2018-10-30 22:19:36 Eastmount 阅读数 5593
  • 学习OpenCV3.2+QT5+ffmpeg实战开发视频编辑器视频教程

    OpenCV3.2+QT5+ffmpeg实战开发视频编辑器视频培训课程概况:教程中会讲解到基于opencv视频和摄像机录制、播放和播放进度控制,多视频图像合并、多视频图像融合、剪切、视频亮度、对比度、尺寸(近邻插值(手动实现),双线性插值,图像金字塔)、颜色格式(灰度图,二值化(阈值)),旋转镜像,视频裁剪(ROI),视频水印(ROI+weight),导出处理后的视频(包含音频,使用ffmpeg工具对音频进行抽取、剪切和终于opencv处理的视频合并)。

    19946 人正在学习 去看看 夏曹俊

该系列文章是讲解Python OpenCV图像处理知识,前期主要讲解图像入门、OpenCV基础用法,中期讲解图像处理的各种算法,包括图像锐化算子、图像增强技术、图像分割等,后期结合深度学习研究图像识别、图像分类应用。希望文章对您有所帮助,如果有不足之处,还请海涵~

该系列在github所有源代码:https://github.com/eastmountyxz/ImageProcessing-Python
PS:请求帮忙点个Star,哈哈,第一次使用Github,以后会分享更多代码,一起加油。

同时推荐作者的C++图像系列知识:
[数字图像处理] 一.MFC详解显示BMP格式图片
[数字图像处理] 二.MFC单文档分割窗口显示图片
[数字图像处理] 三.MFC实现图像灰度、采样和量化功能详解
[数字图像处理] 四.MFC对话框绘制灰度直方图
[数字图像处理] 五.MFC图像点运算之灰度线性变化、灰度非线性变化、阈值化和均衡化处理详解
[数字图像处理] 六.MFC空间几何变换之图像平移、镜像、旋转、缩放详解
[数字图像处理] 七.MFC图像增强之图像普通平滑、高斯平滑、Laplacian、Sobel、Prewitt锐化详解

前文参考:
[Python图像处理] 一.图像处理基础知识及OpenCV入门函数
[Python图像处理] 二.OpenCV+Numpy库读取与修改像素
[Python图像处理] 三.获取图像属性、兴趣ROI区域及通道处理
[Python图像处理] 四.图像平滑之均值滤波、方框滤波、高斯滤波及中值滤波
[Python图像处理] 五.图像融合、加法运算及图像类型转换
[Python图像处理] 六.图像缩放、图像旋转、图像翻转与图像平移

本篇文章主要讲解Python调用OpenCV实现图像阈值化处理操作,包括二进制阈值化、反二进制阈值化、截断阈值化、反阈值化为0、阈值化为0。全文均是基础知识,希望对您有所帮助。
1.阈值化
2.二进制阈值化
3.反二进制阈值化
4.截断阈值化
5.反阈值化为0
6.阈值化为0

PS:文章参考自己以前系列图像处理文章及OpenCV库函数,同时部分参考网易云视频,推荐大家去学习。同时,本篇文章涉及到《计算机图形学》基础知识,请大家下来补充。

PSS:2019年1~2月作者参加了CSDN2018年博客评选,希望您能投出宝贵的一票。我是59号,Eastmount,杨秀璋。投票地址:https://bss.csdn.net/m/topic/blog_star2018/index

五年来写了314篇博客,12个专栏,是真的热爱分享,热爱CSDN这个平台,也想帮助更多的人,专栏包括Python、数据挖掘、网络爬虫、图像处理、C#、Android等。现在也当了两年老师,更是觉得有义务教好每一个学生,让贵州学子好好写点代码,学点技术,"师者,传到授业解惑也",提前祝大家新年快乐。2019我们携手共进,为爱而生。

一. 阈值化

(注:该部分参考作者的论文《基于苗族服饰的图像锐化和边缘提取技术研究》)

图像的二值化或阈值化(Binarization)旨在提取图像中的目标物体,将背景以及噪声区分开来。通常会设定一个阈值T,通过T将图像的像素划分为两类:大于T的像素群和小于T的像素群。
灰度转换处理后的图像中,每个像素都只有一个灰度值,其大小表示明暗程度。二值化处理可以将图像中的像素划分为两类颜色,常用的二值化算法如公式1所示:

{Y=0gray<TY=255gray>=T\begin{cases} Y=0,gray<T\\ Y=255,gray>=T\\ \end{cases}
当灰度Gray小于阈值T时,其像素设置为0,表示黑色;当灰度Gray大于或等于阈值T时,其Y值为255,表示白色。
Python OpenCV中提供了阈值函数threshold()实现二值化处理,其公式及参数如下图所示:
retval, dst = cv2.threshold(src, thresh, maxval, type)

常用的方法如下表所示,其中函数中的参数Gray表示灰度图,参数127表示对像素值进行分类的阈值,参数255表示像素值高于阈值时应该被赋予的新像素值,最后一个参数对应不同的阈值处理方法。
对应OpenCV提供的五张图如下所示,第一张为原图,后面依次为:二进制阈值化、反二进制阈值化、截断阈值化、反阈值化为0、阈值化为0。
二值化处理广泛应用于各行各业,比如生物学中的细胞图分割、交通领域的车牌设别等。在文化应用领域中,通过二值化处理将所需民族文物图像转换为黑白两色图,从而为后面的图像识别提供更好的支撑作用。下图表示图像经过各种二值化处理算法后的结果,其中“BINARY”是最常见的黑白两色处理。


二. 二进制阈值化

该方法先要选定一个特定的阈值量,比如127。新的阈值产生规则如下:
dst(x,y)={maxValifsrc(x,y)>thresh0otherwise dst(x,y) = \begin{cases} maxVal, if src(x,y)>thresh\\ 0,otherwise\\ \end{cases}
(1) 大于等于127的像素点的灰度值设定为最大值(如8位灰度值最大为255)
(2) 灰度值小于127的像素点的灰度值设定为0
例如,163->255,86->0,102->0,201->255。

关键字为 cv2.THRESH_BINARY,完整代码如下:

#encoding:utf-8
import cv2  
import numpy as np  

#读取图片
src = cv2.imread('test.jpg')

#灰度图像处理
GrayImage = cv2.cvtColor(src,cv2.COLOR_BGR2GRAY)

#二进制阈值化处理
r, b = cv2.threshold(GrayImage, 127, 255, cv2.THRESH_BINARY)
print r

#显示图像
cv2.imshow("src", src)
cv2.imshow("result", b)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

输出为两个返回值,r为127,b为处理结果(大于127设置为255,小于设置为0)。如下图所示:



三. 反二进制阈值化

该方法与二进制阈值化方法相似,先要选定一个特定的灰度值作为阈值,比如127。新的阈值产生规则如下:
dst(x,y)={0ifsrc(x,y)>threshmaxValotherwise dst(x,y) = \begin{cases} 0, if src(x,y)>thresh\\ maxVal,otherwise\\ \end{cases}
(1) 大于127的像素点的灰度值设定为0(以8位灰度图为例)
(2) 小于该阈值的灰度值设定为255
例如,163->0,86->255,102->255,201->0。

关键字为 cv2.THRESH_BINARY_INV,完整代码如下:

#encoding:utf-8
import cv2  
import numpy as np  

#读取图片
src = cv2.imread('test.jpg')

#灰度图像处理
GrayImage = cv2.cvtColor(src,cv2.COLOR_BGR2GRAY)

#反二进制阈值化处理
r, b = cv2.threshold(GrayImage, 127, 255, cv2.THRESH_BINARY_INV)
print r

#显示图像
cv2.imshow("src", src)
cv2.imshow("result", b)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下图所示:

该方法得到的结果正好与二进制阈值化方法相反,亮色元素反而处理为黑色,暗色处理为白色。

四. 截断阈值化

该方法需要选定一个阈值,图像中大于该阈值的像素点被设定为该阈值,小于该阈值的保持不变,比如127。新的阈值产生规则如下:
dst(x,y)={thresholdifsrc(x,y)>threshsrc(x,y)otherwise dst(x,y) = \begin{cases} threshold, if src(x,y)>thresh\\ src(x,y),otherwise\\ \end{cases}
(1) 大于等于127的像素点的灰度值设定为该阈值127
(2) 小于该阈值的灰度值不改变
例如,163->127,86->86,102->102,201->127。

关键字为 cv2.THRESH_TRUNC,完整代码如下:

#encoding:utf-8
import cv2  
import numpy as np  

#读取图片
src = cv2.imread('test.jpg')

#灰度图像处理
GrayImage = cv2.cvtColor(src,cv2.COLOR_BGR2GRAY)

#截断阈值化处理
r, b = cv2.threshold(GrayImage, 127, 255, cv2.THRESH_TRUNC)
print r

#显示图像
cv2.imshow("src", src)
cv2.imshow("result", b)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下图所示::

该处理方法相当于把图像中比较亮(大于127,偏向于白色)的像素值处理为阈值。

五. 反阈值化为0

该方法先选定一个阈值,比如127,接着对图像的灰度值进行如下处理:
dst(x,y)={0ifsrc(x,y)>threshsrc(x,y)otherwise dst(x,y) = \begin{cases} 0, if src(x,y)>thresh\\ src(x,y),otherwise\\ \end{cases}
(1) 大于等于阈值127的像素点变为0
(2) 小于该阈值的像素点值保持不变
例如,163->0,86->86,102->102,201->0。

关键字为 cv2.THRESH_TOZERO_INV,完整代码如下:

#encoding:utf-8
import cv2  
import numpy as np  

#读取图片
src = cv2.imread('test.jpg')

#灰度图像处理
GrayImage = cv2.cvtColor(src,cv2.COLOR_BGR2GRAY)

#反阈值化为0处理
r, b = cv2.threshold(GrayImage, 127, 255, cv2.THRESH_TOZERO_INV)
print r

#显示图像
cv2.imshow("src", src)
cv2.imshow("result", b)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下图所示:



六. 阈值化为0

该方法先选定一个阈值,比如127,接着对图像的灰度值进行如下处理:
dst(x,y)={src(x,y)ifsrc(x,y)>thresh0otherwise dst(x,y) = \begin{cases} src(x,y), if src(x,y)>thresh\\ 0,otherwise\\ \end{cases}
(1) 大于等于阈值127的像素点,值保持不变
(2) 小于该阈值的像素点值设置为0
例如,163->163,86->0,102->0,201->201。

关键字为 cv2.THRESH_TOZERO,完整代码如下:

#encoding:utf-8
import cv2  
import numpy as np  

#读取图片
src = cv2.imread('test.jpg')

#灰度图像处理
GrayImage = cv2.cvtColor(src,cv2.COLOR_BGR2GRAY)

#阈值化为0处理
r, b = cv2.threshold(GrayImage, 127, 255, cv2.THRESH_TOZERO)
print r

#显示图像
cv2.imshow("src", src)
cv2.imshow("result", b)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下图所示:

该算法把比较亮的部分不变,比较暗的部分处理为0。

完整五个算法的对比代码如下所示:

#encoding:utf-8
import cv2  
import numpy as np  
import matplotlib.pyplot as plt

#读取图像
img=cv2.imread('test.jpg')
lenna_img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
GrayImage=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)  

#阈值化处理
ret,thresh1=cv2.threshold(GrayImage,127,255,cv2.THRESH_BINARY)  
ret,thresh2=cv2.threshold(GrayImage,127,255,cv2.THRESH_BINARY_INV)  
ret,thresh3=cv2.threshold(GrayImage,127,255,cv2.THRESH_TRUNC)  
ret,thresh4=cv2.threshold(GrayImage,127,255,cv2.THRESH_TOZERO)  
ret,thresh5=cv2.threshold(GrayImage,127,255,cv2.THRESH_TOZERO_INV)

#显示结果
titles = ['Gray Image','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV']  
images = [GrayImage, thresh1, thresh2, thresh3, thresh4, thresh5]  
for i in xrange(6):  
   plt.subplot(2,3,i+1),plt.imshow(images[i],'gray')  
   plt.title(titles[i])  
   plt.xticks([]),plt.yticks([])  
plt.show()

输出结果如下图所示:

希望文章对大家有所帮助,如果有错误或不足之处,还请海涵。最近经历的事情太多,有喜有悲,关闭了朋友圈,希望通过不断学习和写文章来忘记烦劳,将忧郁转换为动力。哎,总感觉自己在感动这个世界,帮助所有人,而自己却…谁有关心秀璋?晚安。
(By:Eastmount 2018-10-30 晚上10点 https://blog.csdn.net/Eastmount/)

2019-08-18 10:59:39 weixin_40586929 阅读数 128
  • 学习OpenCV3.2+QT5+ffmpeg实战开发视频编辑器视频教程

    OpenCV3.2+QT5+ffmpeg实战开发视频编辑器视频培训课程概况:教程中会讲解到基于opencv视频和摄像机录制、播放和播放进度控制,多视频图像合并、多视频图像融合、剪切、视频亮度、对比度、尺寸(近邻插值(手动实现),双线性插值,图像金字塔)、颜色格式(灰度图,二值化(阈值)),旋转镜像,视频裁剪(ROI),视频水印(ROI+weight),导出处理后的视频(包含音频,使用ffmpeg工具对音频进行抽取、剪切和终于opencv处理的视频合并)。

    19946 人正在学习 去看看 夏曹俊

在图像处理的领域中,图像的阈值处理一般使得图像的像素值更单一、图像更简单。前提输入进来的图片是灰度图,那么在之后的处理当中,将像素点分开就会更加明显。可以将整幅图像分成了非黑即白的二值图像了。

Opencv中就有cv2.threshold() 可以做阈值处理。

这个函数有四个参数,待处理的图像;分类的阈值;超过阈值的像素全部赋给的值;做处理的方法。

这个函数的返回值有两个,第一个r是得到的阈值的值,第二个处理后的图像。(只是不同为什么最后要返回阈值,明明入参已经知道阈值了,这样不是多此一举吗?)

  • cv2.THRESH_BINARY(黑白二值) 
  • cv2.THRESH_BINARY_INV(黑白二值反转) 
  • cv2.THRESH_TRUNC (得到的图像为多像素值) 
  • cv2.THRESH_TOZERO (渐变至1)
  • cv2.THRESH_TOZERO_INV (渐变至0)

import cv2
img = cv2.imread('test1.jpg',0)  #0表示灰度图像, 1表示彩色图像
 
ret,thresh1 = cv2.threshold(img,1,255,cv2.THRESH_BINARY)
ret,thresh2 = cv2.threshold(img,127,255,cv2.THRESH_BINARY_INV)
ret,thresh3 = cv2.threshold(img,127,255,cv2.THRESH_TRUNC)
ret,thresh4 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO)
ret,thresh5 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO_INV)

以上内容如有错误,欢迎指出。谢谢!

2015-07-09 09:03:17 on2way 阅读数 59991
  • 学习OpenCV3.2+QT5+ffmpeg实战开发视频编辑器视频教程

    OpenCV3.2+QT5+ffmpeg实战开发视频编辑器视频培训课程概况:教程中会讲解到基于opencv视频和摄像机录制、播放和播放进度控制,多视频图像合并、多视频图像融合、剪切、视频亮度、对比度、尺寸(近邻插值(手动实现),双线性插值,图像金字塔)、颜色格式(灰度图,二值化(阈值)),旋转镜像,视频裁剪(ROI),视频水印(ROI+weight),导出处理后的视频(包含音频,使用ffmpeg工具对音频进行抽取、剪切和终于opencv处理的视频合并)。

    19946 人正在学习 去看看 夏曹俊
  • 图像的阈值处理一般使得图像的像素值更单一、图像更简单。阈值可以分为全局性质的阈值,也可以分为局部性质的阈值,可以是单阈值的也可以是多阈值的。当然阈值越多是越复杂的。下面将介绍opencv下的三种阈值方法。

(一)简单阈值

简单阈值当然是最简单,选取一个全局阈值,然后就把整幅图像分成了非黑即白的二值图像了。函数为cv2.threshold()
这个函数有四个参数,第一个原图像,第二个进行分类的阈值,第三个是高于(低于)阈值时赋予的新值,第四个是一个方法选择参数,常用的有:
• cv2.THRESH_BINARY(黑白二值)
• cv2.THRESH_BINARY_INV(黑白二值反转)
• cv2.THRESH_TRUNC (得到的图像为多像素值)
• cv2.THRESH_TOZERO
• cv2.THRESH_TOZERO_INV
该函数有两个返回值,第一个retVal(得到的阈值值(在后面一个方法中会用到)),第二个就是阈值化后的图像。
一个实例如下:

import cv2
import matplotlib.pyplot as plt

img = cv2.imread('flower.jpg',0) #直接读为灰度图像
ret,thresh1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
ret,thresh2 = cv2.threshold(img,127,255,cv2.THRESH_BINARY_INV)
ret,thresh3 = cv2.threshold(img,127,255,cv2.THRESH_TRUNC)
ret,thresh4 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO)
ret,thresh5 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO_INV)
titles = ['img','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV']
images = [img,thresh1,thresh2,thresh3,thresh4,thresh5]
for i in range(6):
    plt.subplot(2,3,i+1),plt.imshow(images[i],'gray')
    plt.title(titles[i])
    plt.xticks([]),plt.yticks([])
plt.show()

这里写图片描述
可以看到这里把阈值设置成了127,对于BINARY方法,当图像中的灰度值大于127的重置像素值为255.

(二)自适应阈值:

前面看到简单阈值是一种全局性的阈值,只需要规定一个阈值值,整个图像都和这个阈值比较。而自适应阈值可以看成一种局部性的阈值,通过规定一个区域大小,比较这个点与区域大小里面像素点的平均值(或者其他特征)的大小关系确定这个像素点是属于黑或者白(如果是二值情况)。使用的函数为:cv2.adaptiveThreshold()
该函数需要填6个参数:

  • 第一个原始图像
  • 第二个像素值上限
  • 第三个自适应方法Adaptive Method:
    — cv2.ADAPTIVE_THRESH_MEAN_C :领域内均值
    —cv2.ADAPTIVE_THRESH_GAUSSIAN_C :领域内像素点加权和,权 重为一个高斯窗口
  • 第四个值的赋值方法:只有cv2.THRESH_BINARY 和cv2.THRESH_BINARY_INV
  • 第五个Block size:规定领域大小(一个正方形的领域)
  • 第六个常数C,阈值等于均值或者加权值减去这个常数(为0相当于阈值 就是求得领域内均值或者加权值)
    这种方法理论上得到的效果更好,相当于在动态自适应的调整属于自己像素点的阈值,而不是整幅图像都用一个阈值。

一个实例如下:

mport cv2
import matplotlib.pyplot as plt

img = cv2.imread('flower.jpg',0) #直接读为灰度图像
ret,th1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
th2 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_MEAN_C,\
cv2.THRESH_BINARY,11,2) #换行符号 \
th3 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\
cv2.THRESH_BINARY,11,2) #换行符号 \
images = [img,th1,th2,th3]
plt.figure()
for i in xrange(4):
    plt.subplot(2,2,i+1),plt.imshow(images[i],'gray')
plt.show()

这里写图片描述
可以看到上述窗口大小使用的为11,当窗口越小的时候,得到的图像越细。想想一下,如果把窗口设置足够大以后(不能超过图像大小),那么得到的结果可能就和第二幅图像的相同了。

(三)Otsu’s二值化

我们前面说到,cv2.threshold函数是有两个返回值的,前面一直用的第二个返回值,也就是阈值处理后的图像,那么第一个返回值(得到图像的阈值)将会在这里用到。
前面对于阈值的处理上,我们选择的阈值都是127,那么实际情况下,怎么去选择这个127呢?有的图像可能阈值不是127得到的效果更好。那么这里我们需要算法自己去寻找到一个阈值,而Otsu’s就可以自己找到一个认为最好的阈值。并且Otsu’s非常适合于图像灰度直方图具有双峰的情况,他会在双峰之间找到一个值作为阈值,对于非双峰图像,可能并不是很好用。那么经过Otsu’s得到的那个阈值就是函数cv2.threshold的第一个参数了。因为Otsu’s方法会产生一个阈值,那么函数cv2.threshold的的第二个参数(设置阈值)就是0了,并且在cv2.threshold的方法参数中还得加上语句cv2.THRESH_OTSU。那么什么是双峰图像(只能是灰度图像才有),就是图像的灰度统计图中可以明显看出只有两个波峰,比如下面一个图的灰度直方图就可以是双峰图:
这里写图片描述
好了现在对这个图进行Otsu’s阈值处理就非常的好,通过函数cv2.threshold会自动找到一个介于两波峰之间的阈值。一个实例如下:

import cv2
import matplotlib.pyplot as plt

img = cv2.imread('finger.jpg',0) #直接读为灰度图像
#简单滤波
ret1,th1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
#Otsu 滤波
ret2,th2 = cv2.threshold(img,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
print ret2
plt.figure()
plt.subplot(221),plt.imshow(img,'gray')
plt.subplot(222),plt.hist(img.ravel(),256)#.ravel方法将矩阵转化为一维
plt.subplot(223),plt.imshow(th1,'gray')
plt.subplot(224),plt.imshow(th2,'gray')

这里写图片描述
print ret2 得到的结果为122。可以看出似乎两个结果并没有很明显差别(素材也不太好弄~_~!),主要是两个阈值(127与122)太相近了,如果这两个隔得很远那么会很明显的。

2019-11-08 12:18:54 qingfengxiaosong 阅读数 30
  • 学习OpenCV3.2+QT5+ffmpeg实战开发视频编辑器视频教程

    OpenCV3.2+QT5+ffmpeg实战开发视频编辑器视频培训课程概况:教程中会讲解到基于opencv视频和摄像机录制、播放和播放进度控制,多视频图像合并、多视频图像融合、剪切、视频亮度、对比度、尺寸(近邻插值(手动实现),双线性插值,图像金字塔)、颜色格式(灰度图,二值化(阈值)),旋转镜像,视频裁剪(ROI),视频水印(ROI+weight),导出处理后的视频(包含音频,使用ffmpeg工具对音频进行抽取、剪切和终于opencv处理的视频合并)。

    19946 人正在学习 去看看 夏曹俊

按照当前流行的分类方法,可以分为以下三部分:


A.图像处理:对输入的图像做某种变换,输出仍然是图像,基本不涉及或者很少涉及图像内容的分析。比较典型的有图像变换,图像增强,图像去噪,图像压缩,图像恢复,二值图像处理等等。基于阈值的图像分割也属于图像处理的范畴。一般处理的是单幅图像。

B.图像分析:对图像的内容进行分析,提取有意义的特征,以便于后续的处理。处理的仍然是单幅图像。


C.计算机视觉:对图像分析得到的特征进行分析,提取场景的语义表示,让计算机具有人眼和人脑的能力。这时处理的是多幅图像或者序列图像,当然也包括部分单幅图像。


      关于图像处理,图像分析和计算机视觉的划分并没有一个很统一的标准。一般的来说,图像处理的书籍总会或多或少的介绍一些图像分析和计算机视觉的知识,比如冈萨雷斯的数字图像处理。而计算机视觉的书籍基本上都会包括图像处理和图像分析,只是不会介绍的太详细。其实图像处理,图像分析和计算机视觉都可以纳入到计算机视觉的范畴:图像处理->低层视觉(low level vision),图像分析->中间层视觉(middle level vision),计算机视觉->高层视觉(high level vision。这是一般的计算机视觉或者机器视觉的划分方法。

2017-08-01 00:16:42 pianzang5201 阅读数 309
  • 学习OpenCV3.2+QT5+ffmpeg实战开发视频编辑器视频教程

    OpenCV3.2+QT5+ffmpeg实战开发视频编辑器视频培训课程概况:教程中会讲解到基于opencv视频和摄像机录制、播放和播放进度控制,多视频图像合并、多视频图像融合、剪切、视频亮度、对比度、尺寸(近邻插值(手动实现),双线性插值,图像金字塔)、颜色格式(灰度图,二值化(阈值)),旋转镜像,视频裁剪(ROI),视频水印(ROI+weight),导出处理后的视频(包含音频,使用ffmpeg工具对音频进行抽取、剪切和终于opencv处理的视频合并)。

    19946 人正在学习 去看看 夏曹俊

这种方法非常简单。但像素值高于阈值时,给这个像素赋予一个新值(可能是白色),否则给它赋予另外一种颜色(也许是黑色)。 这个函数就是cv2.threshhold()。这个函数的第一个参数就是原图像,原图像应该是灰度图。第二个参数就是用来对像素值进行分类的阈值第三个参数就是当像素值高于(有时是小于)阈值时应该被赋予的新的像素值。OpenCV 提供了多种不同的阈值方法,这是有第四个参数来决定的。这些方法包括:

• cv2.THRESH_BINARY 

• cv2.THRESH_BINARY_INV

• cv2.THRESH_TRUNC 

• cv2.THRESH_TOZERO 

• cv2.THRESH_TOZERO_INV


#coding:utf-8
import cv2
import numpy as np
from matplotlib import pyplot as plt

img = cv2.imread('F:/black.png',0)
ret, thresh1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
ret, thresh2 = cv2.threshold(img,127,255,cv2.THRESH_BINARY_INV)
ret, thresh3 = cv2.threshold(img,127,255,cv2.THRESH_TRUNC)
ret, thresh4 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO)
ret, thresh5 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO_INV)


titles = ['Original Image','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV']
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]

for i in xrange(6):
    plt.subplot(2,3,i+1),plt.imshow(images[i],'gray')
    plt.title(titles[i])
    plt.xticks([]),plt.yticks([])

plt.show()


结果图:



注意:为了同时在一个窗口中显示多个图像,我们使用函数 plt.subplot()。你 可以通过查看 Matplotlib 的文档获得更多详细信息。2表示两行,3表示3列,i+1表示第几个。三个数字可以写成2,3,1,也可以写成231

OpenCV阈值化处理

阅读数 4949

没有更多推荐了,返回首页