2016-08-14 17:35:47 pipisorry 阅读数 18261
  • python数据分析与机器学习实战【2019新版】

    购买课程后,请扫码进入学习群,获取唐宇迪老师答疑 Python数据分析与机器学习实战教程,该课程精心挑选真实的数据集为案例,通过python数据科学库numpy,pandas,matplot结合机器学习库scikit-learn完成一些列的机器学习案例。课程以实战为基础,所有课时都结合代码演示如何使用这些python库来完成一个真实的数据案例。算法与项目相结合,选择经典kaggle项目,从数据预处理开始一步步代码实战带大家入门机器学习。学完该课程即可: 1.掌握Python数据科学工具包,包括矩阵数据处理与可视化展示。 2.掌握机器学习算法原理推导,从数学上理解算法是怎么来的以及其中涉及的细节。 3.掌握每一个算法所涉及的参数,详解其中每一步对结果的影响。 4.熟练使用Python进行建模实战,基于真实数据集展开分析,一步步完成整个建模实战任务。

    94005 人正在学习 去看看 唐宇迪

http://blog.csdn.net/pipisorry/article/details/52205266

python地理位置处理

python地理编码地址以及用来处理经纬度的库

GeoDjango – 世界级地理图形 web 框架。
GeoIP – MaxMind GeoIP Legacy 数据库的Python API。
geojson – GeoJSON 的 Python 绑定及工具。
geopy – Python 地址编码工具箱。
pygeoip – 纯 Python GeoIP API。
django-countries – 一个 Django应用程序,提供用于表格的国家选择功能,国旗图标静态文件以及模型中的国家字段。

其它:

shapely,是geos的python封装,而geos是jts的c++移植版本。

python地理数据处理相关代码

[Python计算地图上两点经纬度间的距离]

皮皮blog



Python 地址编码工具箱geopy

geopy is a Python 2 and 3 client for several popular geocoding web services.
geopy makes it easy for Python developers to locate the coordinates of addresses, cities, countries, and landmarks across the globe using third-party geocoders and other data sources.
geopy includes geocoder classes for the OpenStreetMap Nominatim, ESRI ArcGIS, Google Geocoding API (V3), Baidu Maps, Bing Maps API, Mapzen Search, Yandex, IGN France, GeoNames, NaviData, OpenMapQuest, What3Words, OpenCage, SmartyStreets, geocoder.us, and GeocodeFarm geocoder services. The various geocoder classes are located in geopy.geocoders.

安装

pip install geopy

基本使用

Note: 函数参数都是纬度latitude在前,经度longitude在后

查询地名转换为具体地址和经纬度Geocoding

To geolocate a query to an address and coordinates:
>>> from geopy.geocoders import Nominatim
>>> geolocator = Nominatim()
>>> location = geolocator.geocode("175 5th Avenue NYC")
>>> print(location.address)
Flatiron Building, 175, 5th Avenue, Flatiron, New York, NYC, New York, ...
>>> print((location.latitude, location.longitude))
(40.7410861, -73.9896297241625)
>>> print(location.raw)
{'place_id': '9167009604', 'type': 'attraction', ...}
To find the address corresponding to a set of coordinates:

>>> from geopy.geocoders import Nominatim
>>> geolocator = Nominatim()
>>> location = geolocator.reverse("52.509669, 13.376294")
>>> print(location.address)
Potsdamer Platz, Mitte, Berlin, 10117, Deutschland, European Union
>>> print((location.latitude, location.longitude))
(52.5094982, 13.3765983)
>>> print(location.raw)
{'place_id': '654513', 'osm_type': 'node', ...}

计算两地距离Measuring Distance

通过经纬度计算两地距离的两种方法。Geopy can calculate geodesic distance between two points using the Vincenty distance or great-circle distance formulas, with a default of Vincenty available as the class geopy.distance.distance, and the computed distance available as attributes (e.g., miles, meters,kilometers,etc.).

输入数据类型可以是tuple, list, array...,元素类型可以是float, str...

Vincenty distance

>>> from geopy.distance import vincenty
>>> newport_ri = (41.49008, -71.312796)
>>> cleveland_oh = (41.499498, -81.695391)
>>> print(vincenty(newport_ri, cleveland_oh).miles)
538.3904451566326

Vincenty distance (vincenty) uses a more accurate ellipsoidal modelof the earth. This is the default distance formula, and is thus aliased asdistance.distance. There are multiple popular ellipsoidal models, andwhich one will be the most accurate depends on where your points are locatedon the earth. The default is the WGS-84 ellipsoid, which is the most globallyaccurate. geopy includes a few othermodels in the distance.ELLIPSOIDS dictionary:

              model             major (km)   minor (km)     flattening
ELLIPSOIDS = {'WGS-84':        (6378.137,    6356.7523142,  1 / 298.257223563),
              'GRS-80':        (6378.137,    6356.7523141,  1 / 298.257222101),
              'Airy (1830)':   (6377.563396, 6356.256909,   1 / 299.3249646),
              'Intl 1924':     (6378.388,    6356.911946,   1 / 297.0),
              'Clarke (1880)': (6378.249145, 6356.51486955, 1 / 293.465),
              'GRS-67':        (6378.1600,   6356.774719,   1 / 298.25),
              }

You can change the ellipsoid model used by the Vincenty formula like so:

>>> distance.vincenty(ne, cl, ellipsoid='GRS-80').miles

The above model name will automatically be retrieved from theELLIPSOIDS dictionary. Alternatively, you can specify the model valuesdirectly:

>>> distance.vincenty(ne, cl, ellipsoid=(6377., 6356., 1 / 297.)).miles

[class geopy.distance.vincenty(*args, **kwargs)]

[https://en.wikipedia.org/wiki/Vincenty’s_formulae]

great-circle distance

>>> from geopy.distance import great_circle
>>> newport_ri = (41.49008, -71.312796)
>>> cleveland_oh = (41.499498, -81.695391)
>>> print(great_circle(newport_ri, cleveland_oh).miles)
537.1485284062816

[class geopy.distance.great_circle(*args, **kwargs)]

[https://en.wikipedia.org/wiki/Great-circle_distance]

两种经纬度距离度量方法的区别

Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a) They are based on the assumption that the figure of the Earth is an oblate spheroid(扁球形体), and hence are more accurate than methods such as great-circle distance which assume a spherical(球状的) Earth.

[What's the difference between vincenty and great circle distance calculations?]

计算出错

TypeError: __new__() takes from 1 to 4 positional arguments but 5 were given

可能是某个坐标的维度不对,如[[ ]]二维就不对,应该是[]或者()。

ValueError: Vincenty formula failed to converge!

vincenty算法可以不收敛,可能是因为中间有一些三角函数的计算是通过迭代计算出来的,超过最大迭代次数就当作不收敛了。the basic iterative technique for the inverse method is just Vincenty (regular + his antipodal method); so it may fail to converge in some cases.

Examples where the solution of the inverse problem fails to converge:

lat1 lon1  lat2 lon2
     0.7   0   -0.3 179.7
     2.2   0   -1.8 179.6
     2.3   0   -2.0 179.6

[Talk:Geodesics on an ellipsoid]

def c():
    from geopy import distance
    xs = [[0.7, 0], [2.2, 0], [2.3, 0], [12, 45]]
    ys = [[-0.3, 179.7], [-1.8, 179.6], [-2.0, 179.6], [25, 65]]
    for x, y in zip(xs, ys):
        try:
            d = distance.vincenty(x, y)
            print(d)
        except:
            print('error')

[Python - Vincenty's inverse formula not converging (Finding distance between points on Earth)]

设置很大的迭代次数也不会收敛:

d = distance.vincenty(x, y, iterations = 1000000)

解决:
It may be preferable to use  :class:`.great_circle`, which is marginally less accurate, but always produces a result.

[https://github.com/geopy/geopy/pull/144/files]

[geopy documents]

[geopy/geopy]

from: http://blog.csdn.net/pipisorry/article/details/52205266

ref: 


2018-11-15 15:16:01 OYY_90 阅读数 420
  • python数据分析与机器学习实战【2019新版】

    购买课程后,请扫码进入学习群,获取唐宇迪老师答疑 Python数据分析与机器学习实战教程,该课程精心挑选真实的数据集为案例,通过python数据科学库numpy,pandas,matplot结合机器学习库scikit-learn完成一些列的机器学习案例。课程以实战为基础,所有课时都结合代码演示如何使用这些python库来完成一个真实的数据案例。算法与项目相结合,选择经典kaggle项目,从数据预处理开始一步步代码实战带大家入门机器学习。学完该课程即可: 1.掌握Python数据科学工具包,包括矩阵数据处理与可视化展示。 2.掌握机器学习算法原理推导,从数学上理解算法是怎么来的以及其中涉及的细节。 3.掌握每一个算法所涉及的参数,详解其中每一步对结果的影响。 4.熟练使用Python进行建模实战,基于真实数据集展开分析,一步步完成整个建模实战任务。

    94005 人正在学习 去看看 唐宇迪
2019-03-15 20:59:29 weixin_43649691 阅读数 124
  • python数据分析与机器学习实战【2019新版】

    购买课程后,请扫码进入学习群,获取唐宇迪老师答疑 Python数据分析与机器学习实战教程,该课程精心挑选真实的数据集为案例,通过python数据科学库numpy,pandas,matplot结合机器学习库scikit-learn完成一些列的机器学习案例。课程以实战为基础,所有课时都结合代码演示如何使用这些python库来完成一个真实的数据案例。算法与项目相结合,选择经典kaggle项目,从数据预处理开始一步步代码实战带大家入门机器学习。学完该课程即可: 1.掌握Python数据科学工具包,包括矩阵数据处理与可视化展示。 2.掌握机器学习算法原理推导,从数学上理解算法是怎么来的以及其中涉及的细节。 3.掌握每一个算法所涉及的参数,详解其中每一步对结果的影响。 4.熟练使用Python进行建模实战,基于真实数据集展开分析,一步步完成整个建模实战任务。

    94005 人正在学习 去看看 唐宇迪

入门介绍

pandas适合于许多不同类型的数据,包括:

· 具有异构类型列的表格数据,例如SQL表格或Excel数据

· 有序和无序(不一定是固定频率)时间序列数据。

· 具有行列标签的任意矩阵数据(均匀类型或不同类型)

· 任何其他形式的观测/统计数据集。

由于这是一个Python语言的软件包,因此需要你的机器上首先需要具备Python语言的环境。关于这一点,请自行在网络上搜索获取方法。

关于如何获取pandas请参阅官网上的说明:pandas Installation

通常情况下,我们可以通过pip来执行安装:


sudo pip3 install pandas

或者通过conda 来安装pandas:


conda install pandas

目前(2018年2月)pandas的最新版本是v0.22.0(发布时间:2017年12月29日)。

我已经将本文的源码和测试数据放到Github上: pandas_tutorial ,读者可以前往获取。

另外,pandas常常和NumPy一起使用,本文中的源码中也会用到NumPy

建议读者先对NumPy有一定的熟悉再来学习pandas,我之前也写过一个NumPy的基础教程,参见这里:Python 机器学习库 NumPy 教程

核心数据结构

pandas最核心的就是Series和DataFrame两个数据结构。

这两种类型的数据结构对比如下:

名称 维度 说明
Series 1维 带有标签的同构类型数组
DataFrame 2维 表格结构,带有标签,大小可变,且可以包含异构的数据列

DataFrame可以看做是Series的容器,即:一个DataFrame中可以包含若干个Series。

注:在0.20.0版本之前,还有一个三维的数据结构,名称为Panel。这也是pandas库取名的原因:pan(el)-da(ta)-s。但这种数据结构由于很少被使用到,因此已经被废弃了。

Series

由于Series是一维结构的数据,我们可以直接通过数组来创建这种数据,像这样:


# data_structure.py

import pandas **as** pd

import numpy **as** np

series1= pd.Series([1, 2, 3, 4])

print("series1:\n{}\n".format(series1))

这段代码输出如下:


series1:

0    1

1    2

2    3

3    4

dtype: int64

这段输出说明如下:

· 输出的最后一行是Series中数据的类型,这里的数据都是int64类型的。

· 数据在第二列输出,第一列是数据的索引,在pandas中称之为Index。

我们可以分别打印出Series中的数据和索引:


# data_structure.py

print("series1.values: {}\n".format(series1.values))

print("series1.index: {}\n".format(series1.index))

这两行代码输出如下:


series1.values: [1 2 3 4]

series1.index: RangeIndex(start=0, stop=4, step=1)

如果不指定(像上面这样),索引是[1, N-1]的形式。不过我们也可以在创建Series的时候指定索引。索引未必一定需要是整数,可以是任何类型的数据,例如字符串。例如我们以七个字母来映射七个音符。索引的目的是可以通过它来获取对应的数据,例如下面这样:

# data_structure.py

series2= pd.Series([1, 2, 3, 4, 5, 6, 7],

    index=["C", "D", "E", "F", "G", "A", "B"])

print("series2:\n{}\n".format(series2))

print("E is {}\n".format(series2["E"]))

这段代码输出如下:


series2:

C    1

D    2

E    3

F    4

G    5

A    6

B    7

dtype: int64

E **is** 3

DataFrame

下面我们来看一下DataFrame的创建。我们可以通过NumPy的接口来创建一个4×4的矩阵,以此来创建一个DataFrame,像这样:

# data_structure.py

df1= pd.DataFrame(np.arange(16).reshape(4,4))

print("df1:\n{}\n".format(df1))

这段代码输出如下:


df1:

    0 1 2 3

0 0 1 2 3

1 4 5 6 7

2 8 9  10  11

3  12  13  14  15

从这个输出我们可以看到,默认的索引和列名都是[0, N-1]的形式。

我们可以在创建DataFrame的时候指定列名和索引,像这样:


# data_structure.py

df2= pd.DataFrame(np.arange(16).reshape(4,4),

    columns=["column1", "column2", "column3", "column4"],

    index=["a", "b", "c", "d"])

print("df2:\n{}\n".format(df2))

这段代码输出如下:


df2:

 column1  column2  column3  column4

a        0        1        2        3

b        4        5        6        7

c        8        9 10 11

d 12 13 14 15

我们也可以直接指定列数据来创建DataFrame:


# data_structure.py

df3= pd.DataFrame({"note": ["C", "D", "E", "F", "G", "A", "B"],

    "weekday": ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]})

print("df3:\n{}\n".format(df3))

这段代码输出如下:


df3:

  note weekday

0    C Mon

1    D Tue

2    E Wed

3    F Thu

4    G Fri

5    A Sat

6    B Sun

请注意:

· DataFrame的不同列可以是不同的数据类型

· 如果以Series数组来创建DataFrame,每个Series将成为一行,而不是一列

例如:


# data_structure.py

noteSeries= pd.Series(["C", "D", "E", "F", "G", "A", "B"],

    index=[1, 2, 3, 4, 5, 6, 7])

weekdaySeries= pd.Series(["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"],

    index=[1, 2, 3, 4, 5, 6, 7])

df4= pd.DataFrame([noteSeries, weekdaySeries])

print("df4:\n{}\n".format(df4))

df4的输出如下:

df4:

 1    2    3    4    5    6    7

0    C    D    E    F    G    A    B

1  Mon  Tue  Wed  Thu  Fri  Sat  Sun

我们可以通过下面的形式给DataFrame添加或者删除列数据:


# data_structure.py

df3["No."]= pd.Series([1, 2, 3, 4, 5, 6, 7])

print("df3:\n{}\n".format(df3))

del df3["weekday"]

print("df3:\n{}\n".format(df3))

这段代码输出如下:


df3:

  note weekday  No.

0    C Mon    1

1    D Tue    2

2    E Wed    3

3    F Thu    4

4    G Fri    5

5    A Sat    6

6    B Sun    7

df3:

  note  No.

0    C    1

1    D    2

2    E    3

3    F    4

4    G    5

5    A    6

6    B    7

Index对象与数据访问

pandas的Index对象包含了描述轴的元数据信息。当创建Series或者DataFrame的时候,标签的数组或者序列会被转换成Index。可以通过下面的方式获取到DataFrame的列和行的Index对象:


# data_structure.py

print("df3.columns\n{}\n".format(df3.columns))

print("df3.index\n{}\n".format(df3.index))

这两行代码输出如下:


df3.columns

Index(['note', 'No.'], dtype='object')

df3.index

RangeIndex(start=0, stop=7, step=1)

请注意:

· Index并非集合,因此其中可以包含重复的数据

· Index对象的值是不可以改变,因此可以通过它安全的访问数据

DataFrame提供了下面两个操作符来访问其中的数据:

· loc:通过行和列的索引来访问数据

· iloc:通过行和列的下标来访问数据

例如这样:


# data_structure.py

print("Note C, D is:\n{}\n".format(df3.loc[[0, 1], "note"]))

print("Note C, D is:\n{}\n".format(df3.iloc[[0, 1], 0]))

第一行代码访问了行索引为0和1,列索引为“note”的元素。第二行代码访问了行下标为0和1(对于df3来说,行索引和行下标刚好是一样的,所以这里都是0和1,但它们却是不同的含义),列下标为0的元素。

这两行代码输出如下:


Note C, D **is**:

0    C

1    D

Name: note, dtype: **object**

Note C, D **is**:

0    C

1    D

Name: note, dtype: **object**

文件操作

pandas库提供了一系列的read_函数来读取各种格式的文件,它们如下所示:

  • read_csv

  • read_table

  • read_fwf

  • read_clipboard

  • read_excel

  • read_hdf

  • read_html

  • read_json

  • read_msgpack

  • read_pickle

  • read_sas

  • read_sql

  • read_stata

  • read_feather

读取Excel文件

注:要读取Excel文件,还需要安装另外一个库:xlrd

通过pip可以这样完成安装:


sudo pip3 install xlrd

安装完之后可以通过pip查看这个库的信息:


$  pip3 show xlrd

Name: xlrd

Version: 1.1.0

Summary: Library **for** developers **to** extract data from Microsoft Excel (tm) spreadsheet files

Home-page: http:*//www.python-excel.org/*

Author: John Machin

Author-email: sjmachin@lexicon.net

License: BSD

Location: /Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages

Requires:

接下来我们看一个读取Excel的简单的例子:


# file_operation.py

import pandas **as** pd

import numpy **as** np

df1= pd.read_excel("data/test.xlsx")

print("df1:\n{}\n".format(df1))

这个Excel的内容如下:


df1:

 C  Mon

0  D  Tue

1  E  Wed

2  F  Thu

3  G  Fri

4  A  Sat

5  B  Sun

注:本文的代码和数据文件可以通过文章开头提到的Github仓库获取。

读取CSV文件

下面,我们再来看读取CSV文件的例子。

第一个CSV文件内容如下:


$ cat test1.csv 

C,Mon

D,Tue

E,Wed

F,Thu

G,Fri

A,Sat

读取的方式也很简单:

# file_operation.py

df2= pd.read_csv("data/test1.csv")

print("df2:\n{}\n".format(df2))

我们再来看第2个例子,这个文件的内容如下:


$ cat test2.csv 

C|Mon

D|Tue

E|Wed

F|Thu

G|Fri

A|Sat

严格的来说,这并不是一个CSV文件了,因为它的数据并不是通过逗号分隔的。在这种情况下,我们可以通过指定分隔符的方式来读取这个文件,像这样:


# file_operation.py

df3= pd.read_csv("data/test2.csv", sep="|")

print("df3:\n{}\n".format(df3))

实际上,read_csv支持非常多的参数用来调整读取的参数,如下表所示:

参数 说明
path 文件路径
sep或者delimiterFrame 字段分隔符
header 列名的行数,默认是0(第一行)
index_col 列号或名称用作结果中的行索引
names 结果的列名称列表
skiprows 从起始位置跳过的行数
na_values 代替NA的值序列
comment 以行结尾分隔注释的字符
parse_dates 尝试将数据解析为datetime。默认为False
keep_date_col 如果将列连接到解析日期,保留连接的列。默认为False。
converters 列的转换器
dayfirst 当解析可以造成歧义的日期时,以内部形式存储。默认为False
data_parser 用来解析日期的函数
nrows 从文件开始读取的行数
参数 说明
iterator 返回一个TextParser对象,用于读取部分内容
chunksize 指定读取块的大小
skip_footer 文件末尾需要忽略的行数
verbose 输出各种解析输出的信息
encoding 文件编码
skip_footer 文件编码
squeeze 如果解析的数据只包含一列,则返回一个Series
thousands 千数量的分隔符

详细的read_csv函数说明请参见这里:pandas.read_csv

#处理无效值

现实世界并非完美,我们读取到的数据常常会带有一些无效值。如果没有处理好这些无效值,将对程序造成很大的干扰。
对待无效值,主要有两种处理方法:直接忽略这些无效值;或者将无效值替换成有效值。
下面我先创建一个包含无效值的数据结构。然后通过pandas.isna函数来确认哪些值是无效的:

	# process_na.py
 
import pandas as pd
import numpy as np
 
df = pd.DataFrame([[1.0, np.nan, 3.0, 4.0],
                  [5.0, np.nan, np.nan, 8.0],
                  [9.0, np.nan, np.nan, 12.0],
                  [13.0, np.nan, 15.0, 16.0]])
 
print("df:\n{}\n".format(df));
print("df:\n{}\n".format(pd.isna(df)));****

这段代码输出如下:

	df:
      0   1     2     3
0   1.0 NaN   3.0   4.0
1   5.0 NaN   NaN   8.0
2   9.0 NaN   NaN  12.0
3  13.0 NaN  15.0  16.0
 
df:
       0     1      2      3
0  False  True  False  False
1  False  True   True  False
2  False  True   True  False
3  False  True  False  False

忽略无效值
我们可以通过pandas.DataFrame.dropna函数抛弃无效值:

	# process_na.py
 
print("df.dropna():\n{}\n".format(df.dropna()));

注:dropna默认不会改变原先的数据结构,而是返回了一个新的数据结构。如果想要直接更改数据本身,可以在调用这个函数的时候传递参数 inplace = True。
对于原先的结构,当无效值全部被抛弃之后,将不再是一个有效的DataFrame,因此这行代码输出如下:

	df.dropna():
Empty DataFrame
Columns: [0, 1, 2, 3]
Index: []

我们也可以选择抛弃整列都是无效值的那一列:

	# process_na.py
 
print("df.dropna(axis=1, how='all'):\n{}\n".format(df.dropna(axis=1, how='all')));

注:axis=1表示列的轴。how可以取值’any’或者’all’,默认是前者。
这行代码输出如下:

	df.dropna(axis=1, how='all'):
      0     2     3
0   1.0   3.0   4.0
1   5.0   NaN   8.0
2   9.0   NaN  12.0
3  13.0  15.0  16.0

替换无效值
我们也可以通过fillna函数将无效值替换成为有效值。像这样:

	# process_na.py
 
print("df.fillna(1):\n{}\n".format(df.fillna(1)));

这段代码输出如下:

	df.fillna(1):
      0    1     2     3
0   1.0  1.0   3.0   4.0
1   5.0  1.0   1.0   8.0
2   9.0  1.0   1.0  12.0
3  13.0  1.0  15.0  16.0

将无效值全部替换成同样的数据可能意义不大,因此我们可以指定不同的数据来进行填充。为了便于操作,在填充之前,我们可以先通过rename方法修改行和列的名称:

	# process_na.py
 
df.rename(index={0: 'index1', 1: 'index2', 2: 'index3', 3: 'index4'},
          columns={0: 'col1', 1: 'col2', 2: 'col3', 3: 'col4'},
          inplace=True);
df.fillna(value={'col2': 2}, inplace=True)
df.fillna(value={'col3': 7}, inplace=True)
print("df:\n{}\n".format(df));

这段代码输出如下:

	df:
        col1  col2  col3  col4
index1   1.0   2.0   3.0   4.0
index2   5.0   2.0   7.0   8.0
index3   9.0   2.0   7.0  12.0
index4  13.0   2.0  15.0  16.0

处理字符串
数据中常常牵涉到字符串的处理,接下来我们就看看pandas对于字符串操作。
Series的str字段包含了一系列的函数用来处理字符串。并且,这些函数会自动处理无效值。
下面是一些实例,在第一组数据中,我们故意设置了一些包含空格字符串:

	# process_string.py
 
import pandas as pd
 
s1 = pd.Series([' 1', '2 ', ' 3 ', '4', '5']);
print("s1.str.rstrip():\n{}\n".format(s1.str.lstrip()))
print("s1.str.strip():\n{}\n".format(s1.str.strip()))
print("s1.str.isdigit():\n{}\n".format(s1.str.isdigit()))

在这个实例中我们看到了对于字符串strip的处理以及判断字符串本身是否是数字,这段代码输出如下:

	s1.str.rstrip():
0     1
1    2 
2    3 
3     4
4     5
dtype: object
 
s1.str.strip():
0    1
1    2
2    3
3    4
4    5
dtype: object
 
s1.str.isdigit():
0    False
1    False
2    False
3     True
4     True
dtype: bool

下面是另外一些示例,展示了对于字符串大写,小写以及字符串长度的处理:

# process_string.py
 
s2 = pd.Series(['Stairway to Heaven', 'Eruption', 'Freebird',
                    'Comfortably Numb', 'All Along the Watchtower'])
print("s2.str.lower():\n{}\n".format(s2.str.lower()))
print("s2.str.upper():\n{}\n".format(s2.str.upper()))
print("s2.str.len():\n{}\n".format(s2.str.len()))

该段代码输出如下:

	s2.str.lower():
0          stairway to heaven
1                    eruption
2                    freebird
3            comfortably numb
4    all along the watchtower
dtype: object
 
s2.str.upper():
0          STAIRWAY TO HEAVEN
1                    ERUPTION
2                    FREEBIRD
3            COMFORTABLY NUMB
4    ALL ALONG THE WATCHTOWER
dtype: object
 
s2.str.len():
0    18
1     8
2     8
3    16
4    24
dtype: int64

#结束语

本文是pandas的入门教程,因此我们只介绍了最基本的操作。对于
MultiIndex/Advanced Indexing
Merge, join, concatenate
Computational tools
之类的高级功能,以后有机会我们再来一起学习。
读者也可以根据下面的链接获取更多的知识。

更多Python技术文章请关注2019年,Python技术持续更新(附教程)

2018-06-27 16:58:20 zhangyun75 阅读数 2050
  • python数据分析与机器学习实战【2019新版】

    购买课程后,请扫码进入学习群,获取唐宇迪老师答疑 Python数据分析与机器学习实战教程,该课程精心挑选真实的数据集为案例,通过python数据科学库numpy,pandas,matplot结合机器学习库scikit-learn完成一些列的机器学习案例。课程以实战为基础,所有课时都结合代码演示如何使用这些python库来完成一个真实的数据案例。算法与项目相结合,选择经典kaggle项目,从数据预处理开始一步步代码实战带大家入门机器学习。学完该课程即可: 1.掌握Python数据科学工具包,包括矩阵数据处理与可视化展示。 2.掌握机器学习算法原理推导,从数学上理解算法是怎么来的以及其中涉及的细节。 3.掌握每一个算法所涉及的参数,详解其中每一步对结果的影响。 4.熟练使用Python进行建模实战,基于真实数据集展开分析,一步步完成整个建模实战任务。

    94005 人正在学习 去看看 唐宇迪

Beautiful Soup

http://beautifulsoup.readthedocs.io/zh_CN/latest/

Beautiful Soup 是一个可以从HTML或XML文件中提取数据的Python库.它能够通过你喜欢的转换器实现惯用的文档导航,查找,修改文档的方式.

requests
http://docs.python-requests.org/zh_CN/latest/index.html
Requests 唯一的一个非转基因的 Python HTTP 库,人类可以安全享用。


2019-09-05 15:29:25 weixin_41278904 阅读数 216
  • python数据分析与机器学习实战【2019新版】

    购买课程后,请扫码进入学习群,获取唐宇迪老师答疑 Python数据分析与机器学习实战教程,该课程精心挑选真实的数据集为案例,通过python数据科学库numpy,pandas,matplot结合机器学习库scikit-learn完成一些列的机器学习案例。课程以实战为基础,所有课时都结合代码演示如何使用这些python库来完成一个真实的数据案例。算法与项目相结合,选择经典kaggle项目,从数据预处理开始一步步代码实战带大家入门机器学习。学完该课程即可: 1.掌握Python数据科学工具包,包括矩阵数据处理与可视化展示。 2.掌握机器学习算法原理推导,从数学上理解算法是怎么来的以及其中涉及的细节。 3.掌握每一个算法所涉及的参数,详解其中每一步对结果的影响。 4.熟练使用Python进行建模实战,基于真实数据集展开分析,一步步完成整个建模实战任务。

    94005 人正在学习 去看看 唐宇迪

解决以下问题:

  1. Python连接Oracle数据库,并查询、提取Oracle数据库中数据?
  2. 通过Python在Oracle数据库中创建表
  3. Python数据插入到Oracle数据库中?
  4. Python删除Oracle数据库中数据?

一、 Python连接Oracle数据库,并查询、提取Oracle数据库中数据?

url='jdbc:oracle:thin:@ip:端口:实例名'
user='username'
password='password'
dirver='oracle.jdbc.driver.OracleDriver'
jarFile='/opt/ojdbc6.jar'
sqlstr = '''select * from tablename'''
conn=jaydebeapi.connect(dirver,url,[user,password],jarFile)
df = pd.read_sql_query(sqlstr,conn)
conn.close()

二、 通过Python在Oracle数据库中创建表

url='jdbc:oracle:thin:@ip:端口:实例名'
user='username'
password='password'
dirver='oracle.jdbc.driver.OracleDriver'
jarFile='/opt/ojdbc6.jar'
conn=jaydebeapi.connect(dirver,url,[user,password],jarFile)
curs1=conn.cursor()
sqlStr1 = '''create table table tablename(
name varchar(10) ,
city varchar(10)
)'''
curs1.execute(sqlStr1)
curs1.close()
conn.close()

tablename——表名
name,city——列名

三、 Python数据插入到Oracle数据库中

df1 = pd.DataFrame(data = {name:[Lily,Jenny],city:[KunMing,ShangHai])
#把df1中数据插入到表tablename中
url='jdbc:oracle:thin:@ip:端口:实例名'
user='username'
password='password'
dirver='oracle.jdbc.driver.OracleDriver'
jarFile='/opt/ojdbc6.jar'
conn=jaydebeapi.connect(dirver,url,[user,password],jarFile)
curs1 = conn.cursor()
for i in range(len(df1)):
	sqlStr1 = '''insert into tablename values ('%s','%s'')'''%(df1.iloc[i][0],df1.iloc[i][1])
curs1.execute(sqlStr1)
curs1.close()
conn.close()

四、 Python删除Oracle数据库中数据

url='jdbc:oracle:thin:@ip:端口:实例名'
user='username'
password='password'
dirver='oracle.jdbc.driver.OracleDriver'
jarFile='/opt/ojdbc6.jar'
conn=jaydebeapi.connect(dirver,url,[user,password],jarFile)
curs1 = conn.cursor()
sqlStr1 = '''TRUNCATE table tablename'''
curs1.execute(sqlStr1)
curs1.close()
conn.close()
没有更多推荐了,返回首页