。20世纪90年代末系统工程规模变得更大更复杂,以复杂自适应系统为理论指导的体系(system of systems, SoS)出现,体系及体系工程逐渐成为系统工程、管理科学等诸多领域新的研究领域。下面举几个体系的例子:军事体系、武器体系、企业体系、计算机体系、全球地面观测体系(global earth observation system of systems,GEOSS)、交通体系、社会体系等。例如,全球地面观测体系GEOSS是最近几年提出来的,它是由设置在全球各地的传感器、通信装备、存储系统和各种计算机设备组合而成,用于观测地球、了解地球的动态过程以便对—些现象加以预报,监测各国执行环境公约的实际情况。中国最先关注体系的是军事科研部门,发现现代战争早已不是单个军兵种在作战,而是体系对体系的战争;有的国家被打输了,并不是因为有生力量被大量歼灭,而是整个指挥体系垮了。此外,以下情况促使更多人关注体系的研究:1)新技术引起新产业革命;2)老知识框架只适于稳定的变化较慢的社会;3)老的系统工程和管理方法已不适合于以知识为基础的快速的过渡时期;4)要用复杂系统科学;5)SoS的能力要确保演化、突现和适应。

       

     体系和体系工程的含义与特点 

     

    “体系”对应的英文词汇(system of systems),最早出现在1964年Berry B. J. L.的一篇论文中,讨论城市系统中的系统。随后,很快用于社会学、生物学和物理学领域。美国系统科学体系工程协会(SoSECE)主席Reckmeyer W. J.认为,体系源于系统科学,是系统科学关于软系统和硬系统研究的综合,对大规模、超复杂系统的研究。体系概念的演化发展经历了系统科学发展过程的分支与融合过程,如图1所示。   

     

    图1  体系概念的演化

     

    体系的各种定义

     

    体系是目前大多数大规模集成体(包括系统、组织、自然环境、生态体系等)普遍存在的问题,对这一问题的研究从最初Eisner在研究多系统集成时提出SoS的概念、特征到目前这一术语成为众多领域热点问题,其典型的概念与定义不下40种。

       

    体系是由多个系统或复杂系统组合而成的大系统。在不同领域和应用背景中体系的定义也不完全相同。在众多关于体系的描述与定义中,有如下17种较为典型的定义描述了不同领域的问题背景与对体系的不同理解与认识。

       

    定义1:体系是系统的联接,在系统联接的体系中允许系统间进行相互协同与协作,如信息化战场的C4I(command,control,computers,communications and information)与ISR(intelligence,surveillance and reconnaissance)系统。这一定义的应用背景是现代军事系统的集成以获取战场对抗的信息优势与决策优势。

       

    定义2:体系是大规模分布、并发系统的集成体,组成体系的系统本身就是复杂单元。这一定义的应用背景是企业信息系统。

       

    定义3:体系是系统的综合,系统综合以系统的演化发展、协同与优化为目的,最终达到提高整体效能的宗旨。体系不是单纯系统的集成,它具备以下5种特征:1)组成系统独立运作;2)组成系统独立维护管理;3)组成系统的区域分布性;4)具备“涌现”行为;5)体系是不断演化发展的。这一定义的应用背景是未来战场环境信息系统的综合集成,军事领域复杂体系的发展规划。

       

    定义4:体系是分布环境中异构系统组成网络的集成,体系中这些异构系统表现出独立运作、独立管理和区域分布特征,在系统和系统间交互被单独考虑的情况下,体系的“涌现”与演化行为不太明显。这一定义的应用背景是国家交通系统、军事体系和空间探索。

       

    定义5:体系的组成不同于一般系统的内部结构(紧耦合),它是一种系统间的交互,而不是重叠。它具备如下特性:1)能够提供单一系统简单集成所不具备的更多或更强的功能能力;2)其组成系统是能够独立运作的单元,能够在体系所生存的环境发挥其自身的职能。这一定义的军事背景包括地面防空体系、战区导弹防御体系、作战群的编成体系等,其非军事背景如航天飞机。

       

    定义6:体系是复杂的、有目的的整体,这一整体具备如下特征:1)其组成成员是复杂的、独立的,并且具备较高的协同能力,这种协同使得体系组成不同的配置,进而形成不同的体系;2)其复杂特征在很大程度上影响其行为,使得体系问题难于理解和解决;3)边界模糊或者不确定;4)具备涌现行为。

       

    定义7:体系是一种“元系统”,其自身由多个自主的、嵌入的系统构成,这些自主的、嵌入的系统在技术、环境、地理区域、运作方式以及概念框架等方面是不同的。

       

    定义8:体系是相互协作的系统的集成,这些组成系统具备两种附加特性,即运作的自主性与管理的自主性。

       

    定义9:Kilicay N. H.关于体系的概念框架是从网络中心战的需求出发给出了对体系的理解与定义。

       

    定义10:国防大学陆军工业学院Kaplan J. 认为,体系是巨大的、复杂的、持久的独立系统的集成,这些是随着时间的发展通过各自的权威提供各自的能力以支持总的使命从而形成体系。

       

    定义11:美国国防部认为,“互相依赖的系统组合链接,提供的能力远大于这些系统的能力之和”。与体系的定义相对应,美国国防部同时定义了系统联邦,所谓系统联邦是指具备下列特性的一组系统:1)能力为所有组成成员的能力之和;2)具有所有成员共有的特征;3)系统的组合并不产生新的能力和属性。

       

    定义12:体系是由复杂、独立系统组成的“超系统”,这些独立的系统通过交互实现其共同的目标。体系特征包括:1)体系是巨型复杂系统;2)它由相互独立的系统组成;3)具有动态的开放环境。其实例包括天气、海洋以及应付天气海况变化的应急体系等。

       

    定义13:2005 年,美国参谋长联席会议主席在《Joint Capabilities Integration and Development System,JCIDS》(《联合能力集成与系统演化》)中给出了体系的定义:“体系是相互依赖的系统的集成,这些系统的关联与链接以提供一个既定的能力需求。去掉组成体系的任何一个系统将会在很大程度上影响体系整体的效能或能力。体系的演化需要在单一系统性能范围内权衡集成系统整体。战斗飞行器是体系研究典型案例,战斗飞行器既可以作为单一系统研究,也可以作为体系的子系统研究,作为体系研究时,其组成系统包括机身、引擎、雷达、电子设备等”。

       

    定义14:美国陆军部在关于陆军软件模块化法规(版本11.4E,2001.09)中对体系的定义:“体系是系统的集合,这些系统在协同交互过程中实现信息的交换与共享”。

       

    定义15:Maier在1996年提出体系是为实现共同目标聚合在一起的大型系统集合或网络;常见的SoS包括国际航空系统(飞机、机场、航空公司、航空交通控制系统)、海军水面舰艇火力支援SoS(侦察、定位、武器系统和C4I)、战区弹道导弹防御SoS(监视、跟踪、拦截系统和C4I)等。

       

    定义16:Cook在2001年提出体系是包含人类活动的社会—技术复杂系统,通过组成系统之间的通信和控制实现整体涌现行为。

       

    定义17:美国国防部定义体系是相互关联起来实现指定能力的独立系统集合或阵列,其中任一组成部分缺失都会使得整体能力严重退化,能够以不同方式进行关联实现多种能力的独立系统集合或阵列。

       

    除以上关于体系的定义外,还有大量的文献对体系这一概念进行了研讨,粗略归纳一下,体系区别于一般系统的主要特点如下。

       

    1)规模大,结构复杂,由组分系统协作集成。

       

    2)组分系统在地理上分布广泛,可独立运行、独立管理,具有独立的功能。

       

    3)目的性强,但目标不固定,可动态配置资源以适应不同任务的需要。

       

    4)组分系统完成共同目标时相互依赖,可同时执行和互操作。

       

    5)开发过程实行集中管理和规划,不断演化发展,涌现新的行为和功能。

       

    6)重视协调和开发来自不同组织或不同利益相关者完成共同目标的能力。

       

    现在低碳经济、能源、交通、环境保护、社会保障、信息网络、武器装备体系等问题都涉及多个复杂系统,这就是前面所说的“体系”问题。

       

    看待体系的不同观点

     

    从目前国内外关于SoS的研究看,对SoS问题认识有如下观点。

       

    1)SoS是动态的、不确定环境中大规模系统的集合,其动态不确定性导致SoS的需求预测困难,是对传统系统工程的挑战。

       

    SoS概念最初的提出是Eisner,他认为SoS应该具备以下6个特征。

       

    (1)由独立的系统构成,每个系统的运作都遵循系统工程的过程。

       

    (2)SoS中每个系统的发展在时间阶段上不存在关联。

       

    (3)SoS中系统之间的关联不是决定与被决定的关系,而是相互依赖的关系。

       

    (4)从整体来看,SoS中单个系统通常都具备自己的职能,并在SoS运作中发挥作用。

       

    (5)SoS中每个系统的最优化并不能保证体系的最优化。

       

    (6)SoS中所有系统的运作促使体系目标或使命的实现。

       

    后来,Buede把这些概念关联到传统的系统工程技术。Buede认为传统系统工程方法如果不能明确建立问题的柔性或刚性需求的话,就不能有效解决问题,这一问题在高层决策中经常遇到。现实世界中,由于环境的变化与不确定性主导了世界,导致需求难于预测,Buede认为SoS的研究是对传统系统工程技术或方法的挑战。

       

    Norman认为高层需求建立困难的原因是SoS的动态性和复杂性。SoS 是动态环境中交互系统的集合,SoS中的系统都具备两种特征:1)有SoS的背景环境;2)受SoS中其他系统的影响。SoS同环境的边界是模糊的,SoS边界的确定途径之一取决于SoS决策者的判断;通常,SoS的边界是非常之大,足以囊括SoS决策者所关注的所有因素以及这些因素在SoS众多系统中的行为。在SoS中的每一个系统通常都由大量的行为实体组成,这些实体的行为包括合作、中立和敌对行为,这些行为又通常以团队、组或者非协作个体行动方式组织。系统中的实体可能运作在1个或多个SoS的系统之中,且对SoS中其他不同的系统可能有不同的行为表现。

       

    通常情况下,SoS的决策者关注SoS的效率和效能,但决策者对SoS中系统的行为可能不能进行直接的控制,而且,对SoS来说不存在如此之大的控制机制。这就导致了SoS中系统行为可能呈现出较大程度的自主行为。

       

    基于对系统中的系统问题的这一认识,Rod对系统工程、管理科学、公共管理及知识工程4个领域的方法和技术针对SoS问题的解决进行分析和比较。这些方法和技术包括了4个领域的6种方法,并采用11个参数进行了评价。

       

    2)SoS仍然属于系统类,但是区别于大规模集成系统。

       

    Owens W.把SoS归为系统类,定义系统中的系统是由各个部分组建,其各部分在其自身的位置上即为大规模系统。与复杂大规模集成电路系统相比较,Maier认为系统中的系统应该具备以下特征。

       

    (1)组成元素运作的独立性。如果SoS被分解为各个分系统,则分系统能够独立有效运作。SoS就是由这些在自身的位置上能够独立运作的系统组成。

       

    (2)组成元素可获取的独立性。SoS的组成部分在构建或形成SoS过程中可以被独立获取,在形成SoS后仍然保持持续运作的存在。

       

    (3)SoS 模式的演化。SoS 并不以固定的模式出现,其存在和发展都伴随其功能、使命、环境、知识和经验的变化而演化。

       

    (4)SoS的“涌现”行为。SoS在功能的执行以实现其目标过程中所表现出的行为是其组成各部分所不具备或不能表现出的行为,这些行为是整个SoS的“涌现”特性。SoS的“涌现行为”是SoS的基本特征和构建体系的主要目标。

       

    (5)SoS的分布性。SoS的各部分在地理上广泛分布,通过信息交流技术在各部分之间进行信息交流实现各部分之间的融合。

       

    根据Maier对SoS特征的描述,常见的SoS包括国际航空系统(飞机、机场、航空公司、航空交通控制系统)、海军水面舰艇火力支援SoS(侦察、定位、武器系统和C4I)及战区弹道导弹防御SoS(监视、跟踪、拦截系统和C4I)等。

       

    在Maier定义基础上David定义了联合C4IS-REW体(JCS),它是通过信息技术、文化、条令条例途径把各军兵种C4ISR和电子战系统(electronic warfare systems,EW)有效集成以获取超越各部分能力的效果。这一联合体为军事行动中的计划、部署以及行动提供及时有效的信息以支持决策优势的获取。根据Maier的定义,Laird 认为JCS 就是一个SoS 的实例,是ISR、C4(command,control,computers,communications)和EW 的快速、适时并有效地集成。

       

    3)SoS是信息时代军事变革的主要内容,是决定未来战争胜负的关键。

       

    最近几年,复杂SoS工程受到了越来越多学者的关注,尤其是在联合作战研究领域,SoS建设被认为是通过众多作战平台、武器系统、传感器系统和通信交流系统等战场实体的协同运作实现战争目标的必要措施,这种系统间协调运作的需求大大增加了战场建设的复杂性,这一问题也成为战场指挥官关注的焦点。美军前大西洋战区司令官Sheehan J.认为,未来战争的胜负将取决于对战场作战SoS的控制能力,这种能力就是采用先进的信息技术链接战场硬杀伤和软杀伤的能力。

       

    美军参联会前主席Owens W.把未来的网络中心战思想归为SoS思想,认为实现网络中心战的关键就是整合美军在ISR系统、C4系统和PGM 3个领域的技术优势,构建一个SoS提供传感器到武器投射平台灵活的、无缝的链接。信息时代的军事变革本质上就是体系的形成,这种体系的主要部分是ISR系统、C4系统、系统适时集成技术以及能够充分利用内在潜力的条令条例、战略战术和军事组织。

       

    20 世纪90 年代中期,美国应用物理实验室基于SoS本质上是一个联合军事实体的认识提出了支持联合作战的联合SoS概念,所谓联合SoS是指链接C4和ISR以及精确制导武器的联合军事实体。联合SoS是改变传统战争的新概念,是支持未来信息化战争、提供战场环境中信息优势的手段。在联合SoS的概念研究基础上,应用物理实验室提出新的作战思想——“精确闪击战”,这一思想在21世纪之初的伊拉克战争中成为指导美军作战行动的主要指导思想,得到了实践的检验。

       

    体系的综合定义

     

    从以上关于体系的定义与描述可以看出:体系应该是一种完整的框架,它需要决策者充分综合考虑相关的因素,不管这些因素随着时间的演变而呈现出何种状态。体系问题研究的迫切性不仅是因为今天系统复杂性增加的挑战,在信息时代的今天,人类的决策经常面临着大规模的数量、高密度交互与关联、长时间的跨度规划问题。在一般系统问题上,其明确的边界与独立的运作能够让人游刃有余地处理,但由这些系统组成的体系表现出“涌现”行为特性却让人对体系问题的处理显得较为棘手,对体系问题的处理需要认识、分析和理解体系“涌现”模式的演化特性。体系方法并不倡导某种工具、方法手段或实践,相反,它追求一种新的思维模式,这种思维模式能够迎接体系问题的挑战。体系研究是多学科的交叉,其相关领域的研究包括系统、系统工程、复杂性、协同性和混沌特征等。

       

    将上面各种定义综合归纳一下,体系和其他系统的区别在于体系的十大主要特性:1)独立性。组成体系中各系统是独立可用。2)异构性。组成个体的异构性。3)自主性。各系统管理自主独立。4)分布性。各系统分布不同地理位置。5)演化性。关系复杂与演化发展。6)非线性。涌现行为。7)关联性。因素与各系统影响的关联性。8)自组织。系统能自组织。9)适应性。环境适应性。10)模糊性。边界和目标模糊。

       

    由于在不同体系,如作为系统工程升级的体系、计算机体系、国防用武器体系、企业体系等各有自己的定义,此外它们大多将复杂自适应系统作为自已的基础,Sheard曾经将它们放在一起形成体系的综合定义,如图2所示。

       

    图2  体系的综合定义(S. Sheard)

     

    体系工程

     

    在种种体系问题背景下,体系工程(SoSE,system of systems engineering)应运而生。与传统的系统工程理论相比,体系工程在分析和解决不同种类的、独立的、大型的复杂系统之间的相互协调与相互操作问题更具有针对性。

       

    体系工程是对系统工程的延伸和拓展,它更加关注于将能力需求转化为体系解决方案,最终转化为现实系统。一般地,系统工程在系统开发前,明确并建立一个严格的系统边界,针对这个边界规范一系列的子需求,并根据这些需求完成一个系统的设计和开发。体系工程则主要通过平衡和优化多个系统之间的相互关系,实现可互操作的灵活性和应变能力,并最终构造一个可以满足用户需求的体系。多个方面对系统工程和体系工程的比较见表1。

       

    表1  体系工程与系统工程的对比

     

    从体系开发过程角度来看,体系工程包含体系需求(获取与分析)、体系设计、体系集成、体系管理、体系优化和体系评估等过程。

       

    体系工程发展过程经历了3个阶段。

       

    第一阶段是20世纪90年代中期,体系的现象与问题的产生、技术迅猛发展使得复杂的技术集成与管理问题越来越突出,在各个领域都出现了大规模系统集成与更新换代的需求,如国防系统、城市交通、航空管制及航天技术集成等。

       

    第二阶段始于20世纪末,广大学者开始探索解决体系问题的思路与方法,首先认识到传统系统工程在解决体系问题上的不足,然后开始新的途径与方法的探索。

       

    第三阶段是21世纪初,体系工程概念被普遍接受,进行了系列的理论研究与工程实践活动,成立体系工程研究机构(如IEEE SoSE,International Council on System Engineering),举行体系工程的年度专题会议,并创办了《International Journal of System of Systems Engineerzing》杂志,这些工程实践活动包括美军未来作战系统(future combat systems)的全新设计与实现、美海岸警卫队深海作战系统的一体化改进及战区导弹防御体系的构建等。

       

    2005年,美国建立了2个体系研究中心,一个是体系工程研究中心(SoSECE,SoS Engineering Center of excellence),另一个是美国老道名大学(Old Dominate University)的国家体系研究中心(NCOSE,National Centers of SoS Engineering)。国际上还有其他大学和研究机构分别在工程系统领域和智能交通系统方面,能源开发、电力网络传输等方面开展了体系结构设计相关的研究,在软件体系结构整合度评估、体系结构风险评估和体系结构设计方面取得了大批研究成果。

       

    尽管如此,到目前为止,还没有成熟的理论、方法和技术来支撑体系的研究或在体系问题的解决上实施系统工程的框架,但这一思想没有得到普遍的认可,在Eisner工作基础上Ronald提出了体系工程的构想,在其构想中强调体系问题的定量分析,在该方法中体系被看作一个整体,对体系的优化是基于费用代价和技术约束,其研究方法包括运筹分析、效用建模、非线性最优化和随机建模与模拟。应该说Ronald的工作是体系工程研究上迈出的第一步。

       

    国际上对体系工程开展的研究刚刚起步,与体系的定义一样,不同领域的学者和工程实践人员都有不同的理解和认识,体系工程也并未形成一个权威定义。

       

    下面是一些体系工程典型的定义。

       

    定义1:体系工程是确保体系内在其组成单元的独立自主运作条件下能够提供满足体系功能与需求的能力,或者说执行体系使命与任务的能力。

       

    定义2:体系工程是这样一个过程,它确定体系对能力的需求;把这些能力分配至一组松散耦合的系统;并协调其研发、生产、维护及其他整个生命周期的活动。

       

    定义3:体系工程是指解决体系问题的方法、过程的统称。体系工程是国防技术领域的一个新概念,这一概念同时也被广泛应用于国家交管系统、医疗卫生、万维网及空间探索领域。体系工程不仅局限于复杂系统的系统工程,由于体系所涵盖问题的广泛性,它还包括解决涉及多层次、多领域的宏观交叉问题的方法与过程。

       

    定义4:体系工程是学科交叉、系统交互的过程,这种过程确保其能力的发展演化满足多用户在不同阶段不断变化的需求,这些需求是单一系统所不能满足的,而且演化的周期可能超越单一系统的生命周期。体系工程提供体系的分析支持,包括系统交叉的某一时间阶段内在资源、性能和风险上的最佳平衡,以及体系的灵活性与健壮性分析。

       

    定义5:体系工程源于系统,但它不同于系统工程,是不同领域问题的研究。系统工程旨在解决产品的开发与使用,而体系工程重在项目的规划与实施,换句话说,传统系统工程是追求单一系统的最优化(例如某一产品),而体系工程是追求不同系统网络集成的最优化,集成这些系统以满足某一项目(即体系问题)的目标。体系工程方法与过程使得决策者能够理解选择不同方案的结果,并提供给决策者关于体系问题有效的体系结构框架。

       

    定义6:体系工程解决体系中的系统的集成,最终为社会基础设施的发展做出贡献。

       

    定义7:美国国防采办手册定义体系工程是对一个由现有或新开发系统组成的混合系统的能力进行计划、分析、组织和集成的过程,这个过程比简单的对成员系统进行能力叠加要复杂得多,它强调通过发展和实现某种标准来推动成员系统间的互操作。

       

    定义8:美国体系工程研究中心指出体系工程是设计、开发、部署、操作和更新体系的系统工程科学。它所关心的是:确保单个系统在体系中能够作为一个独立的成员运作并为体系贡献适当的能力;体系能够适应不确定的环境和条件;体系的组分系统能够根据条件变化来重组形成新的体系;体系工程整合了多种技术与非技术因素来满足体系能力的需求。

       

    从上面的定义可以看出,体系工程在不同领域的理解存在5个方面的共性:

     

    1)体系工程是能力集成工程。

       

    2)体系工程是复杂需求获取工程。

       

    3)体系工程是综合集成体的演化工程。

       

    4)体系工程是学科交叉、系统交互过程。

       

    5)体系工程是权衡与平衡工程。

       

     体系工程过程 

     

    体系工程以解决体系的构建与演化问题为目标,其研究对象是体系,区别于系统工程所针对的简单系统对象,在过程原理上两者间存在本质的差异。

       

    体系工程过程存在需求分析循环、设计分析循环与设计验证循环,除此之外,还存在对体系环境与边界的分析。体系环境与边界分析同需求分析循环、设计分析循环和设计验证循环并行进行,体系工程4个方面的过程分析通过体系分析与控制活动进行平衡,通过平衡找到体系设计的合适的方案,如图3所示。

       

    图3  体系工程过程

     

     体系问题有效的体系结构框架 

     

    体系工程源于系统工程,但高于系统工程,是解决系统工程解决不了的体系问题。体系工程是实现系统最优化的科学,是一门高度综合性的管理工程技术,涉及应用数学(如最优化方法、概率论、网络理论等)、基础理论(如信息论、控制论、可靠性理论等)、系统技术(如系统模拟、通信系统等),以及经济学、管理学、社会学、心理学等各种学科。体系工程重在项目的规划与实施,追求不同系统网络集成的最优化,集成这些系统以满足某一项目(即体系问题)的目标。体系工程方法与过程使得决策者能够理解选择不同方案的结果,并提供给决策者关于体系问题有效的体系结构框架,如图4所示。

       

    图4  体系结构框架

     

     体系工程的研究热点 

     

    体系工程作为近年来国际上一个新兴的热点研究领域,国外众多科研机构对其进行了深入研究。在《International Journal of System of Systems Engineering》2008年第1期文章中,总结了体系方面的13位权威专家在一次高层研讨会中得出的体系工程领域急迫需要开展研究的10个热点问题。这10个方面的热点问题将在未来引领体系与体系工程的发展,他们分别如下。

       

    1)弹性、适应能力、快速恢复能力。

       

    2)成功的案例。

       

    3)系统与体系属性的差别与比较。

       

    4)模型驱动的体系结构。

       

    5)体系结构多视图产品。

       

    6)处理复杂性中人类的局限性。

       

    7)网络中心的弱点(net-centric vulnerability)。

       

    8)演化、进化(evolution)。

       

    9)导向性涌现行为(guided emergence)。

       

    10)无单个所有者的体系(no single owner SoS)。

       

     结 论 

     

    人类正在面临知识经济和全球化,社会发生了很多新的变化,表现在以下3个方面。

       

    1)社会在变:以数据为中心转为以信息、概念、知识、智慧为中心。

       

    2)系统在变:从过去处理相对比较简单的系统变为要处理复杂系统,并进而到开放复杂巨系统、复杂自适应系统、系统的系统(体系)。

       

    3)技术在变:高新技术大量出现,特别是计算机和网络系统、虚拟现实、大数据、云计算、人工智能、机器人、无人机等。

       

    为了应对以上变化,建议如下。

       

    1)要采用新思路、新概念和新技术。

       

    2)应用综合集成,要注意软、硬结合,注意东西方结合。

       

    3)要多学科交叉,特别要注意与系统科学、知识科学、思维科学、信息科学、心理科学等学科的交叉,知识面要宽。

       

    4)要人机结合,但要以人为主。

       

    5)要群体智慧,发挥集体和组织的智慧。

       

    6)要物理、事理、人理结合。

       

    7)还是要抓两头,发展和完善系统科学的理论,注意体系和体系系统工程的新的应用。

       

    8)要领会用户的需求,更要学会创造新需求。

       

    9)要学会新的管理方式和注意协调。

       

    笔者最近有幸接触两起中国有关体系的实际案例,仅就其中一些值得提出的思想与大家分享。一个是中国航天工业领域中在提到他们应用体系思想解决战略规划时,说我们正从航天大国走向航天强国,也就是说过去我们习惯去参照其他航天强国提出的规划指标作为我们的参照,或者说个别地方达到高峰;那么如果到航天强国,就要整个达到高原的地步,有不少新的规划指标和标准要我们自己提出来,也就是作为战略武器制造者,自己怎样帮助领导一起去产生新的需求,这正是系统工程与体系的一个重要区别——学会创造新的需求。另一个案例是中国船舶工业领域在讨论航母这个体系时,提出很多在航天武器领域不太考虑的“生存性”“可修复性”“进化性”等,还有体系中各个分系统之间的协调性和贡献率,特别是谁都希望1+1>2,但是谁来贡献出这多于2的部分,他们具体是多少?如何去定量的评价?这些实际问题既是设计和管理人员应该具体地去回答,更是我们系统科学工作者应该去回答和研究的问题。

       

    参考文献(略) 

     

     

     

    作者简介:顾基发,中国科学院数学与系统科学研究院,研究员,研究方向为系统工程。

     

    本文发表于《科技导报》2018 年第20 期,敬请关注。

     

    (责任编辑   王志敏)

    展开全文
  • 系统工程的定义

    2019-07-14 11:05:03
    用定量和定性相结合的系统思想和方法处理大型复杂系统的问题,无论是系统的设计或组织建立,还是系统的经营管理,都可以统一的看成是一类工程实践,统称为系统工程。 第二次世界大战以后。为适应社会化大生产和...
  • 简述系统工程

    2020-10-10 23:43:41
    1、系统工程简单定义 系统工程是为了更好地达到系统目标,对系统的构成要素、组织结构、信息流动和控制机构等进行分析与设计的技术。目的是使人们确保在正确的时间使用正确的方法做正确的事情。 2、系统的构成方式 ...
  • 软件工程 毕业设计题目

    万次阅读 多人点赞 2020-09-11 14:22:21
    软件工程毕业设计 题目汇总 【不断更新中】 1.微信小程序 校园表白墙微信小程序 2.房屋租赁管理系统 3.航空售票管理系统 4.高校会议室管理系统 5.高校就业管理系统 6.失物招领系统 7.图书销售系统 8.微信小程序 ...
  • 软件工程看完后,开始着手写有关机房收费系统的软工文档。可是其中的各种图把我搞得头疼,于是我把软件工程中提到的那些图总结了一下,还望众位大神指正! 系统流程图(System Flowchart):是描绘系统物理模型的...
  • 软件工程毕业设计集合

    万次阅读 热门讨论 2019-04-10 14:57:32
    1.旅游社交系统 2.基于Web的学校教室租赁系统 3.学校在线二手交易平台 4.基于移动平台的轻博客系统开发 5.基于web的IT技术论坛 6.基于Java EE新闻管理系统的设计与实现 7.网上员工考试培训系统 ...
  • 系统架构又称为逻辑架构图。根据维基百科对系统架构的描述: The systems architect is a professional figure in information and communications technology. Systems architects define the architecture of a ...
  • 软件工程-系统流程图

    万次阅读 2019-06-16 16:49:57
    在软件工程可行性研究中需要建立新系统的高层逻辑模型,这个就需要系统流程图了。 作用 系统流程图时描述物理系统的工具 物理系统 所谓物理系统,就是一个具体实现的系统。 与程序流程图的区别 在系统流程图中...
  • 早已有了写一个自己博客的想法,但是想自己建立一个网站,但是建成之后却最终用作他途,现在多次想写点东西,写到了本地的文档里面,但是不如博客方便和开放,于是今天就写了第一个博客,就先这么着吧: ) . ...
  • 软件工程中的图:流程图,数据流图

    万次阅读 2017-06-29 10:44:13
    最近在学习这方面的知识,为了可以不必...软件工程中的那些图:系统流程图,程序流程图和数据流图 软件工程看完后,开始着手写有关机房收费系统的软工文档。可是其中的各种图把我搞得头疼,于是我把软件工程中提
  • 软件工程的几个步骤

    万次阅读 2008-03-07 00:03:00
    软件工程的几个步骤[转载]2008年01月08日 星期二 15:36
  • 软件工程笔记五__状态转换图

    千次阅读 2019-06-09 09:03:17
    状态转换图(简称状态图)通过描绘系统的状态及引起系统状态转换的事件,来表示系统的行为。 2 状态 状态是任何可以观察到的系统行为模式,一个状态代系统的一种行为模式。状态规定了系统对事件的响应方式。 状态图...
  • 软件工程需求分析模板(简单)

    万次阅读 2017-09-21 20:36:41
    1.1目标 ...如果所定义的产品是一个更大的系统的一个组成部分,则应说明本产品与该系统中的其他各组成部分之间的关系,为此可使用一张方框图来说明该系统的组成和本产品同其他各部分的联系和接口。   1.
  • 数据流图是一种图形化的系统模型,它在一张图中展示信息系统的数据流向——即系统的输入与输出数据分别是什么,数据从哪里来并最终流向何处,以及数据存储在什么地方。 数据流图的基本图形元素有: 数据流:是由...
  • 本文来自有赞孙军老师的分享。...抛开这些形形色色的分布式技术,我们对系统可靠性的述求却是一致的:分布式系统需要高可用,即使出现了单点或集群故障,也希望系统具备自我恢复或优雅降级的弹性能力、...
1 2 3 4 5 ... 20
收藏数 1,132,662
精华内容 453,064
关键字:

系统工程