区块链_区块链技术 - CSDN
区块链 订阅
区块链是一个信息技术领域的术语。从本质上讲,它是一个共享数据库,存储于其中的数据或信息,具有“不可伪造”“全程留痕”“可以追溯”“公开透明”“集体维护”等特征。基于这些特征,区块链技术奠定了坚实的“信任”基础,创造了可靠的“合作”机制,具有广阔的运用前景。2019年1月10日,国家互联网信息办公室发布《区块链信息服务管理规定》 [1]  。2019年10月24日,在中央政治局第十八次集体学习时,习近平总书记强调,“把区块链作为核心技术自主创新的重要突破口”“加快推动区块链技术和产业创新发展”。“区块链”已走进大众视野,成为社会的关注焦点。2019年12月2日,该词入选《咬文嚼字》2019年十大流行语。 [2] 展开全文
区块链是一个信息技术领域的术语。从本质上讲,它是一个共享数据库,存储于其中的数据或信息,具有“不可伪造”“全程留痕”“可以追溯”“公开透明”“集体维护”等特征。基于这些特征,区块链技术奠定了坚实的“信任”基础,创造了可靠的“合作”机制,具有广阔的运用前景。2019年1月10日,国家互联网信息办公室发布《区块链信息服务管理规定》 [1]  。2019年10月24日,在中央政治局第十八次集体学习时,习近平总书记强调,“把区块链作为核心技术自主创新的重要突破口”“加快推动区块链技术和产业创新发展”。“区块链”已走进大众视野,成为社会的关注焦点。2019年12月2日,该词入选《咬文嚼字》2019年十大流行语。 [2]
信息
外文名
Blockchain
领    域
金融,物联网,保险,公益领域等
特    点
数字资产的另外一种权益
类    型
公有链,联合链,私有链等
中文名
区块链
目    的
用于验证其信息的有效性(防伪)
诞生时间
2008年 [3]
区块链起源
区块链起源于比特币,2008年11月1日,一位自称中本聪(Satoshi Nakamoto)的人发表了《比特币:一种点对点的电子现金系统》一文 [4]  ,阐述了基于P2P网络技术、加密技术、时间戳技术、区块链技术等的电子现金系统的构架理念,这标志着比特币的诞生。两个月后理论步入实践,2009年1月3日第一个序号为0的创世区块诞生。几天后2009年1月9日出现序号为1的区块,并与序号为0的创世区块相连接形成了链,标志着区块链的诞生 [5]  。近年来,世界对比特币的态度起起落落,但作为比特币底层技术之一的区块链技术日益受到重视。在比特币形成过程中,区块是一个一个的存储单元,记录了一定时间内各个区块节点全部的交流信息。各个区块之间通过随机散列(也称哈希算法)实现链接,后一个区块包含前一个区块的哈希值,随着信息交流的扩大,一个区块与一个区块相继接续,形成的结果就叫区块链 [6]  。
收起全文
精华内容
参与话题
  • 区块链技术原理精讲

    千人学习 2019-12-16 15:40:05
    针对区块链技术原理做详细介绍. 按照比特币,以太坊,联盟链+Fabric的演进历程,依次详细介绍每一代区块链所使用的核心技术,对应的主要部分的结构原理分析,以及相应共识的工作原理.并针对常听到的一些区块链基本问题做...
  • 区块链简介

    万次阅读 多人点赞 2017-11-17 17:07:16
    本文从概念、发展历史、特点、结构、应用等5个方面简单介绍了区块链

    区块链简介

    区块链(blockchain)作为比特币的底层技术受到了越来越多的关注,其去中心化的分布式数据库存储结构有着广阔的应用场景。本文从一下五个方面介绍一下区块链技术:

    1. 区块链的概念
    2. 区块链的发展历史
    3. 区块链的特点
    4. 区块链的结构
    5. 区块链的应用

    1. 区块链的概念

    狭义上讲,区块链是一种按照时间顺序将数据区块以链条的方式组合成特定数据结构,并以密码学的方式保证其不可篡改、不可伪造的去中心化共享总账(Decentralized Shared Ledger),能够安全存储简单的、有先后关系、 能在系统内验证的数据。[1]

    简单的讲,区块链就是一个去中心化的分布式数据库,分布式环境中的每一个节点都不能保证可信。数据库中存储的是以时间先后顺序排列的数据区块,每一个区块中保存的是若干条交易记录,运用密码学的方法生成区块以保证其中数据不可篡改、不可伪造、可以验证;以共识算法使全网所有节点(理论上是所有节点)完成对区块的认可。

    广义上讲,区块链技术是利用加密链式区块结构来验证和存储数据、利用分布式节点共识算法来生成和更新数据、利用自动化脚本代码(智能合约)来编程和操作数据的一种全新的去中心化基础架构和分布式计算范式。[2]

    2. 区块链的发展历史

    区块链技术脱胎于比特币,在中本聪2008年发表的《比特币:一种点对点的电子现金系统中》一文中,区块(Block)和链(Chain)作为比特币系统的核心技术被提出来。区块链发展至今可分为3个阶段[3]:

    第一阶段:区块链1.0 —— 数字货币
    最具有代表意义的就是比特币了,其以区块链作为底层技术,是区块俩最初始的应用。
    第二阶段:区块链2.0 —— 数字资产和智能合约
    代表产品有2014年7月的Ethereum(以太坊),其将智能合约理念推进到了极致,还有2015年3月的Factom(公正通)以及国内的太一系统等。
    第三阶段:区块链3.0 —— DAO、DAC → 区块链大社会
    DAO、DAC指区块链自治组织、区块链自治公司。这一阶段是区块链技术广泛应用于人们生活和生产的各个方面,区块链被人们广泛接受,比如区块链应用于能源互联网的能源区块链,区块链应用于医疗事业的医疗区块链等等

    3. 区块链的特点

    1. 去中心化

    区块链是一种分布式数据存储结构,没有中心节点,所有节点都保存全部的相同的区块信息,完全实现去中心化。对于特殊的应用场景,可以适当地采用弱中心化的管理节点,即中心节点不影响整个区块链结构的运行,比如弱中心化的监管机制;若从安全角度来说,弱中心化结构中的中心节点要满足对于区块链的安全不构成威胁,对用户隐私不构成威胁等。

    2. 不可篡改性

    一方面,区块链中存储的交易信息每一条都有相对应的Hash值,由每一条记录的Hash值作为叶子节点生成二叉Merkle树,Merkle树的根节点(Hash值)保存在本区块的块头部分,区块头部除了当前区块的Merkle树的根节点,还要保存时间戳以及前一个区块的标识符(Hash指针)形成一条链式结构。因此,要想篡改区块链中的一条记录,不仅要修改本区块的Hash值,还要修改后续所有区块的Hash值,或者生成一条新的区块链结构,使得新的链比原来的链更长。实际上,这是很难实现的。一般,一个区块后面有6个新的区块生成时,即可认为该区块不可篡改,可以将该区块加入到区块链的结构中了。

    3. 不可伪造性

    区块链保存的交易数据中不仅含有Hash值,还有交易双方的签名以及验证方的签名。签名具有不可伪造性,因此具有不可伪造性。

    4. 可验证性

    可验证性指的是数据来源的可验证。每一笔交易中电子货币的产生和输入、输出都是可以验证的。区块链结构中不会凭空增加电子货币。以比特币为例,每一笔交易的输入都是前一笔交易的输出,每一笔交易的输出又是下一笔交易的输入,即交易的可追溯性。除了来源的可验证外,还有交易金额的可验证,即验证金额的正确性,确保交易过程中的每一笔资金都是可靠的。目前,为了保证用户的隐私,很多电子货币通过混币、环签名、零知识证明等技术在数据可验证的情况下,尽可能地切断金额的可追溯性。

    5. 匿名性

    区块链中的匿名性实际上是一种伪匿名性。区块链中使用假名技术来切断账号和真实身份的联系。比如,对用户公钥进行一系列的Hash运算,得到的固定长度的Hash值作为对应的电子账号。实际上,随着使用次数的增加,通过数据分析可以分析出账号的很多交易行为,比如经常和那些账号做交易,交易金额多少等,甚至可以和现实中的真实身份相联系。

    4. 区块链的结构

    (1) 层次结构

    比特币系统将区块链分成6层结构:数据层、网络层、共识层、合约层、激励层、应用层。其架构图如下:

    区块链6层架构图

    文献[4] 中将区块链分成3层:网络层、交易层、应用层。架构图如下:

    区块链3层架构图

    文献[5] 中的北航链将区块链分成6层:存储层、基础区块链层、缓存层、API层、链上代码层、应用层。其架构图如下:

    区块链6层架构图

    (2) 数据结构

    区块链中的数据结构根据不同的应用会有所不同,但基本上都是由区块头(块头)和区块体(块身)组成。区块体保存的是若干条记录以及由每条记录的Hash值构成的二叉Merkle树。区块头一般包括版本号、前一区块的Hash值(Hash指针)、随机数、目标Hash(本区块的Hash值)、Merkle根,有时还会有用于PoW的计算困难门限值Difficulty等。根据不同的应用,块头和块身的数据项也会有所不同。根据需求,可以建立单链结果,还可以建立双链结构。下面是一个单链结构的简单的区块数据结构图[3]:

    数据结构

    5. 区块链的应用

    区块链由于其结构特点有着广阔的应用前景。最早,区块链作为比特币的核心技术被提出来。随着区块链的发展,尤其是与智能合约的结合,区块链技术的应用早已不再仅仅局限于数字货币等金融领域。
    区块链除了应用于金融领域(如Bitcoin, Monero, Zcash)外,还可以应用于能源互联网(能源区块链)、医疗事业(医疗区块链)、学术界学术记录、供应链管理、共享单车、云存储等。

    参考文献

    [1] 袁勇, 王飞跃. 区块链技术发展现状与展望[J]. 自动化学报, 2016, 42(4):481-494.
    [2] Beck R, Czepluch J S, Lollike N, et al. BLOCKCHAIN – THE GATEWAY TO TRUST-FREE CRYPTOGRAPHIC TRANSACTIONS[C]// Twenty-Fourth European Conference on Information Systems. 2016.
    [3] 朱建明, 付永贵. 区块链应用研究进展[J]. 科技导报, 2017, 35(13):70-76.
    [4] 祝烈煌,高峰,沈蒙,李艳东,郑宝昆,毛洪亮,吴震.区块链隐私保护研究综述[J/OL].计算机研究与发展,2017,(10):.
    [5] 蔡维德,郁莲,王荣,刘娜,邓恩艳.基于区块链的应用系统开发方法研究.软件学报,2017,28(6):1474-1487.

    展开全文
  • 人人都懂区块链区块链入门

    万人学习 2019-07-18 10:19:04
    区块链价值、区块链应用场景、区块链从何而来、比特币是什么、比特币运行原理、什么是以太坊、什么是EOS
  • 区块链学习——区块链的技术栈

    万次阅读 多人点赞 2018-04-19 09:41:18
    摘要我在区块链学习的上一篇博文,链接:区块链学习——区块链技术理念与工作流程中,简单介绍了区块链的技术理念以及工作流程,本文我将继续介绍区块链技术栈。我们知道,区块链本身只是一个数据的记录格式,就像们...

    摘要

    我在区块链学习的上一篇博文,链接:区块链学习——区块链技术理念与工作流程中,简单介绍了区块链的技术理念以及工作流程,本文我将继续介绍区块链技术栈。

    我们知道,区块链本身只是一个数据的记录格式,就像们平时使用Excel表格、Word文档一样,按照一定的格式将我们的数据存储在电脑上。与传统记录不同的是,区块链将产生的数据按照一定的时间间隔,分成一个个的数据块记录,然后再根据数据块的先后关系串联起来,也就是所谓的区块链了。按照这种规则,沿着时间线不断增加新的区块,记录下发生的每一笔操作。

    这种数据记录的方式很新颖,在这种记录方式下,数据很难被篡改或者删除,有朋友可能会说,这有什么不好修改或者删除的,比如我在电脑上保存的Excel数据,再怎么复杂我也能修改啊!如果区块链的数据格式只是应用在单机环境或者一个中心化的服务器上,那确实是,毕竟自己对自己的数据拥有完全支配的权利。然而,事实上并不是如此。

    事实上,区块链是一整套技术组合的代表,在这一组技术的配合下,才能显示区块链技术的优点。无论是什么样的区块链系统,不管是比特币、莱特币、以太坊还是其他的,核心结构和工作原理都是相同的。我们来看看最基本的技术组合有哪些吧。


    如上图所示,这是区块链系统结构的基本组成,各种系统本质上都是在这个经典结构之上直接实现或者扩展实现。这些零部件装配在一起,组成了一个区块链软件,运行起来后就成为一个节点,多个这样的节点在不同的计算机上运行起来,就组成了一个网络。在这个网络中没个节点都是平等的,大家相互为对方提供服务,这种网络称为点对点的“对等网络”。下面我们来依次解释一下

    1.区块链账本

    如上所述,区块链账本它表示一种特有的数据记录形式。区块链就是“区块+链”,所谓的区块就是指数据块的意思,每个数据块之间通过某个标志连接起来的,从而形成一条链,我们看一下示意图:


    如图所示,一个区块一个区块地衔接,区块之间通过某种方式串联起来,就比特币来说,大约是每10分钟产生一个区块,区块中主要包含了交易事务数据以及区块的摘要信息。我们来看看比特币中区块链数据的组成示意图:


    通过上图可以看到比特币中区块链账本的数据组成以及关系,并且可以看到区块链数据在逻辑上分成了区块头和区块体,每个区块头中通过梅克尔根关联了区块中众多的交易事务,而每个区块之间通过区块头哈希值(区块头哈希值就是一个区块的身份证号)串联起来。这是一种链条格式,链条最大的特点就是一环扣一环,很难从之间去破坏。比如有人篡改了中间的2号区块,那么久的同时把2号区块后序的所有区块都要更改掉,这个难度就很大了。在区块链系统中,一个节点产生的数据或者更改的数据要发送到网络中的其他节点接受验证,而其他节点是不会通过验证一个被篡改的数据的,因为跟自己的本地区块链账本数据匹配不起来,这也是区块链数据不可篡改的一个很重要的技术设计。

    这个格式还有个很巧妙的地方,如果数据总是由一个人来记录的,那自然也没什么,但是如果放到网络中,大家共同来记录这个数据,那就有意思了,每个区块数据由谁来记录或者打包,有一个规则。比如说掷骰子,大家约定谁能连续3次掷出三次6点,那就让他记录下一个区块的数据,为了补偿他的劳动投入,奖励给他一些收益。比特币正是通过这种方式不断发行新的比特币出来,奖励给打包记录区块数据的那个人的比特币就是新发型的比特币。

    2.共识机制

    所谓共识,就是指大家达成一致的意思。在区块链系统中,每个节点必须要做的事情就是让自己账本和其他节点的账本保持一致。如果在传统的软件系统中,这几乎不是问题,因为有一个中心服务器存在,也就是所谓的主库,其他库向它看齐就行。在实际生活中,很多事情人们也是按照这种思路来的。但是区块链是一个分布式的对等网络结构,在该结构中没有哪个节点是“老大”,一切都要商量着来。在区块链系统中,如何让每个节点按照规则保持数据一致是一个很核心的问题,这个问题的解决方案就是制定一套共识算法。

    共识算法其实就是一个规则,每个节点都要按照这个规则去确认自己的数据,并且我们要从所有的节点中选举出一个最具有代表性的节点,那么如何筛选呢?其实就是设置一组条件,就像我们筛选运动员、尖子生一样,给一组指标让大家来完成,谁完成得更好,谁就有机会被选上。在区块链系统中,存在着多种这样的筛选方案,比如PoW(proof of work工作证明)、PoS(Proof of stake权益证明)、DPoS(Delegate proof of stake委托权益证明)、PBFT(Practical Byzantine Fault Tolerance,实用拜占庭容错算法)等等。区块链系统就是通过这些删选算法或者共识算法使得网络中各个节点的账本数据达成一致。

    3.密码算法

    密码算法的应用在区块链系统中很巧妙,应用点也很多,我在这里不详细介绍密码的原理,就从几个很关键的应用来介绍一下。

    首先我们回顾下区块链账本格式。通过上述讲解我们知道,区块链账本就是一个链接起来的一个个区块。到底是通过什么技术来链接的呢?学过数据结构的同学都知道,数据结构中有一种变量叫指针(Java中没有指针概念)它是可以用来指向某个数据地址的。区块之间的连接,往往不是靠数据地址来关联的,而是靠一种叫做哈希值的数据来关联,什么是哈希值?这是通过密码算法中的哈希算法计算得出的。哈希算法可以通过一段数据计算得出一段摘要字符串,这种摘要字符串与原始数据是唯一对应的。什么意思呢?如果对原始数据进行修改,哪怕只是一点点的修改,那么计算出来的哈希值都会发生完全的变化。区块链账本对每个区块都会计算出一个哈希值,称为区块哈希。通过区块哈希来串联区块。这有一个很好的作用就是,如果有人篡改了中间的某一个区块数据,那么后面的区块就都要进行修改,这个时候并不是简单地修改一下后面区块地址指向就能结束的。由于后面的区块是通过区块哈希来指向的,只要前面的区块发生改动,这个区块哈希就无效了,就指不到正确的区块了。

    当然密码算法在区块链中的应用远不止这些,比如通过密码算法来创建账户地址、签名交易事务等等,这些应用在后面会介绍。

    4.脚本系统

    脚本系统在区块链中是一个相对抽象的概念,也是一个及其重要的功能,可以说是区块系统之所以能形成一个价值的网络,依靠的就是脚本系统。它就像一个发动机一样,驱动着区块链系统不断地进行各种数据的收发。所谓脚本,就是指一组程序规则。在区块链中有些程序的规则是固定的,比如在比特币系统中,只能进行比特币的发送与接收,这个与发送与接收的过程就是通过实现在比特币中的一组脚本程序来完成的。而有些系统是允许用户自行编写一组程序规则的,编写好后可以部署到区块链账本中,这就可以扩展区块链系统的功能,比如以太坊就是通过实现一套可以自定义功能的脚本系统,进而实现了只能合约的功能。

    脚本系统使得在区块链中可以实现各种各样的业务功能。本来大家只是通过区块链来财务记账,通过脚本系统,大家可以使用区块来记录各种各样的数据,比如订单、众筹账户、物流信息、供应链信息等,这些数据一旦可以记录到区块链上,那么区块链的优点就能充分发挥出来。有关脚本系统的具体使用和开发,我后面会讲解。

    5.网络路由

    这个功能模块比较简单。区块链系统是一个分布式的网络,这些网络中的节点如何来彼此进行通信呢?依靠的就是网络路由功能。在分布式的网路结构中,不存在一个指定的服务器,大家没办法通过一个服务器来直接交换彼此的身份信息,就只能依靠彼此联系并传播信息。在区块链系统中,这个功能一般会定义成一种协议,称为“节点发现协议”。

    除了要发现节点外,更重要的一个功能就是同步数据。节点要保持自己账本数据是最新的,就必须时时更新自己的数据。从哪更新呢?既然没有服务器下载下来,那就通过邻近的节点了。通过向邻近节点发送数据请求来获得最新的数据,节点彼此都充当服务者和被服务者,通过这种方式,网路中的每个节点都会在某一个时刻达成数据上的一致。

    网络路由可以说是区块链系统的触角,通过大量的触角将每个节点连入网络,从而形成一个功能强大的区块链共识网络。



    展开全文
  • 区块链技术通俗讲解

    千人学习 2020-03-11 14:35:30
    大多数区块链书籍或者教程都是将区块链中的技术特点独立来讲,比如加密、p2p、共识、分布式存储等,这些技术并不少全新的技术, 区块链之所以新,是因为对这些老技术的完美融合,如何形成闭环才是真正的区块链...
  • 区块链:典型应用场景

    万次阅读 2020-10-21 11:59:36
    科技创新,应用为王。 一项新技术能否最终落地普及,有很多影响...如果未来基于区块链技术构造的商业价值网络成为现实,所有的交易都将高效完成且无法伪造;所有签署的合同都能按照约定严格执行。这将极大降低整个...

    科技创新,应用为王。

    一项新技术能否最终落地普及,有很多影响因素。其中很关键的一点便是能否找到合适的应用场景。

    以比特币网络为代表的大规模数字货币系统,长时间自治运行,支持了传统金融系统都难以实现的全球范围即时可靠交易。这为区块链技术的应用潜力引发了无限遐想。如果未来基于区块链技术构造的商业价值网络成为现实,所有的交易都将高效完成且无法伪造;所有签署的合同都能按照约定严格执行。这将极大降低整个商业体系运转的成本,同时大大提高社会沟通协作的效率。从这个意义上讲,基于区块链技术构建的未来商业网络,将可能引发继互联网之后又一次巨大的产业变革。

    目前,金融交易系统已经开始验证和使用区块链系统。包括征信管理、跨国交易、跨组织合作、资源共享和物联网等诸多领域,也涌现出大量有趣的应用案例。本章将通过剖析这些典型的应用场景,展现区块链技术为不同行业带来的创新潜力。

    应用场景概览

    区块链技术已经从单纯的技术探讨走向了应用落地的阶段。国内外已经出现大量与之相关的企业和团队。有些企业已经结合自身业务摸索出了颇具特色的应用场景,更多的企业还处于不断探索和验证的阶段。

    实际上,要找到合适的应用场景,还是要从区块链技术自身的特性出发进行分析。

    区块链在不引入第三方中介机构的前提下,可以提供去中心化、不可篡改、安全可靠等特性保证。因此,所有直接或间接依赖于第三方担保机构的活动,均可能从区块链技术中获益。

    区块链自身维护着一个按时间顺序持续增长、不可篡改的数据记录,当现实或数字世界中的资产可以生成数字摘要时,区块链便成为确权类应用的完美载体,提供包含所属权和时间戳的数字证据。

    可编程的智能合约使得在区块链上登记的资产可以获得在现实世界中难以提供的流动性,并能够保证合约规则的透明和不可篡改。这就为区块链上诞生更多创新的经济活动提供了土壤,为社会资源价值提供更加高效且安全的流动渠道。

    此外,还需要思考区块链解决方案的合理边界。面向大众消费者的区块链应用需要做到公开、透明、可审计,既可以部署在无边界的公有链,也可以部署在应用生态内多中心节点共同维护的区块链;面向企业内部或多个企业间的商业区块链场景,则可将区块链的维护节点和可见性限制在联盟内部,并用智能合约重点解决联盟成员间信任或信息不对等问题,以提高经济活动效率。

    笔者认为,未来几年内,可能深入应用区块链技术的场景将包括:

    • 金融服务:区块链带来的潜在优势包括降低交易成本、减少跨组织交易风险等。该领域的区块链应用目前最受关注,全球不少银行和金融交易机构都是主力推动者。部分投资机构也在应用区块链技术降低管理成本和管控风险。从另一方面,要注意可能引发的问题和风险。例如,DAO(Decentralized Autonomous Organization 是史上最大的一次众筹活动,基于区块链技术确保资金的管理和投放)这样的众筹实验,提醒应用者在业务和运营层面都要谨慎处理。
    • 征信和权属管理:征信和权属的数字化管理是大型社交平台和保险公司都梦寐以求的。目前该领域的主要技术问题包括缺乏足够的数据和分析能力;缺乏可靠的平台支持以及有效的数据整合管理等。区块链被认为可以促进数据交易和流动,提供安全可靠的支持。征信行业的门槛比较高,需要多方资源共同推动。
    • 资源共享:以 Airbnb 为代表的分享经济公司将欢迎去中心化应用,可以降低管理成本。该领域主题相对集中,设计空间大,受到大量的投资关注。
    • 贸易管理:区块链技术可以帮助自动化国际贸易和物流供应链领域中繁琐的手续和流程。基于区块链设计的贸易管理方案会为参与的多方企业带来极大的便利。另外,贸易中销售和法律合同的数字化、货物监控与检测、实时支付等方向都可能成为创业公司的突破口。
    • 物联网:物联网也是很适合应用区块链技术的一个领域,预计未来几年内会有大量应用出现,特别是租赁、物流等特定场景,都是很合适结合区块链技术的场景。但目前阶段,物联网自身的技术局限将造成短期内不会出现大规模应用。

    这些行业各有不同的特点,但或多或少都需要第三方担保机构的参与,因此都可能从区块链技术中获得益处。

    当然,对于商业系统来说,技术支持只是一种手段,根本上需要满足业务需求。区块链作为一个底层的平台技术,要利用好它,需要根据行业特性进行综合考量设计,对其上的业务系统和商业体系提供合理的支持。

    有理由相信,区块链技术落地的案例会越来越多。这也会进一步促进新技术在传统行业中的应用,带来更多的创新业务和场景。

    金融服务

    金融活动影响人类社会的方方面面,目前涉及货币、证券、保险、抵押、捐赠等诸多行业。通过金融交易,可以优化社会资源运转效率,实现资源使用的最优化。可以说,人类社会的文明发展,离不开金融交易。

    交易本质上交换的是价值的所属权。为了完成一些贵重资产(例如房产、车辆)的交易,往往需要依靠中介和担保机构,不仅过程繁琐,而且手续费用高昂。之所以需要第三方机构介入,是因为交易双方无法充分信任对方提供的信息。一方面,证明所属权只能通过相关机构开具的证明材料,存在造假风险;另一方面,交换过程手续繁琐,存在篡改和错误的风险。

    为了确保金融交易的可靠完成,出现了第三方担保机构这样的角色。它们通过提供信任保障服务,提高了社会整体经济活动的效率。但现有的第三方中介机制往往存在成本高、时间周期长、流程复杂、容易出错等缺陷。因此,金融领域长期存在提高交易效率的迫切需求。

    区块链技术可以为金融服务提供有效、可信的所属权证明,以及相当可靠的合约确保机制。

    数字货币

    银行从角色上,一般分为中央银行(央行)和普通银行。

    中央银行的两大职能是“促进宏观经济稳定”和“维护金融稳定”(《金融的本质》,本·伯南克(Ben Bernanke),中信出版社,2014 年出版),主要手段就是管理各种证券和利率。央行的存在,为整个社会的金融体系提供了最终的信用担保。

    普通银行业则往往基于央行的信用,作为中介和担保方,来协助完成多方的金融交易。

    银行活动主要包括发行货币、完成存贷款等功能。为了保障货币价值稳定,发行机构必须能时时刻刻保证交易的可靠性和确定性。为了做到这一点,传统的金融系统设计了复杂的安全流程,采用了极为复杂的软件和硬件方案,其建设和维护成本都十分昂贵。即便如此,这些系统仍然存在诸多缺陷,每年都会出现安全攻击和金融欺诈事件。此外,交易过程还常常需要经由额外的支付企业进行处理。这些实际上都增大了交易成本。

    以区块链技术为基础的数字货币的出现,对货币的研究和实践都提出了新的启发,被认为有可能促使这一领域发生革命性变化。

    除了众所周知的比特币等数字货币实验之外,还有诸多金融机构进行了有意义的尝试,尤其是各国进行的法定数字货币研究,具备越来越多的实践意义。

    中国人民银行投入区块链研究

    2016 年,中国人民银行对外发布消息,称深入研究了数字货币涉及的相关技术,包括区块链技术、移动支付、可信可控云计算、密码算法、安全芯片等,被认为积极关注区块链技术的发展。

    实际上,央行对于区块链技术的研究很早便已开展。

    2014 年,央行成立发行数字货币的专门研究小组对基于区块链的数字货币进行研究,次年形成研究报告。

    2016 年 1 月 20 日,央行专门组织了“数字货币研讨会”,邀请了业内的区块链技术专家就数字货币发行的总体框架、演进、以及国家加密货币等话题进行了研讨。会后,发布对我国银行业数字货币的战略性发展思路,提出要早日发行数字货币,并利用数字货币相关技术来打击金融犯罪活动。

    2016 年 12 月,央行成立数字货币研究所。初步公开设计为“由央行主导,在保持实物现金发行的同时发行以加密算法为基础的数字货币,M0(流通中的现金)的一部分由数字货币构成。为充分保障数字货币的安全性,发行者可采用安全芯片为载体来保护密钥和算法运算过程的安全”。

    2018 年 7 月,央行数字货币研究所在联合国国际电信联盟(ITU)会议上发表了关于法定数字货币双层架构的主题演讲。

    从目前看,央行很可能采用联盟形式,由中央银行与国家系统重要性金融机构来共同维护分布式账本系统,直接发行和管理数字货币,作为流通现金的一种形式。一旦实施,将对现有的支付清算体系,特别商业银行产生重大影响。数字货币由于其电子属性,在发行和防伪方面成本都优于已有的纸质货币。另外,相对信用卡等支付手段,数字现金很难被盗用,大大降低了管理成本。同时也要注意到由银行发行数字货币在匿名程度、点对点直接支付、利息计算等方面仍有待商榷。

    加拿大银行提出新的数字货币

    2016 年 6 月,加拿大央行公开正在开发基于区块链技术的数字版加拿大元(名称为 CAD 币),以允许用户使用加元来兑换该数字货币。经过验证的对手方将会处理货币交易;另外,如果需要,银行将保留销毁 CAD 币的权利。

    发行 CAD 币是更大的一个探索型科技项目 Jasper 的一部分。除了加拿大央行外,据悉,蒙特利尔银行、加拿大帝国商业银行、加拿大皇家银行、加拿大丰业银行、多伦多道明银行等多家机构也都参与了该项目。Jasper 项目的目标是希望评估分布式账本技术对金融基础设施的变革潜力。通过在大额支付系统的概念验证,认为在基于分布式账本的金融基础设施中应重视监管能力;另外,虽然分布式支付系统并不能降低运营风险,但在与更广泛的金融基础设施进行合作互动时,有助于实现规模效益,实现全行业的效率提升。

    金融时报:Canada experiments with digital dollar on blockchain,2016-06-16。

    英国央行实现 RSCoin

    英国央行(英格兰银行)在数字货币方面进展十分突出,已经实现了基于分布式账本平台的数字货币原型系统——RSCoin。旨在强化本国经济及国际贸易。

    RSCoin目标是提供一个由中央银行控制的、可扩展的数字货币,采用了中央银行-商业银行双层链架构、改进版的两阶段提交(Two Phase Commitment),以及多链之间的交叉验证机制。该货币由中央银行发行,交易机构维护底层账本,并定期提交给中央银行。因为该系统主要是央行和下属银行之间使用,通过提前建立一定的信任基础和采用分片机制,可以提供较好的处理性能(单记账机构可以达到2000笔每秒)。RSCoin理论上可以作为面向全社会的支付手段,但技术和监管细节上需要进一步完善。

    英国央行对 RSCoin 进行了推广,希望能尽快普及该数字货币,以带来节约经济成本、促进经济发展的效果。同时,英国央行认为,数字货币相对传统货币更适合国际贸易等场景,同时理论上具备成为各国货币兑换媒介的潜力。

    支付清结算业务

    支付和清结算是现代金融行业十分重要的操作。随着信息技术的发展,支付清结算业务系统的效率也在不断提高。但当资金的清算涉及到多个交易主体和多个认证环节时效率仍然不高,特别涉及到跨境多方交易等场景时。

    区块链技术在处理交易时即确保了交易记录的不可篡改性和对交易结果的有效确认,有望节约清结算的人力和时间成本,降低机构间的争议,提高自动化处理效率。

    SWIFT 完成跨银行的分布式账本验证

    2018 年 3 月,环球同业银行金融电讯协会(SWIFT)完成了涉及到 34 家银行的分布式账本验证。验证重点关注基于超级账本项目的分布式账本技术能否满足监管、安全、隐私性等方面的需求。验证表明分布式账本技术可以满足自动化的资产管理需求,为未来多银行间合作提供重要支撑。

    SWIFT 研发中心负责人 Damien Vanderveken 称:“验证进行得相当好,证实了分布式账本技术的巨大进展,尤其是超级账本 Fabric 项目 1.0(The PoC went extremely well, proving the fantastic progress that has been made with DLT and the Hyperledger Fabric 1.0 in particular)”。

    IBM 构建全球支付网络

    TODO: https://www.coindesk.com/ibm-signs-6-banks-to-issue-stablecoins-and-use-stellars-xlm-cryptocurrency

    2018 年 8 月,IBM 推出了基于区块链的全球支付解决方案 —— WorldWire,该网络使用 Stellar 协议,可以实现在数秒钟之内完成跨境支付的清结算。

    IBM 认为该新型支付解决方案可以很好的接入已有的支付系统,并且有能力支持包括法币、数字资产、稳定币等资产的支付,所有交易存储在账本上,可以持久保留。

    目前,该支付网络上已经实现了与美元挂钩的稳定币,IBM 正在与多家国际银行(巴西布拉德斯科银行、釜山银行等)合作,计划增加更多类型的稳定币支持。

    巴克莱银行用区块链进行国际贸易结算

    在国际贸易活动中,买卖双方可能互不信任。因此需要银行作为买卖双方的保证人,代为收款交单,并以银行信用代替商业信用。

    区块链可以为信用证交易参与方提供共同账本,允许银行和其它参与方拥有经过确认的共同交易记录并据此履约,从而降低风险和成本。

    2016 年 9 月,英国巴克莱银行用区块链技术完成了一笔国际贸易的结算,贸易金额 10 万美元,出口商品是爱尔兰农场出产的芝士和黄油,进口商是位于离岸群岛塞舌尔的一家贸易商。结算用时不到 4 小时,而传统采用信用证方式做此类结算需要 7 到 10 天。

    在这笔贸易背后,区块链提供了记账和交易处理系统,替代了传统信用证结算过程中占用大量人力和时间的审单、制单、电报或邮寄等流程。

    中国邮储银行在核心业务系统中使用区块链

    2016 年 10 月,中国邮储银行宣布携手 IBM 推出基于区块链技术的资产托管系统,是中国银行业首次将区块链技术成功应用于核心业务系统。

    新的业务系统免去了重复的信用校验过程,将原有业务环节缩短了约 60-80% 的时间,提高了信用交易的效率。

    多家银行合作推出信用证区块链

    2017 年 7 月,民生银行、中信银行、中国银行和苏宁银行基于超级账本技术推出了首家基于区块链的信用证业务平台。该业务上线当日交易额即达到了 1 亿人民币,目前,每天交易额在十亿量级。该系统与传统的信用证结算不同,没有使用 SWIFT 代码,而是使用独创的信用证交换系统。

    基于区块链技术,不仅大幅降低了成本,还提高了交易效率和安全性。当然,如何与已有的基于 SWIFT 系统的国际业务打通,将是该平台面临的挑战之一。

    蚂蚁金服推出区块链跨境汇款服务

    2018 年 6 月 25 日,蚂蚁金服宣布其基于区块链的电子钱包跨境汇款服务在香港上线。该系统实现香港金管局、新加坡金管局、港版支付宝(Alipay HK)、渣打银行、菲律宾钱包 GCash 间的跨机构协同,Alipay HK 用户可基于区块链技术向 Gcash 汇款,汇款时间为 3~6 秒。

    摩根大通用区块链进行机构间实时支付

    2019 年 2 月,摩根大通宣布推出基于区块链的数字货币”JPM Coin“,以实现客户之间的实时结算。据悉,每个 JPM Coin 暂时等价 1 美元。摩根大通的机构客户向指定账户存款后可获得等值的 JPM Coin。

    通过区块链,机构之间可以以 JPM Coin 为价值载体进行实时交易。持有 JPM Coin 的机构客户可在摩根大通实时赎回美元。这意味着这家美国最大的金融服务机构已经开始主动拥抱区块链科技带来的新变化。

    目前,JPM Coin 仅限大型机构客户使用,并将持续与监管部门合作。

    其它新型支付业务

    基于区块链技术,出现了大量的创新支付企业,这些支付企业展示了利用区块链技术带来的巨大商业优势。

    • Abra:区块链数字钱包,以近乎实时的速度进行跨境支付,无需银行账户,实现不同币种的兑换,融资超过千万美金。
    • Bitfinex:组建 Tether Limited 公司来发行稳定币 USDT,作为最流行的稳定币,市值超过 10 亿美金。稳定币通过绑定代币到法定货币以保障价格的稳定性。如果抵押过程公开并支持审计,则可以降低用户因为代币价格波动带来的风险。
    • Bitwage:基于比特币区块链的跨境工资支付平台,可以实现每小时的工资支付,方便跨国企业进行外包工资管理。
    • BitPOS:澳大利亚创业企业,提供基于比特币的低成本的快捷线上支付,适用于餐饮行业。
    • Circle:由区块链充当支付网络,允许用户进行跨币种、跨境的快速汇款。Circle 获得了来自 IDG、百度的超过 6000 万美金的 D 轮投资。2018 年 9 月,Circle 推出了稳定币 USDC,上市 2 个月,USDC 的市值已达到 2 亿美元。
    • Ripple:实现跨境的多币种、低成本、实时交易,引入了网关概念(类似银行),结构偏中心化,可以与银行等金融机构合作完成跨境支付。

    证券交易后处理

    证券交易包括交易执行环节和交易后处理环节。

    交易环节本身相对简单,主要是由交易系统(高性能实时处理系统)完成电子数据库中内容的变更。中心化的验证系统往往极为复杂和昂贵。交易指令执行后的清算(计算交易方的财务义务)和结算(最终资产的转移)环节也十分复杂,需要大量的人力成本和时间成本,并且容易出错。

    目前来看,基于区块链的处理系统还难以实现海量交易系统所需要的性能(典型性能为每秒数万笔以上成交,日处理能力超过五千万笔委托、三千万笔成交)。但在交易的审核和清算环节,区块链技术存在诸多的优势,可以极大降低处理时间,同时减少人工的参与。

    2016 年 2 月,咨询公司 Oliver Wyman 在给 SWIFT(环球同业银行金融电讯协会)提供的研究报告《Blockchain in Capital Markets -- The Prize and the Journey》中预计,全球清算行为成本约 50~100 亿美元,结算成本、托管成本和担保物管理成本 400~450 亿美元(390 亿美元为托管链的市场主体成本),而交易后流程数据及分析花费 200~250 亿美元。

    2016 年 4 月,欧洲央行在报告《Distributed ledger technologies in securities post-trading》中指出,区块链作为分布式账本技术,可以很好地节约对账的成本,同时简化交易过程。相对原先的交易过程,可以近乎实时的变更证券的所有权。

    2015 年 10 月,美国纳斯达克(Nasdaq)证券交易所推出区块链平台 Nasdaq Linq,实现主要面向一级市场的股票交易流程。通过该平台进行股票发行的发行者将享有“数字化”的所有权。

    其它证券相关案例还包括:

    • BitShare 推出基于区块链的证券发行平台,号称每秒达到 10 万笔交易。
    • DAH 为金融市场交易提供基于区块链的交易系统。获得澳洲证交所项目。
    • Symbiont 帮助金融企业创建存储于区块链的智能债券,当条件符合时,清算立即执行。
    • Overstock.com 推出基于区块链的私有和公开股权交易“T0”平台,提出“交易即结算”(The trade is the settlement)的理念,主要目标是建立证券交易实时清算结算的全新系统。
    • 高盛为一种叫做“SETLcoin”的数字货币申请专利,用于为股票和债券等资产交易提供“近乎立即执行和结算”的服务。

    供应链金融

    供应链金融是一种重要的融资模式。传统上一般由银行基于真实贸易,以核心企业信用为担保来连接上下游企业。供应链金融可为供应链上的企业提供自偿性融资,有助于缓解小微企业融资难的问题,增强供应链活力。

    该领域长期以来一直存在众多问题:

    • 弱势成员企业供货应收账款周期长,面临较大的资金压力,但融资难。银行从风控角度考虑,愿意为核心企业上游直接供应商提供保理服务,为直接下游经销商提供融资,但不愿意给其它企业(通常往往规模较小,缺乏足够抵押)授信。而核心企业和直接上下游企业往往不愿意承担风险,导致整个链条缺乏活力;
    • 供应链上下游企业关系密切,风险往往息息相关。来自上下游的不确定性(特别是核心企业)增大了整个供应链企业的整体风险。
    • 由于供应链往往涉及到数十家甚至数百家企业,供货生命周期很长,涉及生产制造、运输、担保等多种环节,信息隐瞒或票据篡改造假的情况很难避免。银行要获取多家企业真实贸易信息的难度很大,造成实际融资成本高居不下。
    • 作为主要融资工具的票据(包括商业汇票、银行汇票)使用场景局限,票据实际可兑换情况和价值依赖背书企业的信誉和实力,实际操作难度大。

    供应链金融的业务特点,使得其十分契合区块链的技术特点。区块链上数据都带有签名和时间戳,提供高度可靠的历史记录,可以有效降低银行对信息可靠性的疑虑,实现核心企业信用在链上的分割与流转。最终提高整个供应链的金融效率。

    目前,供应链金融区块链平台主要以联盟链的形式打造,具有如下业务优势:

    • 时间戳设计保证债权拆分、流转后信用不变,整体流程完整可追溯;
    • 分布式数据存储打破信息不对称,防止信息篡改和造假;
    • 智能合约自动执行,减少人工干预,提高资金流通效率。

    为使供应链金融迅速且有序发展,我国也推出一系列指导意见。如 2017 年七部门联合印发的《小微企业应收账款融资专项行动工作方案(2017-2019年)》提到:“推动供应链核心企业支持小微企业应收账款融资,引导金融机构和其他融资服务机构扩大应收账款融资业务规模”;此外,2017 年国务院办公厅《关于积极推进供应链创新与应用的指导意见》也指出:“积极稳妥发展供应链金融”。这些在政策层面上的指导建议,促进了国内供应链金融的发展速度与态势。

    2017 年 3 月,深圳区块链金融服务有限公司基于区块链技术与全国范围内多家银行建立联盟,共同推出“票链”产品,通过创新模式为持有银行承兑汇票的中小微企业提供高效便捷的票据融资服务。“票链”产品发布后,在江西地区率先进行试点运营,上线首月交易规模已近亿元人民币。其中绝大部分交易标的为数十万元的小额银行承兑汇票,切实解决了中小微企业客户长期面对的融资难、融资贵难题。

    2017 年 4 月,易见科技供应链金融平台上线运营,2018 年 9 月发布 2.0 版本;自上线以来,已帮助近200家企业及金融机构完成了超过 40 亿元的供应链金融业务,线上融资合同近 500 份,涉及医药、化工、制造、大宗、物流、航空和地产等多个行业。易见区块平台基于超级账本技术,产品体系包括供应链贸易系统、供应链融资平台和供应链资产证券化平台。

    2018 年 4 月 13 日,平安集团金融壹帐通在深圳推出国内首个连接金融机构和中小企业的“壹企银中小企业智能金融服务平台”,将助力银行等金融机构解决中小企业融资难题。壹企银广泛应用金融科技最新技术,全程实现银行等金融机构信贷业务流程智能化,点对点实时打通中小企业信息“死结”,从而实现中小企业融资快捷、高效和低成本、低风险。

    “Chained Finance”区块链金融平台是由国内互联网金融公司点融和富士康旗下金融平台富金通共同推出的供应链金融平台,在业内首次借助区块链技术破解供应链金融和中小企业融资难题。

    另外,类似“一带一路”这样创新的投资建设模式,会碰到来自地域、货币、物流等各方面的挑战。现在已经有一些部门对区块链技术进行探索应用。区块链技术可以让原先无法交易的双方(例如,不存在多方都认可的国际货币储备的情况下)顺利完成交易,并且降低贸易风险、减少流程管控的成本。

    税收服务

    传统的税收服务体系在税务信用等级、税收遵从、税源监控等领域存在数据孤岛、信息壁垒等难题,这也导致税务管理中存在大量增值税发票虚开虚抵、农产品优惠政策骗税、出口骗税、稽查取证等争议。

    基于区块链的分布式账本可记录跨地域、跨企业的电子票信息,打破数据壁垒。例如,通过融入密码学算法及数据可信上链服务,在保护纳税人数据的同时,实现以税票为中心的发生过程监控。将纳税规则写入智能合约,系统根据往来业务和数据实现交易与开票数据的自动匹配、核对、缴纳,避免虚开错开,实现税源的全面监控。而区块链透明、弱中心化的特点可为建立税务、工商、海关、银行等部门横向信息的全面掌握分析机制奠定基础,提升征税效率与准确性。

    2018 年 8 月 10 日,由深圳市税务局主导、腾讯提供底层技术支持,深圳国贸旋转餐厅开出了国内"首张"区块链电子发票。通过在微信中整合支付、开票、报销等功能,该成果致力于实现“交易即开票,开票即报销”。以区块链作为底层支撑技术,接入税务局、微信支付、财务软件商、商家等相关方,可确保发票唯一,并且领票、开票、流转、入账、报销等流程信息完整可追溯,解决传统系统“一票多报、虚报虚抵”等难题,降低经营成本和税收风险。

    众筹管理

    区块链自身带来的多方信任合作机制,有望提高众筹的效率和安全性。该领域的尝试目前主要是“首次代币发行(Initial Coin Offering,ICO)”形式。

    ICO 设计思想十分简单。项目发起方通过售卖项目早期的数字资产(代币)向外界融资,投资者可以直接以比特币等形式参与。当项目上线后,如果能得以健康成长,项目代币价格上涨,投资者可以获得回报,并且可以选择任何时候卖出这些代币而无条件退出。

    最早的 ICO 出现在 2013 年 6 月,万事达币(MSC)在 Bitcointalk 论坛上众筹 5000 个比特币。虽然,很可惜该项目后来并没有成功,但开启了 ICO 的浪潮。

    2014 年,比较出名的如比特股 Bitshares 和以太坊 Ethereum 先后发起 ICO,并且随着平台自身的发展,投资者获取了大量的回报。这些早期项目支持了区块链领域的初创企业,同时探索了新的众筹模式。

    2016 年 4 月 30 日上线的 DAO(Decentralized Autonomous Organization)项目,试图打造基于以太坊的众筹平台,更是一度创下历史最高的融资记录,数额超过 1.6 亿美金。该项目暴露出这种创新形式的组织者们在应对安全风险时候缺乏足够的应对经验。6 月 12 日,有技术人员报告合约执行过程中存在软件漏洞,但很遗憾并未得到组织的重视和及时修复。四天后,黑客利用漏洞转移了 360 万枚以太币,当时价值超过 5000 万美金。虽然最后采用了一些技术手段来挽回经济损失,但该事件毫无疑问给以太坊平台带来了负面影响,也给 ICO 这种新模式的流程管理敲响了警钟。

    2017 年开始,传统风投基金也开始尝试用 ICO 来募集资金。Blockchain Capital 在 2017 年发行的一支基金创新地采用了传统方式加 ICO 的混合方式进行募资,其中传统部分规模 4000 万美元,ICO 部分规模 1000 万美元。4 月 10 日,ICO 部分 1000 万美元的募集目标在启动后六小时内全部完成。整个 2017 年全球超过 1000 个 ICO 项目,总募资额超过 40 亿美金。

    Telegram 在 2018 年初通过两轮 ICO 共募集资金 17 亿美金,值得注意的是,在第二轮时已经明确限制最低投资门槛为 100 万美元。

    由于市场过于火爆,投资者投机心理加重,同时出现了大量欺诈性的项目。这些项目的白皮书粗制滥造,有的项目甚至连白皮书都没有,被戏称为“空气项目”。2017 年下半年开始,大量不成熟项目因为无法完成预设目标而破灭,这被认为是第一次 ICO 泡沫的结束,同时市场在泡沫后变得更加成熟和理性。

    同期,各国开始加强监管,要么将其纳入已有监管体系,要么暂时禁止 ICO 活动。2017 年 8 月 28 日,美国证监会发布关于谨防 ICO 骗局的警告,后将 ICO 纳入证券监管;此外,澳大利亚、加拿大、印度、菲律宾以及欧洲主要国家也将 ICO 纳入监管。同年 9 月 4 日,中国人民银行等 7 部门发文,称 ICO 为“未经批准非法公开融资的行为”,各类代币发行融资活动应立即停止。这些措施提高了项目发行的门槛,客观上促进了整个生态系统的进化。全球范围内 ICO 项目发行的频率明显下降,但优质项目比例明显提高。

    客观来看,作为一种创新的模式,ICO 众筹方式相对 IPO 更加灵活,适合早期中小资金额的创业项目。但目前 ICO 项目仍属于法律监管的灰色地带,往往存在如下问题:

    • 缺少法律支持和监管机制。作为一种新型融资行为,由于缺乏相关法规,监管流程很难执行。出现问题后投资者无法得到合理赔偿;
    • 项目的评估难度很大。进行 ICO 的项目往往是科技和创新含量较高的产品,无论是审查机构还是普通投资者都很难进行准确评估;

    我国《证券法》第二章第 10 条明确规定:“公开发行证券,必须符合法律、行政法规规定的条件,并依法报经国务院证券监督管理机构或者国务院授权的部门核准;未经依法核准,任何单位和个人不得公开发行证券”。这可以保障投资者的长期权益,有利于建设健康的交易环境。因此,为了解决 ICO 的现有缺陷,应当参考 IPO 等证券管理办法制定监管框架。具体可从三个方面进行完善:

    • 从项目方角度需要通过行业共识建立规范的准入机制。如要求必要信息的公开和接受第三方的监督审查,同时设定融资额度限制。通过这些机制可以避免欺诈,保护市场投资者;
    • 从投资者角度在一定时间内应当提高入场门槛。如募集资金超过一定额度的项目只能接受来自专业投资机构的投资。同时加强投资者教育和风险告知;
    • 最后,法律界需要和科技界开展合作,尽早主动出台相关监管法规,将这一新型募资方式纳入到正式监管之下,并建立完整的市场机制。

    征信管理

    征信管理是一个巨大的潜在市场,据称超过千亿规模(可参考美国富国银行报告和平安证券报告),也是目前大数据应用领域最有前途的方向之一。

    目前征信相关的大量有效数据集中在少数机构手中。由于这些数据太过敏感,并且具备极高的商业价值,往往会被严密保护起来,形成很高的行业门槛。

    虽然现在大量的互联网企业(包括各类社交网站)尝试从各种维度获取了海量的用户信息,但从征信角度看,这些数据仍然存在若干问题。这些问题主要包括:

    • 数据量不足:数据量越大,能获得的价值自然越高,过少的数据量无法产生有效价值;
    • 相关度较差:最核心的数据也往往是最敏感的。在隐私高度敏感的今天,用户都不希望暴露过多数据给第三方,因此企业获取到数据中有效成分往往很少;
    • 时效性不足:企业可以从明面上获取到的用户数据往往是过时的,甚至存在虚假信息,对相关分析的可信度造成严重干扰。

    区块链天然存在着无法篡改、不可抵赖的特性。同时,区块链平台将可能提供前所未有规模的相关性极高的数据,这些数据可以在时空中准确定位,并严格关联到用户。因此,基于区块链提供数据进行征信管理,将大大提高信用评估的准确率,同时降低评估成本。

    另外,跟传统依靠人工的审核过程不同,区块链中交易处理完全遵循约定自动化执行。基于区块链的信用机制将天然具备稳定性和中立性。

    目前,包括 IDG、腾讯、安永、普华永道等都已投资或进入基于区块链的征信管理领域,特别是跟保险和互助经济相关的应用场景。

    保险行业

    保险行业区块链倡议组织(Blockchain Insurance Industry Initiative,B3i)诞生于 2016 年下半年,面向保险行业,探索基于分布式账本的新型技术。

    分布式账本带来的可信能力,将有望给保险行业带来新的变革。

    目前,B3i 已经包括超过 40 家会员企业,包括美国国际集团、友邦保险、安联保险、瑞士再保险等保险行业巨头。

    权属管理与溯源

    区块链技术可以用于产权、版权等所有权的管理和追踪。其中包括汽车、房屋、艺术品等各种贵重物品的交易等,也包括数字出版物,以及可以标记的数字资源。

    目前权属管理领域存在的几个难题是:

    • 物品所有权的确认和管理;
    • 交易的安全性和可靠性保障;
    • 必要的隐私保护机制。

    以房屋交易为例。买卖双方往往需要依托中介机构来确保交易的进行,并通过纸质的材料证明房屋所有权。但实际上,很多时候中介机构也无法确保交易的正常进行。

    而利用区块链技术,物品的所有权是写在数字链上的,谁都无法修改。并且一旦出现合同中约定情况,区块链技术将确保合同能得到准确执行。这能有效减少传统情况下纠纷仲裁环节的人工干预和执行成本。

    例如,公正通(Factom)尝试使用区块链技术来革新商业社会和政府部门的数据管理和数据记录方式。包括审计系统、医疗信息记录、供应链管理、投票系统、财产契据、法律应用、金融系统等。它将待确权数据的指纹存放到基于区块链的分布式账本中,可以提供资产所有权的追踪服务。

    区块链账本共享、信息可追踪溯源且不可篡改的特性同样可用于打击造假和防范欺诈。Everledger 自 2016 年起就研究基于区块链技术实现贵重资产检测系统,将钻石或者艺术品等的数字指纹信息(包括钻石超过40个数据点的颜色、清晰度、切割和重量等信息)记录在区块链上。并于 2017 年宣布与 IBM 合作,实现生产商、加工商、运送方、零售商等多方之间的可信高效协作。

    类似地,针对食品造假这一难题,IBM、沃尔玛、清华大学于 2016 年底共同宣布将在食品安全领域展开合作,将用区块链技术搭建透明可追溯的跨境食品供应链。这一全新的供应链将改善食品的溯源和物流环节,打造更为安全的全球食品市场。

    存证

    溯源

    数据协作

    其他项目

    在人力资源和教育领域,MIT 研究员朱莉安娜·纳扎雷(Juliana Nazaré)和学术创新部主管菲利普·施密特(Philipp Schmidt)发表了文章《MIT Media Lab Uses the Bitcoin Blockchain for Digital Certificates》,介绍基于区块链的学历认证系统。基于该系统,用人单位可以确认求职者的学历信息是真实可靠的。2018 年 2 月,麻省理工学院向应届毕业生颁发了首批基于区块链的数字学位证书。

    此外,还包括一些其他相关的应用项目:

    • Chronicled:基于区块链的球鞋鉴定方案,为正品球鞋添加电子标签,记录在区块链上。
    • Mediachain:通过 metadata 协议,将内容创造者与作品唯一对应。
    • Mycelia:区块链产权保护项目,为音乐人实现音乐的自由交易。
    • Tierion: 将用户数据锚定在比特币或以太坊区块链上,并生成“区块链收据”。
    • Ziggurat:基于区块链提供文字、图片、音视频版权资产的登记和管理服务。

    资源共享

    当前,以 Uber、Airbnb 为代表的共享经济模式正在多个垂直领域冲击传统行业。这一模式鼓励人们通过互联网的方式共享闲置资源。资源共享目前面临的问题主要包括:

    • 共享过程成本过高;
    • 用户行为评价难;
    • 共享服务管理难。

    区块链技术为解决上述问题提供了更多可能。相比于依赖于中间方的资源共享模式,基于区块链的模式有潜力更直接的连接资源的供给方和需求方,其透明、不可篡改的特性有助于减小摩擦。

    有人认为区块链技术会成为新一代共享经济的基石。笔者认为,区块链在资源共享领域是否存在价值,还要看能否比传统的专业供应者或中间方形式实现更高的效率和更低的成本,同时不能损害用户体验。

    短租共享

    大量提供短租服务的公司已经开始尝试用区块链来解决共享中的难题。

    高盛在报告《Blockchain: Putting Theory into Practice》中宣称:

    Airbnb 等 P2P 住宿平台已经开始通过利用私人住所打造公开市场来变革住宿行业,但是这种服务的接受程度可能会因人们对人身安全以及财产损失的担忧而受到限制。而如果通过引入安全且无法篡改的数字化资质和信用管理系统,我们认为区块链就能有助于提升 P2P 住宿的接受度。

    该报告还指出,可能采用区块链技术的企业包括 Airbnb、HomeAway 以及 OneFineStay 等,市场规模为 30~90 亿美元。

    社区能源共享

    在纽约布鲁克林的一个街区,已有项目尝试将家庭太阳能发的电通过社区的电力网络直接进行买卖。具体的交易不再经过电网公司,而是通过区块链执行。

    与之类似,ConsenSys 和微电网开发商 LO3 提出共建光伏发电交易网络,实现点对点的能源交易。

    这些方案的主要难题包括:

    • 太阳能电池管理;
    • 社区电网构建;
    • 电力储备系统搭建;
    • 低成本交易系统支持。

    现在已经有大量创业团队在解决这些问题,特别是硬件部分已经有了不少解决方案。而通过区块链技术打造的平台可以解决最后一个问题,即低成本地实现社区内的可靠交易系统。

    电商平台

    传统情况下,电商平台起到了中介的作用。一旦买卖双方发生纠纷,电商平台会作为第三方机构进行仲裁。这种模式存在着周期长、缺乏公证、成本高等缺点。OpenBazaar 试图在无中介的情形下,实现安全电商交易。

    具体地,OpenBazaar 提供的分布式电商平台,通过多方签名机制和信誉评分机制,让众多参与者合作进行评估,实现零成本解决纠纷问题。

    大数据共享

    大数据时代里,价值来自于对数据的挖掘,数据维度越多,体积越大,潜在价值也就越高。

    一直以来,比较让人头疼的问题是如何评估数据的价值,如何利用数据进行交换和交易,以及如何避免宝贵的数据在未经许可的情况下泄露出去。

    区块链技术为解决这些问题提供了潜在的可能。

    利用共同记录的共享账本,数据在多方之间的流动将得到实时的追踪和管理。通过对敏感信息的脱敏处理和访问权限的设定,区块链可以对大数据的共享授权进行精细化管控,规范和促进大数据的交易与流通。

    减小共享风险

    传统的资源共享平台在遇到经济纠纷时会充当调解和仲裁者的角色。对于区块链共享平台,目前还存在线下复杂交易难以数字化等问题。除了引入信誉评分、多方评估等机制,也有方案提出引入保险机制来对冲风险。

    2016 年 7 月,德勤、Stratumn 和 LemonWay 共同推出一个为共享经济场景设计的“微保险”概念平台,称为 LenderBot。针对共享经济活动中临时交换资产可能产生的风险,LenderBot 允许用户在区块链上注册定制的微保险,并为共享的资产(如相机、手机、电脑)投保。区块链在其中扮演了可信第三方和条款执行者的角色。

    物流与供应链

    物流与供应链行业被认为是区块链一个很有前景的应用方向。Gartner 一项调查显示,接近 60% 的物流相关企业计划考虑使用分布式账本技术。

    该行业往往涉及到诸多实体,包括物流、资金流、信息流等,这些实体之间存在大量复杂的协作和沟通。传统模式下,不同实体各自保存各自的供应链信息,严重缺乏透明度,造成了较高的时间成本和金钱成本,而且一旦出现问题(冒领、货物假冒等),难以追查和处理。

    通过区块链,各方可以获得一个透明可靠的统一信息平台,可以实时查看状态,降低物流成本,追溯物品的生产和运送全过程,从而提高供应链管理的效率。当发生纠纷时,举证和追查也变得更加清晰和容易。

    例如,运送方通过扫描二维码来证明货物到达指定区域,并自动收取提前约定的费用;冷链运输过程中通过温度传感器实时检测货物的温度信息并记录在链等。

    来自美国加州的 Skuchain 公司创建基于区块链的新型供应链解决方案,实现商品流与资金流的同步,同时缓解假货问题。

    马士基推出基于区块链的跨境供应链解决方案

    2017 年 3 月,马士基和 IBM 宣布,计划与由货运公司、货运代理商、海运承运商、港口和海关当局构成的物流网络合作,构建一个新型全球贸易数字化解决方案 TradeLens。该方案利用区块链技术在各方之间实现信息透明性,降低贸易成本和复杂性,旨在帮助企业减少欺诈和错误,缩短产品在运输和海运过程中所花的时间,改善库存管理,最终减少浪费并降低成本。

    马士基在 2014 年发现,仅仅是将冷冻货物从东非运到欧洲,就需要经过近 30 个人员和组织进行超过 200 次的沟通和交流,大量文书工作可以替换为无法篡改的数字记录,类似问题都有望借助区块链进行解决。

    基于区块链的供应链方案,预计每年可为全球航运业节省数十亿美元。

    国际物流区块链联盟

    2017 年 8 月,国际物流区块链联盟(Blockchain In Transport Alliance,BiTA)正式成立。

    该联盟目标为利用分布式账本技术来提高物流和货运效率,并探索新的行业标准。

    目前,联盟已经发展为超过 25 个国家,500 多家会员企业,包括联合包裹(UPS)、联邦快递(FedEx)、施耐德卡车运输公司(Schneider Trucking)、SAP 等。

    物联网

    曾经有人认为,物联网是大数据时代的基础。

    笔者认为,区块链技术是物联网时代的基础。

    典型应用场景分析

    一种可能的应用场景为:物联网络中每一个设备分配地址,给该地址所关联一个账户,用户通过向账户中支付费用可以租借设备,以执行相关动作,从而达到租借物联网的应用。

    典型的应用包括 PM2.5 监测点的数据获取、温度检测服务、服务器租赁、网络摄像头数据调用等等。

    另外,随着物联网设备的增多、边沿计算需求的增强,大量设备之间形成分布式自组织的管理模式,并且对容错性要求很高。区块链自身分布式和抗攻击的特点可以很好地融合到这一场景中。

    IBM

    IBM 在物联网领域已经持续投入了几十年的研发,目前正在探索使用区块链技术来降低物联网应用的成本。

    2015 年初,IBM 与三星宣布合作研发“去中心化的 P2P 自动遥测系统(Autonomous Decentralized Peer-to-Peer Telemetry)”系统,使用区块链作为物联网设备的共享账本,打造去中心化的物联网。

    Filament

    美国的 Filament 公司以区块链为基础提出了一套去中心化的物联网软件堆栈。通过创建一个智能设备目录,Filament 的物联网设备可以进行安全沟通、执行智能合约以及发送小额交易。

    基于上述技术,Filament 能够通过远程无线网络将辽阔范围内的工业基础设备沟通起来,其应用包括追踪自动售货机的存货和机器状态、检测铁轨的损耗、基于安全帽或救生衣的应急情况监测等。

    NeuroMesh

    2017 年 2 月,源自 MIT 的 NeuroMesh 物联网安全平台获得了 MIT 100K Accelerate 竞赛的亚军。该平台致力于成为“物联网疫苗”,能够检测和消除物联网中的有害程序,并将攻击源打入黑名单。

    所有运行 NeuroMesh 软件的物联网设备都通过访问区块链账本来识别其他节点和辨认潜在威胁。如果一个设备借助深度学习功能检测出可能的威胁,可通过发起投票的形式告知全网,由网络进一步对该威胁进行检测并做出处理。

    公共网络服务

    现有的互联网能正常运行,离不开很多近乎免费的网络服务,例如域名服务(DNS)。任何人都可以免费查询到域名,没有 DNS,现在的各种网站将无法访问。因此,对于网络系统来说,类似的基础服务必须要能做到安全可靠,并且低成本。

    区块链技术恰好具备这些特点,基于区块链打造的分布式 DNS 系统,将减少错误的记录和查询,并且可以更加稳定可靠地提供服务。

    其它场景

    区块链还有一些很有趣的应用场景,包括但不限于云存储、医疗、社交、游戏等多个方面。

    云存储

    Storj 项目提供了基于区块链的安全的分布式云存储服务。服务保证只有用户自己能看到自己的数据,并号称提供高速的下载速度和 99.99999% 的高可用性。用户还可以“出租”自己的额外硬盘空间来获得报酬。

    协议设计上,Storj 网络中的节点可以传递数据、验证远端数据的完整性和可用性、复原数据,以及商议合约和向其他节点付费。数据的安全性由数据分片(Data Sharding)和端到端加密提供,数据的完整性由可复原性证明(Proof of Retrievability)提供。

    医疗

    医院与医保医药公司,不同医院之间,甚至医院里不同部门之间的数据流动性往往很差。考虑到医疗健康数据的敏感性,笔者认为,如果能够满足数据访问权、使用权等规定的基础上促进医疗数据的提取和流动,健康大数据行业将迎来春天。

    目前,全球范围内的个人数据市场估值每年在 2000 亿美金左右。

    GemHealth 项目由区块链公司 Gem 于 2016 年 4 月提出,其目标除了用区块链存储医疗记录或数据,还包括借助区块链增强医疗健康数据在不同机构不同部门间的安全可转移性、促进全球病人身份识别、医疗设备数据安全收集与验证等。项目已与医疗行业多家公司签订了合作协议。

    Hu.Manity 是一家创业公司,提供健康数据的匿名出售服务。用户可以选择售卖个人健康数据,但这些数据会消除掉个人的隐私信息。

    麻省理工学院媒体实验室也在建立一个医疗数据的共享系统,允许病人自行选择分享哪些数据给医疗机构。

    通信和社交

    BitMessage 是一套去中心化通信系统,在点对点通信的基础上保护用户的匿名性和信息的隐私。BitMessage 协议在设计上充分参考了比特币,二者拥有相似的地址编码机制和消息传递机制。BitMessage 也用工作量证明(Proof-of-Work)机制防止通信网络受到大量垃圾信息的冲击。

    类似的,Twister 是一套去中心化的“微博”系统,Dot-Bit 是一套去中心化的 DNS 系统。

    投票

    Follow My Vote 项目致力于提供一个安全、透明的在线投票系统。通过使用该系统进行选举投票,投票者可以随时检查自己选票的存在和正确性,看到实时记票结果,并在改变主意时修改选票。

    该项目使用区块链进行记票,并开源其软件代码供社区用户审核。项目也为投票人身份认证、防止重复投票、投票隐私等难点问题提供了解决方案。

    在线音乐

    Ujo 音乐平台通过使用智能合约来创建一个透明的、去中心化的版权和版权所有者数据库来进行音乐版权税费的自动支付。

    预测

    Augur 是一个运行在以太坊上的预测市场平台。使用 Augur,来自全球不同地方的任何人都可发起自己的预测话题市场,或随意加入其它市场,来预测一些事件的发展结果。预测结果和奖金结算由智能合约严格控制,使得在平台上博弈的用户不用为安全性产生担忧。

    电子游戏

    2017 年 3 月,来自马来西亚的电子游戏工作室 Xhai Studios 宣布将区块链技术引入其电子游戏平台。工作室旗下的一些游戏将支持与 NEM 区块链的代币 XEM 整合。通过这一平台,游戏开发者可以在游戏架构中直接调用支付功能,消除对第三方支付的依赖;玩家则可以自由地将 XEM 和游戏内货币、点数等进行双向兑换。

    存证

    TODO:展开解释存证或版权案例 “纸贵版权” 引入公证处、版权局、知名高校作为版权存证联盟链的存证和监管节点,所有上链的版权存证信息都会经过多个节点的验证和监管,保证任何时刻均可出具具备国家承认的公证证明,具有最高司法效力。同时,通过在公证处部署联盟链存证节点服务器,存证主体即可视为公证处。在遭遇侵权行为时,区块链版权登记证书可作为证据证明版权归属,得到法院的采信。

    2018 年 12 月 22 日,北京互联网法院“天平链”正式发布。该区块链平台融合了司法鉴定中心、公证处、行业机构等,三个月时间内发展到 17 个节点,采集数据超过一百万条。这些存证数据有望提高电子诉讼的采证效率。

    本章小结

    本章介绍了大量基于区块链技术的应用案例和场景,展现了区块链以及基于区块链的分布式账本技术所具有的巨大市场潜力。

    当然,任何事物的发展都不是一帆风顺的。

    目前来看,制约区块链技术进一步落地的因素有很多。比如如何来为区块链上的合同担保?特别在金融、法律等领域,实际执行的时候往往还需要线下机制来配合;另外就是基于区块链系统的价值交易,必须要实现物品价值的数字化,非数字化的物品很难直接放到数字世界中进行管理。

    这些问题看起来都不容易很快得到解决。但笔者相信,一门新的技术能否站住脚,根本上还是看它能否最终提高生产力,而区块链技术已经证明了这一点。随着生态的进一步成熟,区块链技术必将在更多领域获得用武之地。

    展开全文
  • 区块链 通俗讲解

    千次阅读 2018-08-01 00:14:44
    因为面向的读者是不想知道具体技术实现只想了解区块链的人群,因此本文避开了一些底层和算法细节,采用比较主观的方式来展示笔者对区块链技术的感性认识。如果你只是对区块链感兴趣,并没有深入学习的打算,或者只是...

    通俗讲解:

    因为面向的读者是不想知道具体技术实现只想了解区块链的人群,因此本文避开了一些底层和算法细节,采用比较主观的方式来展示笔者对区块链技术的感性认识。如果你只是对区块链感兴趣,并没有深入学习的打算,或者只是想像我一样在别人问起来的时候装逼,本文应该是一篇很好的“导论”。

    总览

    区块链本质上是一个去中心化的分布式账本数据库(感谢

    @程剑宇

    指出:在与比特币相关的区块链应用中可使用这一术语,但区块链技术可能并不包含“账本”)。其本身是一串使用密码学相关联所产生的数据块,每一个数据块中包含了多次比特币网络交易有效确认的信息。

    这是区块链的定义,因此要逐步了解区块链,我们需要一步步了解如下东西。

     

    去中心化

    先来考虑一个中心化集中式处理的过程。你要在某宝上买一部手机,交易流程是:你将钱打给支付宝-支付宝收款后通知卖家发货-卖家发货-你确认收货-支付宝把钱打给卖家。

    图1: 中心化集中式交易模式

    在这个过程中,虽然你是在和卖家交易,但是这笔交易还牵扯到了除了你和卖家的第三方,即支付宝,你和卖家的交易都是围绕支付宝展开。因此,如果支付宝系统出了问题便会造成这笔交易的失败。并且虽然你只是简单的买了一个手机,但是你和卖家都要向第三方提供多余的信息。因此考虑极端情况,如果支付宝跑路了或者是拿了钱不却不承认你的交易或者是支付宝所在的城市因为开G20把所有人都赶走了(?),那么你就悲剧了。

    而去中心化的处理方式就要显得简单很多,你只需要和卖家交换钱和手机,然后双方都声称完成了这笔交易,就OK了。

    可以看出在某些特定情况下,去中心化的处理方式会更便捷,同时也无须担心自己的与交易无关的信息泄漏。

    其实如果只考虑两个人的交易并不能把去中心化的好处完全展示出来,设想如果有成千上万笔交易在进行,去中心化的处理方式会节约很多资源,使得整个交易自主化、简单化,并且排除了被中心化代理控制的风险。

    去中心化是区块链技术的颠覆性特点,它无需中心化代理,实现了一种点对点的直接交互,使得高效率、大规模、无中心化代理的信息交互方式成为了现实。

    当然,上述的例子有一个很大的潜在问题:没有了权威的中心化代理,怎样保证每笔交易的准确性和有效性呢?比如:如果没有了权威的中心化代理,张三某一天借了我100块钱,但是不还钱还不承认怎么办?这里就引出了区块链的其它特性。

     

    两个基础难题

    在去中心化以后,整个系统中没有了权威的中心化代理,信息的可信度和准确性便会面临问题。

     

    问题1:类两军问题

    第一次听说这个问题居然是在TCP的课上,大致说的是有两个相距很远的军队要传递信息,红军派遣一个信使去跟蓝军说:“你他娘的把意大利炮拿出来!”。蓝军收到信息后又派了一个信使去红军说:“收到指令!”。然后红军又派一个信使去蓝军说:“知道你收到指令了!”。然后蓝军又派一个信使去红军说:“知道你知道我收到指令了!”。然后红军又派一个信使去蓝军说:“知道你知道我知道你收到指令了!”……然后就没完没了了。

    图2:在分布式计算中在异步系统和不可靠的通道上达到一致性是不可能的
     

    在这种情况下,因为是点对点的通信,双方不可能在这种情况下达到信息的一致性。严谨一点,就是“在分布式计算上,试图在异步系统和不可靠的通道上达到一致性是不可能的”。

     

    问题2:拜占庭将军问题

    拜占庭罗马帝国在军事行动中,采取将军投票的策略来决定是进攻还是撤退,也就是说如果多数人决定进攻,就上去干。但是军队中如果有奸细(比如将军已经反水故意乱投票,或者传令官叛变擅自修改军令),那怎么保证最后投票的结果真正反映了忠诚的将军的意愿呢?

     

    拜占庭将军问题反映到信息交换领域中来,可以理解为在一个去中心的系统中,有一些节点是坏掉的,它们可能向外界广播错误的信息或者不广播信息,在这种情况下如何验证数据传输的准确性。

     

    区块链技术的诞生

    现在让我们来一步一步在去中心化的系统中解决这些问题,见证区块链技术雏形的诞生。

     

    1

    我们先来建立一个去中心化的系统,为了方便理解,我们来看一个简单的去中心化借贷模型:如果A借了B 100块钱,这个时候,A在人群中大喊“我是A,我借给了B 100块钱!”,B也在人群中大喊“我是B,A借给了我100块钱!”,此时路人甲乙丙丁都听到了这些消息,因此所有人都在心中默默记下了“A借给了B100块钱”。你看,这个时候一个去中心化的系统就建立起来了,这个系统中不需要银行,也不需要借贷协议和收据,严格来说,甚至不需要人与人长久的信任关系(比如B突然又改口说“我不欠A钱!”,这个时候人民群众就会站出来说“不对,我的小本本上记录了你某天借了A100块钱!”)。

    图3:去中心化借贷模型

    2

    可能你已经发现了,在上述的模型中,所谓的“100块钱”已经不重要了。换句话说,任何东西都可以在这个模型中交换,甚至你可以凭空杜撰一个东西,只要大家承认,你就可以让你杜撰的东西流通。比如:我在人群中高喊一声“我创造了10个查克拉!”,我甚至不需要知道查克拉是什么,也不需要关心世界上是不是真的有查克拉,只要大家都听到,然后在自己的小本本上记下“LaiW3n有10个查克拉”,于是我就真的有100个查克拉了。从此以后,我便可以声称我给了某人1个查克拉,只要路人甲乙丙丁都收到并且承认了这一信息,那我就算完成了这次交易,哪怕世界上没有查克拉。

     

    你现在脑海中是不是浮现出了三个字——“比特币”?由于真正的区块链和比特币比我上述的模型复杂太多,细节也丰富太多,因此以下还是以查克拉举例,毕竟本文是Blockchain for Babies.(笑)


    3

    假设过了很长一段时间,我凭空创造的查克拉已经在这个系统中流通了起来,大家都开始认可了查克拉。但是这个系统中一共就只有10个查克拉,于是有人动了坏心思,他在人群中高呼“我有10个查克拉!”怎么办?大家是直接在本本上记下他有10个查克拉么,这样不是人人都可以伪造查克拉了么?

     

    为了防止这种现象发生,我决定在我创造查克拉的时候给我的查克拉打上标记(更准确地说,我是给我喊的那句“我创造了10个查克拉”打上标记,比如标记为001),这样以后在每一笔交易的时候,我在高喊“我给了某某1个查克拉!”的时候,会附加上额外的一句话:“这1个查克拉的来源是记为001的那条记录,我的这句话标记为002!”。我们再抽象一点,某人喊话的内容的格式就变成了:“这句话编号xxx,上一句话的编号是yyy,我给了某某1个查克拉!”,这样就解决了伪造的问题。其实上述模型就变成一个简化的中本聪第一版比特币区块链协议:

    图4:查克拉模型和中本聪第一版区块链协议对比图
     

    好了,看到这里你基本已经能够生动形象又不涉及任何细节地向你的弱智室友解释区块链了。但是也许你的室友是一个有打破沙锅问到底精神求是学子,因此你最好继续准好回答以下这几个问题。

     

    1. “凭啥?”

    你室友可能会问:“凭啥你喊一句话我就帮你记?我的小本本不要钱么?”。为了激励大家帮我传话和记账,我决定给第一个听到我喊话并且记录在小本本上的人一些奖励:第一个听到我喊话并记录下来的人,你就凭空得到了1个查克拉,这个查克拉是整个系统对你幸苦记账的报酬,而你记录了这句话之后,要马上告诉其它人你已经记录好了,让别人放弃继续记录这句话,并给你自己的记录编号让别人有据可查,然后你再把我的话加上你的记录编号一起喊出来,供下一个人记账。

     

    当这个规则定下以后,这个系统中一定会出现一批人,他们开始竖着耳朵监听周围发出的声音,以抢占第一个记账的权利。对的,你脑海中是不是又浮现出了“比特币挖矿”的字眼?

     

    值得一提的是,关于比特币挖矿,

    @玲珑邪僧

    举了一个很形象的例子:

    单身汪们要找女票,国民岳母说我有好多女儿,这样吧我给你们出点题目,解出一个就给其中一个姑娘的微信号。

    单身汪们疯狂竞争,想破脑袋去解题。只要其中一只汪解出一道题,就立马得意洋洋地昭告天下,示威全部单身汪,这个姑娘是我的啦,你们放弃吧。其他单身汪们即使不服也没有办法,惆怅懊恼也不是个事儿啊,还是麻溜地立马去解下一道题目吧。这只喜赢姑娘的幸运小汪被岳母认可后还能得到25个货币单位的彩礼,简直人生赢家。

     

    2. “听谁的?”

    在这个系统中,如果我和另一个人C几乎同时地喊出一句:“为了艾泽拉斯!”。由于听众所处的位置不同,一定会有人先听到我说的那句话,而另外一些人则先听到C的那句话,如果我们规定只能有一个人说出这句话,那到底这句话是谁说的?

     

    如果不加任何条件,那么上述的情况一定会这样发展:一部分人认为这句话是我说的,在听到这句话之后开始记账,之后他们所做的所有事情都是基于这个事实,并且随着这个信息一次次的传下去,这条信息链会越来越深;而另外一群认为是C先说这句话的人,也会按照这样的趋势发展。这样,原本是一条唯一的信息链,在我们喊出“为了艾泽拉斯”这句话之后,分叉了!?

    图5:“区块链”分叉

     

    这会导致怎样的情况呢?按照我们的设想,应该每个人的小本本上记录的东西都是一样的,都是一条可以把所有信息串联起来的链条。但是在这一刻,他们小本本上记录的东西不一样了!这还玩毛啊?以后还怎么确定交易和信息的真实性!?

     

    为了解决这个问题,我又追加了新的规则:每个人在记录小本本的时候,需要脱鞋然后用脚拿笔,在小本本上用正楷体书写!有了这个规定,由于用脚写字难度很大,每个人至少需要10分钟才能写完,而且由于每个人用脚写字的熟练度不通,写完这句话所用的时间也不同,因此一定会有人先写完然后高呼“我写完了!那句话是LaiW3n喊的!”,这样其它正在写这句话的人便会停笔,然后在小本本上重新开始写“那句话是来文写的,上一句的编号是xxx”。

     

    如果你对上述我的解决方法感兴趣,你可以对照我上面的比喻去了解以下知识:

    “听谁的”——中本聪破解“拜占庭将军问题”的算法

    “在小本本上记录”——比特币挖矿

    “脱鞋用脚写字”——比特币挖矿难度

    “脱鞋写字速度”——算力

    “新的规则”——工作量证明链

     

    3. “双花”问题

    这个时候你的室友可能又要问:如果我同时宣布我给了A一个查克拉和我给了B一个查克拉,但是我只有一个查克拉,那咋整?是A和B都收到了查克拉还是咋地?

     

    这个时候你只需要托起他的下巴,温柔地看着他的眼睛,用手刮刮他的鼻子,说:“小妖精,你把这种情况带到上面的规则中去试试?”

    转载:https://www.zhihu.com/question/37290469

    更多:http://baijiahao.baidu.com/s?id=1603600661874020779&wfr=spider&for=pc

    展开全文
  • 区块链学习——区块链的架构

    万次阅读 多人点赞 2018-04-20 10:18:07
    摘要通过我前几篇区块链知识的介绍,我们知道区块链系统实际上就是一个维护公共数据账本的系统,一切的技术单元的设计都是为了更好地维护好这个公共账本。通过共识算法达成节点的账本的数据一致;通过密码算法确保...
  • 区块链

    2018-08-06 11:44:23
    支付方式 比特币网络的特点: • 所有节点共同维护一个完整账本,账本在每个节点本地都有一个备份 • 账本只记录交易明细,不记录余额 ...• 余额通过交易明细推算 ...• 原区块哈希值 = Hash(交易1,交易2,交易...
  • 几款市面上常见的区块链APP,你知道多少? 2018年,区块链APP相继出现,很多用户开始活跃与各大区块链APP,其中名气较大的是网易星球、布洛克城,经过推荐已下载使用过,期间还了解了一些目前市场上刚兴起的未经名传...
  • 最全的区块链技术分析和总结(附知识图谱)

    万次阅读 多人点赞 2018-07-27 06:14:03
    区块链是与当下与VR虚拟现实等比肩的热门技术之一。区块链是加密货币背后的技术,与基础语言或平台等差别较大,它本身不是新技术,类似Ajax,可以说它是一种技术架构,所以我们从架构设计的角度谈谈区块链的技术实现...
  • 区块链七大应用场景

    万次阅读 2019-09-05 18:47:25
    这应该是区块链最简单的应用场景,就是信息互通有无。 1、传统的信息共享的痛点 要么是统一由一个中心进行信息发布和分发,要么是彼此之间定时批量对账(典型的每天一次),对于有时效性要求的信息共享,难以达到...
  • 区块链---挖矿的本质是什么

    万次阅读 多人点赞 2018-01-09 11:56:29
    区块链是比特币的核心与基础架构,是一个去中心化的账本系统。今天这篇文章,将会重点介绍我们经常提到的挖矿,也就是工作量证明。理解工作量证明机制,将为我们进一步理解比特币区块链的共识机制奠定基础。工作量...
  • 区块链的基本概念和工作原理

    万次阅读 2018-06-26 17:14:43
    区块链的基本概念和工作原理1、基本概念区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。所谓共识机制是区块链系统中实现不同节点之间建立信任、获取权益的数学算法。区块链...
  • 10小时掌握区块链开发教程

    万人学习 2018-10-30 16:35:59
    10小时掌握区块链技术开发培训课程,共有八个课时,分别是区块链未来与技术成长路线分析、构建以太坊合约、用区块链开发小程序、区块链技术栈与生态现状、手机挖矿区块链架构设计难题与思路、用区块链实现世界杯足彩...
  • 常用的区块链数据查询网站

    万次阅读 2018-05-07 22:12:53
    比特币:Bitcoin Block ExplorerBlockCypher Explorerblockchain.infoBitPay Insight以太坊:etherscan
  • 区块链技术介绍PPT

    千次阅读 2018-11-30 11:01:34
    参考: 终于把区块链的技术与应用讲清楚了(57 张 PPT) 2018区块链整体架构及应用》(PPT全文)
  • 2017年区块链行业年度特别报告

    千次阅读 2018-01-15 14:17:35
    今天,2018年第一个工作日。区块宝研究院隆重推出《2017年区块链行业年度...区块链技术概述部分,主要普及性概述了区块链的概念、区块的结构、区块链的基础架构及区块链的核心技术;区块链行业概述部分,主要解析了区
  • 区块链技术最初源于解决“拜占庭将军”问题,金融科技的发展使得区块链技术有了更好的应用场景。它最显著的特征是去中心化,当然在应用中也存在一些技术和安全的挑战。欲知何为区块链?且看图示详解。 ...
  • 中国首个区块链标准《区块链参考架构》

    千次阅读 多人点赞 2018-12-19 11:55:29
    参考:《区块链参考架构》
1 2 3 4 5 ... 20
收藏数 131,688
精华内容 52,675
关键字:

区块链