2018-03-14 14:09:18 weixin_40581617 阅读数 296
  • 阿里云机器学习算法应用实践

    人工智能的商业化应用是下一个风口,阿里云在机器学习算法方面有许多沉淀。本次分享首先是介绍阿里云机器学习PAI,接着会在上面搭建真实的案例,包括心脏病预测、新闻分类等场景。

    13771 人正在学习 去看看 CSDN讲师

阿里云容器服务提供的深度学习解决方案内置了对Tensorflow, Keras, MXnet框架的环境,并支持基于它们的深度学习模型开发、模型训练和模型预测。同时,对于模型训练和预测,用户还可以通过指定自定义容器镜像的方式,使用其他深度学习框架。



热点热

通过阿里云容器服务深度学习解决方案上手Caffe+多GPU训练

作者:wsxiaozhang

一张图看懂阿里云网络产品[十二]云企业网

作者:david陈

玩转短视频?守护视频安全?AI智能提速?一分钱体验? 阿里云视频点播大招盘点

作者:樰篱 

知识整理

Hive高级优化

作者:突突修

比特币的区块结构解析

作者:邴越

Debian 环境下简单配置 Bind9 服务

作者:行者武松

Hive中文件存储格式及大小比较测试

作者:突突修

CLI使用案例4:灵活配置CLI

作者:成喆

美文回顾

为什么要使用 Python 生成器?该如何使用 Python 生成器?

作者:马达达

2018年最新Linux云计算入门学习路线图

作者:不是吴彦祖

用深度学习识别人脸openface和dlib

作者:秦玉坤

美工跟程序员合作应该注意哪些问题?

作者:浮生递归

一个正在被API驱动的互联网时代

作者:止水

MSSQL - 最佳实践 - 数据库备份链

作者:风移

ApsaraDB for SQL Server 混合云场景一种解决方案

作者:石沫


  • 往期精选回

3月8日云栖精选夜读:【AI女神节特稿】你不能不知道的13位中国人工智能女性
3月7日云栖精选夜读:如何提升集群资源利用率? 阿里容器调度系统Sigma 深入解析
3月6日云栖精选夜读:如何实现32.5万笔/秒的交易峰值?阿里交易系统TMF2.0技术揭秘
2017-08-23 10:34:48 u012361116 阅读数 650
  • 阿里云机器学习算法应用实践

    人工智能的商业化应用是下一个风口,阿里云在机器学习算法方面有许多沉淀。本次分享首先是介绍阿里云机器学习PAI,接着会在上面搭建真实的案例,包括心脏病预测、新闻分类等场景。

    13771 人正在学习 去看看 CSDN讲师

《使用变分自编码器VAE训练出深度生成模型》       

       本周我们使用无监督深度学习算法变分自编码器VAE来做一些有趣的事情,通过对mnist数据集的学习,捕捉图像的结构变化(倾斜角度、圈的位置、形状等变化),生成数据集里没有的图像。


直播主题:使用变分自编码器VAE训练出深度生成模型

直播时间:20170823  周三晚 20:00

直播地址:https://www.douyu.com/2181595

学习QQ群1567810612  

学习QQ群2218089115 

(获奖者务必加入QQ群,群1、群2加入任何一个均可)

直播嘉宾: 


谭创创

负责国家级大学生创新项目一项,发表SCI一篇,将深度学习应用于医疗。

热爱机器学习,擅长TensorFlow

分享内容:

1. mnist数据集介绍

2. 变分自编码器的原理

3. 解读本次实验代码

4. 使用PAI的TensorBoard 评估实验效果

 

环境及数据说明:

环境需求:  Python +Tensorflow

数据下载地址: 

http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/50654/cn_zh/1487561924421/train.tfrecords?spm=5176.doc50654.2.2.EU4ykl&file=train.tfrecords

 

有奖互动

一、最佳实践

  1、截止到82418点,完成本期实验

  2、实验过程分享至天池技术圈

  3生成图片手写数字最清晰10名同学

互动规则:完成上述3个步骤,并且TOP3的同学将得到《机器学习应用实践》书籍1本,top4-10淘宝U盘一个

二、嘉宾互动抽奖 

互动时间:8月23日直播活动后(直播后准时开始)

互动时长:15-30分钟

互动地址:https://tianchi.aliyun.com/competition/new_articleDetail.html?postsId=2416

互动规则:

       周三直播后,对于视频中的内容或者机器学习PAI有问题的同学可以在互动时间内留言提问 @谭创创 老师 回答

      每逢问题楼层尾数为9,例如9,19,29,39,……即可获得天池定制淘公仔U盘一个!U盘内自带天池历届大赛优胜队伍思路代码,限量30个,先到先得!


【推荐课程】

上周三机器学习录播回顾:CTR中的GBDT+LR融合方案

https://tianchi.aliyun.com/competition/new_articleDetail.html?spm=5176.8366600.2238.1.5ca91ac5nV9TNm&raceId=&postsId=2238

更多机器学习免费系列课程:

https://tianchi.aliyun.com/competition/new_articleDetail.html?spm=5176.8366600.4851167.1.5ca91ac5CLNIEV&raceId=&postsId=1515



2018-06-26 16:09:16 dongjbstrong 阅读数 7508
  • 阿里云机器学习算法应用实践

    人工智能的商业化应用是下一个风口,阿里云在机器学习算法方面有许多沉淀。本次分享首先是介绍阿里云机器学习PAI,接着会在上面搭建真实的案例,包括心脏病预测、新闻分类等场景。

    13771 人正在学习 去看看 CSDN讲师

自己电脑性能不达标,所以需要使用云平台来进行深度学习训练,在众多平台中比较之后,选择了阿里云。期初以为是租用GPU服务器,但是这种方式有点类似于给你一台新电脑,上面什么软件都没有安装,需要自己去配置,配置比较麻烦,而且安装各种包的时候,是需要扣钱的。后来看到阿里云上有机器学习的产品,也就是PAI,用了一下,可以运行我的数据了,故把过程中遇到的问题总结在这里。

 

1.首先按照阿里云深度学习的介绍进行相关服务的开通和充值。这个文档中有用tensorflow做图像分类的案例,只是应用到具体模型中还存在着一些问题。

 

2.数据集最好先做成.tfrecords文件,这样可以快速地进行读写操作。然后上传到oss;多个代码文件可以用7zip打包成.tar.gz格式,再上传到oss;

 

3.代码文件中,将tensorflow所保存的checkpoint的路径设置为FALGS.checkpointDir,将读取tfrecords文件的路径设置为FLAGS.buckets;在主程序中使用:为什么这么做?因为查看PAI在运行时的日志,可以看出:PAI在执行的时候,会输入下面这些命令,所以通过解析这些命令,就可以获得对应的信息,从而使得PAI能够正确地去oss中读取文件,也能够正确地将文件写入到oss中。

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--buckets', type=str, default='', 
                        help='tfrecords data path.')
    parser.add_argument('--checkpointDir', type=str, default='',
                        help='checkpoint data path')
    parser.add_argument('--summaryDir', type=str, default='',
                        help='summary path')
    
    FLAGS = parser.parse_args()

    train(check_path=FLAGS.checkpointDir, data_path=FLAGS.buckets,
          log_path=FLAGS.summaryDir)

 

 

 

 

 

 

4.进入PAI,配置tensorflow的时候,

    i)python代码文件需要选择oss里刚才所下载的那个.tar.gz压缩包;

    ii)python主文件直接写上主文件名称即可,比如main.py

    iii)数据源目录选择oss里面的tfrecords文件所在的文件夹

 

5.右键查看日志的时候,可以点击蓝色链接,打开log_view,

然后,双击ODPS Tasks下的内容,

之后,双击左侧的Tensorflow Task,

之后,

stdout可以查看程序的输出,stdErr可以查看程序运行的一些信息,比如说哪里出错了,可以用于排查。

 

6.训练完成之后,从oss下载文件即可。

 

2017-11-23 19:49:09 Lo_Bamboo 阅读数 34546
  • 阿里云机器学习算法应用实践

    人工智能的商业化应用是下一个风口,阿里云在机器学习算法方面有许多沉淀。本次分享首先是介绍阿里云机器学习PAI,接着会在上面搭建真实的案例,包括心脏病预测、新闻分类等场景。

    13771 人正在学习 去看看 CSDN讲师

神经网络训练需要强大的GPU支持,自己搭建成本太高,并且有时候出差等原因,无法将庞大的机箱搬走。因此,就产生了将深度学习网络训练的任务搬到云端的想法。由于初次使用,遇到不少大坑,花了两天时间才完整的实现。
要实现的功能:
- 安装anaconda管理库
- 远程访问jupyter notebook
- 将本地文件和服务器端文件互传
- 安装tensorflow的GPU版本
- 服务器不用的时候释放,下次直接再用,节省费用

注意:本文主要解决常见的坑。
1、anaconda 安装慢,阿里云的GPU服务器很贵的,时间就是金钱在这里体现的淋漓尽致。
2、jupyter notebook无法远程访问,或者直接报错sock无法连接错误
3、从github上下载文件慢的要命,且有文件大小限制(100M)
4、服务器端查看一切正常,远程就是无法访问问题

针对以上种种问题,我综合了网上各位大神的文章,汇总到一起,实现从零开始的目标。减少环境搭建时间,把时间花在机器学习本身上。

本文服务器端采用的是阿里云ubantu 16.04版本,我的电脑也是。


创建帐号及设置

阿里云服务器的购买过程简化一点:选择地域》选择实例:异构计算,GPU计算》镜像:镜像市场,搜索深度学习ubantu版本(已经安装好了显卡驱动和cuda8.0)》其他的按需配置》设置密码

几点要注意的地方:
1、一般选择按量付费,包月包年太贵。土豪随意啊。我会在后面说怎么很便宜的把自己的数据和配置保存下来。用的时候再复制出来。
2、镜像的选择问题,一定在镜像市场里找到已经安装好驱动和cuda8.0的,不然我相信你会哭的。我觉得阿里云做技术很马虎啊,你不装驱动,让我自己装,有故意收黑钱的嫌疑。
3、安全组配置,我会后面着重说明,现在选择默认就可以了。

采用SSH方式访问远程服务器

在本地电脑打开终端,输入:

ssh root@47.93.*.*#输入自己的公网IP

然后会打印出:

The authenticity of host '47.93.*.* (47.93.*.*)' can't be established.
ECDSA key fingerprint is SHA256:r60avP7Lyz01MRTFN9mbekDAcwZWv8tFUmMlo6dr/m0.
Are you sure you want to continue connecting (yes/no)? 

yes
首次登录会提醒你,系统自动创建密匙

Warning: Permanently added '47.93.*.*' (ECDSA) to the list of known hosts.

输入你购买服务器时,输入的密码。如果购买时没有输入密码,此时会让你设置。PS:给没用过Linux系统的提醒一下,输入密码不会显示,完成后回车即可。

root@47.93.*.*'s password: 

这是你就可以看到成功登录的页面

Welcome to Ubuntu 16.04.2 LTS (GNU/Linux 4.4.0-62-generic x86_64)

 * Documentation:  https://help.ubuntu.com
 * Management:     https://landscape.canonical.com
 * Support:        https://ubuntu.com/advantage
Welcome to Alibaba Cloud Elastic Compute Service !

更改主机名称及host

刚登录进去,主机名是一串非常长的随机编码,很难记住,我建议更改掉。

我采用的vim编辑器,系统默认安装的。如果第一次用,肯定很难熟悉,建议先百度一下vim的基本用法。PS:有点罗嗦,但是第一次,肯定很茫然。习惯了之后效率确实很高。

删除,起个自己熟悉的名字。

vim /etc/hostname#ubantu的在此目录下,其他系统按需更改

更改完成后,重启才会起作用。暂时不要重启。继续

vim /etc/hosts

把刚才自己修改的名字加入

127.0.0.1       localhost
127.0.0.1       bamboo_aliyun #新增

# The following lines are desirable for IPv6 capable hosts
::1     localhost ip6-localhost ip6-loopback
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

如果不设置此项,每次用sudo会一直提醒。

sudo: unable to resolve host iZ2ze3v1xxtg5z3w2nb8oaZ

查看一下是否已经安装好了驱动和相关的包。

root@GPU_aliyun:~# ls
deep_learning  nvidia  NVIDIA_CUDA-8.0_Samples
exit#推出SSH登录

现在阿里云控制台重启一下服务器。

创建新用户

重新用root登录服务器,与上同,不再贴代码。进入后发现主机的名称已经变成你设置的了。

notes:此地方有大坑,要注意。创建新用户有两个命令。一个是useradd和adduser。我建议用adduser,按照提示一直操作,就会自动完成。如果采用useradd如果不加参数的话,会创建一个三无产品。
1、无Home Directory
2、无密码
3、无系统Shell

1、adduser用户创建过程(两者任选其一)

sudo adduser bamboo

自动创建过程:

root@GPU_aliyun:~# sudo adduser bamboo
Adding user `bamboo' ...
Adding new group `bamboo' (1000) ...
Adding new user `bamboo' (1000) with group `bamboo' ...
Creating home directory `/home/bamboo' ...
Copying files from `/etc/skel' ...
Enter new UNIX password: 
Retype new UNIX password: 
passwd: password updated successfully
Changing the user information for bamboo
Enter the new value, or press ENTER for the default
    Full Name []: bamboo
    Room Number []: 
    Work Phone []: 
    Home Phone []: 
    Other []: 
Is the information correct? [Y/n] y

使用新帐号登录系统:

bamboo@bamboo-WorkBook:~$ ssh bamboo@39.106.143.143

在root帐号下,设置sudo权限

sudo vim /etc/sudoers
# User privilege specification
root    ALL=(ALL:ALL) ALL
bamboo  ALL=(ALL:ALL) ALL

否则,会使用后面chmod命令会报以下错误:

bamboo is not in the sudoers file.  This incident will be reported.

设置文件夹权限(一定要设置,如果不设置后面安装程序会有问题)

bamboo@GPU_aliyun:~$ sudo chmod -R 777 /home/bamboo/

至此已经新帐号添加完成
2、useradd用户创建过程

创建用户,并把用加入root 和bamboo组

sudo useradd -g root bamboo

由于是三无产品,你需设置一下登录密码

sudo passwd bamboo

由于无shell,用新用户进入后,不显示路径,TAB键也不起作用,因此,我们需要添加shell

usermod -s /bin/bash bamboo

设置sudo权限

vim /etc/sudoers
# User privilege specification
root    ALL=(ALL:ALL) ALL
bamboo  ALL=(ALL:ALL) ALL

除了上述命令行的解决方式外,你也可以手动编辑passwd文件添加shell

vim /etc/passwd

重新用新用户登录系统

ssh bamboo@47.93.*.*#输入自己的公网IP

将用户目录的权限修改为,所有人可以读写执行。

sudo chmod -R 777 /home/bamboo/

如果不修改权限的话,在安装Anaconda时,会报出一下错误:
PermissionError(13, ‘Permission denied’)

PS:权限管理我还没完全搞清楚,我认为肯定有更加简洁的方法,但此方法确实能工作。如果对用户权限管理比较清楚的大神请留言更有效的方法。还有我之前在阿里云上配置其他服务器程序的时候发现root帐号内容,远程是无法访问的(估计是为了安全性考虑)。所以就直接新建帐号,大家可以试一下,给我留言,我更新一下博客


配置阿里云安全组

因为阿里云为了安全起见,默认只开放了22、80等少数端口。而jupyter notebook默认采用8888端口,因此在安全组配置中,需要将此端口开放。
如果一切都正常,就是无法远程访问,有90%的可能性就是安全组规则配置的问题。
设置过程:云服务器管理控制台》云服务器ECS》网络和安全》安全组》配置规则》添加安全组规则
添加安全组规则


Anaconda安装(清华源)

由于Anaconda默认的源在国外,下载速度极其缓慢。我采用清华的源。
直接用wget 下载

sudo wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-5.0.1-Linux-x86_64.sh

执行安装过程:

sudo bash Anaconda3-5.0.1-Linux-x86_64.sh

提示你,是否阅读协议,回车接受

In order to continue the installation process, please review the license
agreement.
Please, press ENTER to continue

是否接受协议,yes

Do you accept the license terms? [yes|no]

安装位置确认,回车

Anaconda3 will now be installed into this location:
/home/bamboo/anaconda3

  - Press ENTER to confirm the location
  - Press CTRL-C to abort the installation
  - Or specify a different location below

确定安装位置之后,需要等待安装一些默认的包,会让你选择一次bashrc.这时候一定要写yes

Do you wish the installer to prepend the Anaconda3 install location
to PATH in your /home/bamboo/.bashrc ? [yes|no]
[no] >>> yes

提示你如果要让bashrc起作用,要打开一个新的终端。但测试不起作用。

For this change to become active, you have to open a new terminal.

于是,我就直接配置环境变量

sudo vim /etc/environment

把自己的安装目录添加到后面

:/home/bamboo/anaconda3/bin

立即激活环境变量

source /etc/environment

测试是否安装成功

conda --version

如果安装成功,会显示出当前conda的版本

conda 4.3.30

更新conda install的源

# 添加Anaconda的TUNA镜像
conda config --add channels 'https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/'
# 设置搜索时显示通道地址
conda config --set show_channel_urls yes

更新一下conda

conda update conda

创建jupyter notebook运行环境,可以方便管理各类库

conda create -n jupyter_notebook python=3

激活环境

source activate jupyter_notebook

安装深度学习所需要的所有库

conda install numpy#测试是否能安装,后面也可按需安装

如果要退出环境的话,执行:

source deactivate#暂时不执行

安装jupyter notebook

在conda环境安装jupyter notebook,会自动安装相关依赖的包,并且独立。因此,我采用jupyter notebook 安装。每次在conda环境中使用,防止发生一些莫名奇妙的错误。

由于在本地使用和远程使用有着本质上的区别。因此,配置上也有很大的不同。由于之前我一直在本地使用,觉得应该不用配置什么东西,结果白白浪费了大量的时间和钱。本文会先主要说明远程访问的配置过程。

服务器端安装及测试jupyter notebook 是否正常

安装jupyter notebook

conda install jupyter notebook

测试

jupyter notebook --ip=127.0.0.1

终端输出正常即可
jupyter notebook

配置jupyter notebook远程访问

默认jupyter notebook 是不需要配置文件的。因此,需要用以下命令生成该文件。
主要配置一下内容:
- 设置远程访问密码
- 设置可访问ip,全局访问
- 禁用服务器端启动浏览器

jupyter notebook --generate-config

生成文件后,文件在该目录下

Writing default config to: /home/bamboo/.jupyter/jupyter_notebook_config.py

打开jupyter_notebook_config.py文件

vim /home/bamboo/.jupyter/jupyter_notebook_config.py

设置可以访问服务器的ip

c.NotebookApp.ip = '*'

notes:很多教程把该ip设置为127.0.0.1,这样你只能在本地访问,远程是无法访问的。这是大坑中很大的一个。

打开ipython

ipython

调用passwd()函数生成密匙,把密匙复制下来,后面会有用

In [1]: from notebook.auth import passwd
In [2]: passwd()
Enter password: 
Verify password: 
Out[2]: 'sha1:8361f5f08937:081cdf40730cb5548e2c213ddd36813a5313192f'

加入上面生成的密匙

c.NotebookApp.ip = '*'
c.NotebookApp.password = 'sha1:8361f5f08937:081cdf40730cb5548e2c213ddd36813a5313192f'

设置不在服务器端自动打开浏览器

c.NotebookApp.ip = '*'
c.NotebookApp.password = 'sha1:8361f5f08937:081cdf40730cb5548e2c213ddd36813a5313192f'
c.NotebookApp.open_browser = False

到目前位置所有远程的配置的所有工作已经全部完成。赶快启动一下jupyter notebook是不是可以访问。

jupyter notebook

终端开始输出:
这里写图片描述
远程访问测试

47.93.*.*:8888

登录界面
这里写图片描述
进入后,跟本地操作一样的
这里写图片描述
测试正常后,将CTRL+C停止


文件互传

很多时候,我们是在本地先写好jupyter notebook文件,只需要在云服务器上训练一下。因此,文件的传递是非常重要的功能。scp是采用ssh传递文件的一种方式,比较简单易行。
上传过程:

scp -r /home/bamboo/文件路径/文件名/ bamboo@47.93.*.*:/home/bamboo/
#scp -r表示传递文件内所有文件
#scp 直接传递单个文件

我提前把下载过程贴出来,正常是训练完成后,下载文件。
下载过程:

scp -r bamboo@47.93.*.*:/home/bamboo/文件路径/ /home/bamboo/文件路径/文件名/

非常好理解,都是从前向后传


训练神经网络

安装自己需要的tensorflow-gpu版本

conda install tensorflow-gpu=1.1

重新启动jupyter notebook

jupyter notebook

可以正常打开,并且找到自己的文件了。
这里写图片描述
查看一下gpu是否正常
这里写图片描述
运行程序,速度确实快了很多啊,大概算了一下,是我的笔记本cpu版的48倍,确实挺靠谱。
这里写图片描述
在后台,看了一下GPU版本
这里写图片描述

训练已经完成,tensorflow保存的参数复制下来:

scp -r bamboo@47.93.*.*:/home/bamboo/文件路径/ /home/bamboo/文件路径/文件名/

制作自定义镜像

自定义镜像费用比较低,大概是0.2元/G/月。相对于租赁服务器的费用很低了。

制作过程:选择实例》管理》实例详情》更多》创建自定义镜像
这里写图片描述

最重要的说明:自定义镜像创建完成后,一定要将实例释放掉。否则,阿里云会一直计费的。会一直计费的。会一直计费的。重要的事说三遍


利用自定义镜像创建实例

有了自定义镜像,你再次使用阿里云的服务器就变得简单了很多。不需要之前冗长的配置过程了。在购买的时候,选择同之前相同的配置。镜像选择自定义镜像。

这里写图片描述

这里写图片描述

登录进入了,发现之前的配置依然存在。

root@iZ2ze1289s0kuqzkxpxpazZ:/home/bamboo# ls
anaconda3  Anaconda3-5.0.1-Linux-x86_64.sh  tv-script-generation

用之前设置的普通用户登录:

bamboo@iZ2ze1289s0kuqzkxpxpazZ:~$ ls
anaconda3  Anaconda3-5.0.1-Linux-x86_64.sh  tv-script-generation
bamboo@iZ2ze1289s0kuqzkxpxpazZ:~$ conda --version#测试conda

输出正常:

conda 4.3.30

用scp上传下载文件,开始你的新的任务就可以了。

jupyter notebook#启动正常,按上述方式继续访问。

本文采用阿里云GPU计算服务器 + conda +tensorflow-gpu+ jupyter notebook 架构,实现远程训练神经网络的功能。很多研究深度学习和机器学习的博友,并不是很专业的运维人员,因此,在环境配置上花费大量时间是无意义的。因此,就诞生这篇博文,我也是个运维小白,也很多不完善的地方。大家多留言,我尽量完善该博文,作为一个参考资料。

bamboo书于西安

更新记录:
2017年11月23日 完成初稿,自定义镜像创建实例未完成
2017年11月26日 自定义镜像创建实例完成
git是个很有用的工具,计划把git在服务器端的配置也加上

参考:
conda官网教程

2018-04-25 00:00:00 eo63y6pKI42Ilxr 阅读数 1107
  • 阿里云机器学习算法应用实践

    人工智能的商业化应用是下一个风口,阿里云在机器学习算法方面有许多沉淀。本次分享首先是介绍阿里云机器学习PAI,接着会在上面搭建真实的案例,包括心脏病预测、新闻分类等场景。

    13771 人正在学习 去看看 CSDN讲师

云栖君导读:本文根据实测数据,初步探讨了在弹性GPU云服务器上深度学习的性能模型,可帮助科学选择GPU实例的规格。


一、背景


得益于GPU强大的计算能力,深度学习近年来在图像处理、语音识别、自然语言处理等领域取得了重大突GPU服务器几乎成了深度学习加速的标配。


阿里云GPU云服务器在公有云上提供的弹性GPU服务,可以帮助用户快速用上GPU加速服务,并大大简化部署和运维的复杂度。如何提供一个合适的实例规格,从而以最高的性价比提供给深度学习客户,是我们需要考虑的一个问题,本文试图从CPU、内存、磁盘这三个角度对单机GPU云服务器的深度学习训练和预测的性能模型做了初步的分析,希望能对实例规格的选择提供一个科学的设计模型。


下面是我们使用主流的几个开源深度学习框架在NVIDIA GPU上做的一些深度学习的测试。涉及NVCaffe、MXNet主流深度学习框架,测试了多个经典CNN网络在图像分类领域的训练和推理以及RNN网络在自然语言处理领域的训练。


二、训练测试


我们使用NVCaffe、MXNet主流深度学习框架测试了图像分类领域和自然语言处理领域的训练模型。


2.1 图像分类


我们使用NVCaffe、MXNet测试了图像分类领域的CNN网络的单GPU模型训练。

NVCaffe和MXNet测试使用ImageNet ILSVRC2012数据集,训练图片1281167张,包含1000个分类,每个分类包含1000张左右的图片。

2.1.1 CPU+Memory


2.1.1.1 NVCaffe


NVCaffe是NVIDIA基于BVLC-Caffe针对NVIDIA GPU尤其是多GPU加速的开源深度学习框架。LMDB格式的ImageNet训练集大小为240GB ,验证集大小为9.4GB。


我们使用NVcaffe对AlexNet、GoogLeNet、ResNet50、Vgg16四种经典卷积神经网络做了图像分类任务的模型训练测试。分别对比了不同vCPU和Memory配置下的训练性能。性能数据单位是Images/Second(每秒处理的图像张数)。图中标注为10000指的是迭代次数10000次,其它都是测试迭代次数为1000次。


640?wx_fmt=png640?wx_fmt=png640?wx_fmt=png640?wx_fmt=png


2.1.1.2 MXNet


MXNet的数据集使用RecordIO格式,ImageNet训练集 93GB ,验证集 3.7GB。


我们使用网络Inception-v3(GoogLeNet的升级版)做了图像分类的训练测试。分别对比了不同vCPU和Memory配置下的训练性能。数据单位是Samples/Second(每秒处理的图像张数)。


640?wx_fmt=png


2.1.2 磁盘IO

我们在阿里云GN5(P100)实例上使用NVCaffe测试了GoogLeNet网络模型在NVMe SSD本地盘、SSD云盘和高效云盘上的训练性能,测试结果如下(性能数据单位是Images/Second):


640?wx_fmt=png


2.2 自然语言处理


我们使用MXNet测试了RNN网络的LSTM模型的训练,使用PennTreeBank自然语言数据集。PennTreeBank数据集的文本语料库包含近100万个单词,单词表被限定在10000个单词。分别对比了不同vCPU和Memory配置下的训练性能:


640?wx_fmt=png


三、推理测试


3.1 图像分类


我们使用NVCaffe测试了图像分类领域的CNN网络的模型推理。


测试使用ImageNet ILSVRC2012数据集,验证测试图片 50000张。


3.1.1 CPU+Memory


我们使用NVcaffe对AlexNet、GoogLeNet、ResNet50、VGG16四种经典卷积神经网络做了图像分类的推理测试。分别对比了不同vCPU和Memory配置下的训练性能。数据单位是Images/Second(每秒处理的图像张数)。


640?wx_fmt=png


3.1.2 磁盘IO


我们使用NVCaffe测试了GoogLeNet网络在NVMe SSD本地盘、SSD云盘和高效云盘上的图像分类推理性能,测试结果如下(数据单位是Images/Second):


640?wx_fmt=png


四、数据预处理测试


在训练模型之前,往往要对训练数据集做数据预处理,统一数据格式,并做一定的归一化处理。


我们使用NVCaffe对ImageNet ILSVRC2012数据集做了数据预处理的测试,分别对比了NVMe SSD本地盘、SSD云盘和高效云盘的数据预处理时间,数据单位是秒,数据如下:


640?wx_fmt=png


五、数据分析


5.1 训练


5.1.1 图像分类
  

从NVCaffe和MXNet的测试结果来看,图像分类场景单纯的训练阶段对CPU要求不高,单GPU 只需要4vCPU就可以。而内存需求则取决于深度学习框架、神经网络类型和训练数据集的大小:测试中发现NVCaffe随着迭代次数的增多,内存是不断增大的,但是内存需求增大到一定程度,对性能就不会有什么提升了,其中NVCaffe AlexNet网络的训练,相比其它网络对于内存的消耗要大得多。相比之下MXNet的内存占用则要小的多(这也是MXNet的一大优势),93G预处理过的训练数据集训练过程中内存占用不到5G。
对于磁盘IO性能,测试显示训练阶段NVMe SSD本地盘、SSD云盘性能基本接近,高效云盘上的性能略差1%。因此训练阶段对IO性能的要求不高。


5.1.2 自然语言处理
  

从MXNet的测试结果来看,对于PennTreeBank这样规模的数据集,2vCPU 1GB Mem就能满足训练需求。由于自然语言处理的原始数据不像图像分类一样是大量高清图片,自然语言处理的原始数据以文本文件为主,因此自然语言处理对内存和显存的要求都不高,从我们的测试来看,4vCPU 30GB 1GPU规格基本满足训练阶段需求。


5.2 推理


5.2.1 图像分类
  

从NVCaffe的图像分类推理测试来看,除AlexNet 2vCPU刚刚够用外,其它网络2vCPU对性能没有影响,而9.4GB的验证数据集推理过程中内存占用大概是7GB左右,因此对大部分模型来看,2vCPU 30GB 1GPU规格基本满足图像分类推理的性能需求。
  

对于磁盘IO性能,推理性能NVMe SSD本地盘、SSD云盘很接近,但高效云盘差15%。因此推理阶段至少应该使用SSD云盘保证性能。

5.2.2 自然语言处理
  

对于自然语言处理,参考训练性能需求,我们应该可以推测2vCPU 30GB 1GPU规格应该也能满足需求。


5.3 数据预处理
  

从NVCaffe对ImageNet ILSVRC2012数据集做数据预处理的测试来看,数据预处理阶段是IO密集型,NVMe SSD本地盘比SSD云盘快25%,而SSD云盘比高效云盘快10%。


六、总结
  

深度学习框架众多,神经网络类型也是种类繁多,我们选取了主流的框架和神经网络类型,尝试对单机GPU云服务器的深度学习性能模型做了初步的分析,结论是:


  1. 深度学习训练阶段是GPU运算密集型,对于CPU占用不大,而内存的需求取决于深度学习框架、神经网络类型和训练数据集的大小;对磁盘IO性能不敏感,云盘基本能够满足需求。

  2. 深度学习推理阶段对于CPU的占用更小,但是对于磁盘IO性能相对较敏感,因为推理阶段对于延迟有一定的要求,更高的磁盘IO性能对于降低数据读取的延时进而降低整体延迟有很大的帮助。

  3. 深度学习数据预处理阶段是IO密集型阶段,更高的磁盘IO性能能够大大缩短数据预处理的时间。


end


阿里巴巴千亿交易背后的0故障发布

阿里巴巴6大行业报告免费分享啦!

七本书籍带你打下机器学习和数据科学的数学基础

Logtail 从入门到精通:开启日志采集之旅

更多精彩

640?wx_fmt=jpeg

没有更多推荐了,返回首页