view_viewpager - CSDN
精华内容
参与话题
  • View是什么,什么是View?

    千次阅读 2016-04-08 23:43:02
    详说View的基础知识之前,我们首先要知道到底什么是ViewView是Android中所有控件的基类,不管是简单的Button和TextView还是复杂的RelativeLayout和ListView,它们的共同基类都是View。 所以说,View是一种界面层...

    详说View的基础知识之前,我们首先要知道到底什么是View。

    View是Android中所有控件的基类,不管是简单的Button和TextView还是复杂的RelativeLayout和ListView,它们的共同基类都是View。

    所以说,View是一种界面层的控件的一种抽象,它代表了一个控件.。

    除了View,还有ViewGroup,从名字来看,它可以被翻译为控件组,言外之意是ViewGroup内部包含了许多个控件,即一组View。在Android的设计中,ViewGroup也继承了View,这就意味着View本身就可以是单个控件也可以是由多个控件组成的一组控件,通过这种关系就形成了View树的结构,这和Web前端中的DOM树的概念是相似的。

    根据这个概念,我们知道,Button显然是个View,而LinearLayout不但是一个View而且还是一个ViewGroup,而ViewGroup内部是可以有子View的,这个子View同样还可以是ViewGroup,依此类推。明白View的这种层级关系有助于理解View 的工作机制

    如下图示:

       可以看到自定义的TestPager是一个View,它继承了TextView,而TextView则直接继承了View,不管怎么说,TestPager都是一个View,同理我们也可以构造出一个继承自ViewGroup的控件。

                                     TestPager的层次结构

    展开全文
  • x.view(x.size(0), -1)的解释

    万次阅读 多人点赞 2018-08-04 21:11:53
    pytorch教程中,用cnn实现mnist的分类。其中class中有一段代码: def forward(self, x): x = self.conv1(x) x = self.conv2(x) # t = x.size(0) 0->... x = x.view(x.size(0), -1) ...

    pytorch教程中,用cnn实现mnist的分类。其中class中有一段代码:

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        # t = x.size(0)  0->50,1->32,2->7,3->7
        x = x.view(x.size(0), -1)           # flatten the output of conv2 to (batch_size, 32 * 7 * 7)
        output = self.out(x)
        return output, x    # return x for visualization
    

    x.view(x.size(0), -1)这句话是说将第二次卷积的输出拉伸为一行,这句代码中的上一句中x的执行结果为:50*32*7*7个数

    其中,50代表的是批次训练是选取的批量数BATCH_SIZE,每次选择50个数进行训练。32代表的是out_channels,7*7代表的是每张图像处理之后的尺度。由于stride=1,所以28*28的图像第一次卷积之后大小为14*14,大二次卷积之后大小为7*7.

    这样,将每个批次中的每一个输入都拉成一个维度,这样50个输入就有50*(32*7*7)的输出即50*1568,这样就实现了将784个点扩展为了1568个点,经过全链接再将这1568个点映射成为10个类别。就实现了数字的分类。

     

    展开全文
  • 有不少朋友跟我反应,都希望我可以写一篇关于View的文章,讲一讲View的工作原理以及自定义View的方法。没错,承诺过的文章我是一定要兑现的,而且在View这个话题上我还准备多写几篇,尽量能将这个知识点讲得透彻一些...

    转载请注明出处:http://blog.csdn.net/guolin_blog/article/details/12921889


    有段时间没写博客了,感觉都有些生疏了呢。最近繁忙的工作终于告一段落,又有时间写文章了,接下来还会继续坚持每一周篇的节奏。


    有不少朋友跟我反应,都希望我可以写一篇关于View的文章,讲一讲View的工作原理以及自定义View的方法。没错,承诺过的文章我是一定要兑现的,而且在View这个话题上我还准备多写几篇,尽量能将这个知识点讲得透彻一些。那么今天就从LayoutInflater开始讲起吧。


    相信接触Android久一点的朋友对于LayoutInflater一定不会陌生,都会知道它主要是用于加载布局的。而刚接触Android的朋友可能对LayoutInflater不怎么熟悉,因为加载布局的任务通常都是在Activity中调用setContentView()方法来完成的。其实setContentView()方法的内部也是使用LayoutInflater来加载布局的,只不过这部分源码是internal的,不太容易查看到。那么今天我们就来把LayoutInflater的工作流程仔细地剖析一遍,也许还能解决掉某些困扰你心头多年的疑惑。


    先来看一下LayoutInflater的基本用法吧,它的用法非常简单,首先需要获取到LayoutInflater的实例,有两种方法可以获取到,第一种写法如下:

    LayoutInflater layoutInflater = LayoutInflater.from(context);
    当然,还有另外一种写法也可以完成同样的效果:
    LayoutInflater layoutInflater = (LayoutInflater) context
    		.getSystemService(Context.LAYOUT_INFLATER_SERVICE);
    其实第一种就是第二种的简单写法,只是Android给我们做了一下封装而已。得到了LayoutInflater的实例之后就可以调用它的inflate()方法来加载布局了,如下所示:
    layoutInflater.inflate(resourceId, root);

    inflate()方法一般接收两个参数,第一个参数就是要加载的布局id,第二个参数是指给该布局的外部再嵌套一层父布局,如果不需要就直接传null。这样就成功成功创建了一个布局的实例,之后再将它添加到指定的位置就可以显示出来了。


    下面我们就通过一个非常简单的小例子,来更加直观地看一下LayoutInflater的用法。比如说当前有一个项目,其中MainActivity对应的布局文件叫做activity_main.xml,代码如下所示:

    <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
        android:id="@+id/main_layout"
        android:layout_width="match_parent"
        android:layout_height="match_parent" >
    
    </LinearLayout>
    这个布局文件的内容非常简单,只有一个空的LinearLayout,里面什么控件都没有,因此界面上应该不会显示任何东西。


    那么接下来我们再定义一个布局文件,给它取名为button_layout.xml,代码如下所示:

    <Button xmlns:android="http://schemas.android.com/apk/res/android"
        android:layout_width="wrap_content"
        android:layout_height="wrap_content"
        android:text="Button" >
    
    </Button>
    这个布局文件也非常简单,只有一个Button按钮而已。现在我们要想办法,如何通过LayoutInflater来将button_layout这个布局添加到主布局文件的LinearLayout中。根据刚刚介绍的用法,修改MainActivity中的代码,如下所示:
    public class MainActivity extends Activity {
    
    	private LinearLayout mainLayout;
    
    	@Override
    	protected void onCreate(Bundle savedInstanceState) {
    		super.onCreate(savedInstanceState);
    		setContentView(R.layout.activity_main);
    		mainLayout = (LinearLayout) findViewById(R.id.main_layout);
    		LayoutInflater layoutInflater = LayoutInflater.from(this);
    		View buttonLayout = layoutInflater.inflate(R.layout.button_layout, null);
    		mainLayout.addView(buttonLayout);
    	}
    
    }

    可以看到,这里先是获取到了LayoutInflater的实例,然后调用它的inflate()方法来加载button_layout这个布局,最后调用LinearLayout的addView()方法将它添加到LinearLayout中。


    现在可以运行一下程序,结果如下图所示:



    Button在界面上显示出来了!说明我们确实是借助LayoutInflater成功将button_layout这个布局添加到LinearLayout中了。LayoutInflater技术广泛应用于需要动态添加View的时候,比如在ScrollView和ListView中,经常都可以看到LayoutInflater的身影。


    当然,仅仅只是介绍了如何使用LayoutInflater显然是远远无法满足大家的求知欲的,知其然也要知其所以然,接下来我们就从源码的角度上看一看LayoutInflater到底是如何工作的。


    不管你是使用的哪个inflate()方法的重载,最终都会辗转调用到LayoutInflater的如下代码中:

    public View inflate(XmlPullParser parser, ViewGroup root, boolean attachToRoot) {
        synchronized (mConstructorArgs) {
            final AttributeSet attrs = Xml.asAttributeSet(parser);
            mConstructorArgs[0] = mContext;
            View result = root;
            try {
                int type;
                while ((type = parser.next()) != XmlPullParser.START_TAG &&
                        type != XmlPullParser.END_DOCUMENT) {
                }
                if (type != XmlPullParser.START_TAG) {
                    throw new InflateException(parser.getPositionDescription()
                            + ": No start tag found!");
                }
                final String name = parser.getName();
                if (TAG_MERGE.equals(name)) {
                    if (root == null || !attachToRoot) {
                        throw new InflateException("merge can be used only with a valid "
                                + "ViewGroup root and attachToRoot=true");
                    }
                    rInflate(parser, root, attrs);
                } else {
                    View temp = createViewFromTag(name, attrs);
                    ViewGroup.LayoutParams params = null;
                    if (root != null) {
                        params = root.generateLayoutParams(attrs);
                        if (!attachToRoot) {
                            temp.setLayoutParams(params);
                        }
                    }
                    rInflate(parser, temp, attrs);
                    if (root != null && attachToRoot) {
                        root.addView(temp, params);
                    }
                    if (root == null || !attachToRoot) {
                        result = temp;
                    }
                }
            } catch (XmlPullParserException e) {
                InflateException ex = new InflateException(e.getMessage());
                ex.initCause(e);
                throw ex;
            } catch (IOException e) {
                InflateException ex = new InflateException(
                        parser.getPositionDescription()
                        + ": " + e.getMessage());
                ex.initCause(e);
                throw ex;
            }
            return result;
        }
    }
    从这里我们就可以清楚地看出,LayoutInflater其实就是使用Android提供的pull解析方式来解析布局文件的。不熟悉pull解析方式的朋友可以网上搜一下,教程很多,我就不细讲了,这里我们注意看下第23行,调用了createViewFromTag()这个方法,并把节点名和参数传了进去。看到这个方法名,我们就应该能猜到,它是用于根据节点名来创建View对象的。确实如此,在createViewFromTag()方法的内部又会去调用createView()方法,然后使用反射的方式创建出View的实例并返回。


    当然,这里只是创建出了一个根布局的实例而已,接下来会在第31行调用rInflate()方法来循环遍历这个根布局下的子元素,代码如下所示:

    private void rInflate(XmlPullParser parser, View parent, final AttributeSet attrs)
            throws XmlPullParserException, IOException {
        final int depth = parser.getDepth();
        int type;
        while (((type = parser.next()) != XmlPullParser.END_TAG ||
                parser.getDepth() > depth) && type != XmlPullParser.END_DOCUMENT) {
            if (type != XmlPullParser.START_TAG) {
                continue;
            }
            final String name = parser.getName();
            if (TAG_REQUEST_FOCUS.equals(name)) {
                parseRequestFocus(parser, parent);
            } else if (TAG_INCLUDE.equals(name)) {
                if (parser.getDepth() == 0) {
                    throw new InflateException("<include /> cannot be the root element");
                }
                parseInclude(parser, parent, attrs);
            } else if (TAG_MERGE.equals(name)) {
                throw new InflateException("<merge /> must be the root element");
            } else {
                final View view = createViewFromTag(name, attrs);
                final ViewGroup viewGroup = (ViewGroup) parent;
                final ViewGroup.LayoutParams params = viewGroup.generateLayoutParams(attrs);
                rInflate(parser, view, attrs);
                viewGroup.addView(view, params);
            }
        }
        parent.onFinishInflate();
    }

    可以看到,在第21行同样是createViewFromTag()方法来创建View的实例,然后还会在第24行递归调用rInflate()方法来查找这个View下的子元素,每次递归完成后则将这个View添加到父布局当中。


    这样的话,把整个布局文件都解析完成后就形成了一个完整的DOM结构,最终会把最顶层的根布局返回,至此inflate()过程全部结束。


    比较细心的朋友也许会注意到,inflate()方法还有个接收三个参数的方法重载,结构如下:

    inflate(int resource, ViewGroup root, boolean attachToRoot)

    那么这第三个参数attachToRoot又是什么意思呢?其实如果你仔细去阅读上面的源码应该可以自己分析出答案,这里我先将结论说一下吧,感兴趣的朋友可以再阅读一下源码,校验我的结论是否正确。


    1. 如果root为null,attachToRoot将失去作用,设置任何值都没有意义。

    2. 如果root不为null,attachToRoot设为true,则会给加载的布局文件的指定一个父布局,即root。

    3. 如果root不为null,attachToRoot设为false,则会将布局文件最外层的所有layout属性进行设置,当该view被添加到父view当中时,这些layout属性会自动生效。

    4. 在不设置attachToRoot参数的情况下,如果root不为null,attachToRoot参数默认为true。


    好了,现在对LayoutInflater的工作原理和流程也搞清楚了,你该满足了吧。额。。。。还嫌这个例子中的按钮看起来有点小,想要调大一些?那简单的呀,修改button_layout.xml中的代码,如下所示:

    <Button xmlns:android="http://schemas.android.com/apk/res/android"
        android:layout_width="300dp"
        android:layout_height="80dp"
        android:text="Button" >
    
    </Button>

    这里我们将按钮的宽度改成300dp,高度改成80dp,这样够大了吧?现在重新运行一下程序来观察效果。咦?怎么按钮还是原来的大小,没有任何变化!是不是按钮仍然不够大,再改大一点呢?还是没有用!


    其实这里不管你将Button的layout_width和layout_height的值修改成多少,都不会有任何效果的,因为这两个值现在已经完全失去了作用。平时我们经常使用layout_width和layout_height来设置View的大小,并且一直都能正常工作,就好像这两个属性确实是用于设置View的大小的。而实际上则不然,它们其实是用于设置View在布局中的大小的,也就是说,首先View必须存在于一个布局中,之后如果将layout_width设置成match_parent表示让View的宽度填充满布局,如果设置成wrap_content表示让View的宽度刚好可以包含其内容,如果设置成具体的数值则View的宽度会变成相应的数值。这也是为什么这两个属性叫作layout_width和layout_height,而不是width和height。


    再来看一下我们的button_layout.xml吧,很明显Button这个控件目前不存在于任何布局当中,所以layout_width和layout_height这两个属性理所当然没有任何作用。那么怎样修改才能让按钮的大小改变呢?解决方法其实有很多种,最简单的方式就是在Button的外面再嵌套一层布局,如下所示:

    <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
        android:layout_width="match_parent"
        android:layout_height="match_parent" >
    
        <Button
            android:layout_width="300dp"
            android:layout_height="80dp"
            android:text="Button" >
        </Button>
    
    </RelativeLayout>

    可以看到,这里我们又加入了一个RelativeLayout,此时的Button存在与RelativeLayout之中,layout_width和layout_height属性也就有作用了。当然,处于最外层的RelativeLayout,它的layout_width和layout_height则会失去作用。现在重新运行一下程序,结果如下图所示:




    OK!按钮的终于可以变大了,这下总算是满足大家的要求了吧。


    看到这里,也许有些朋友心中会有一个巨大的疑惑。不对呀!平时在Activity中指定布局文件的时候,最外层的那个布局是可以指定大小的呀,layout_width和layout_height都是有作用的。确实,这主要是因为,在setContentView()方法中,Android会自动在布局文件的最外层再嵌套一个FrameLayout,所以layout_width和layout_height属性才会有效果。那么我们来证实一下吧,修改MainActivity中的代码,如下所示:

    public class MainActivity extends Activity {
    
    	private LinearLayout mainLayout;
    
    	@Override
    	protected void onCreate(Bundle savedInstanceState) {
    		super.onCreate(savedInstanceState);
    		setContentView(R.layout.activity_main);
    		mainLayout = (LinearLayout) findViewById(R.id.main_layout);
    		ViewParent viewParent = mainLayout.getParent();
    		Log.d("TAG", "the parent of mainLayout is " + viewParent);
    	}
    
    }

    可以看到,这里通过findViewById()方法,拿到了activity_main布局中最外层的LinearLayout对象,然后调用它的getParent()方法获取它的父布局,再通过Log打印出来。现在重新运行一下程序,结果如下图所示:


     


    非常正确!LinearLayout的父布局确实是一个FrameLayout,而这个FrameLayout就是由系统自动帮我们添加上的。


    说到这里,虽然setContentView()方法大家都会用,但实际上Android界面显示的原理要比我们所看到的东西复杂得多。任何一个Activity中显示的界面其实主要都由两部分组成,标题栏和内容布局。标题栏就是在很多界面顶部显示的那部分内容,比如刚刚我们的那个例子当中就有标题栏,可以在代码中控制让它是否显示。而内容布局就是一个FrameLayout,这个布局的id叫作content,我们调用setContentView()方法时所传入的布局其实就是放到这个FrameLayout中的,这也是为什么这个方法名叫作setContentView(),而不是叫setView()。


    最后再附上一张Activity窗口的组成图吧,以便于大家更加直观地理解:



    好了,今天就讲到这里了,支持的、吐槽的、有疑问的、以及打酱油的路过朋友尽管留言吧 ^v^ 感兴趣的朋友可以继续阅读 Android视图绘制流程完全解析,带你一步步深入了解View(二) 。


    关注我的技术公众号,每天都有优质技术文章推送。关注我的娱乐公众号,工作、学习累了的时候放松一下自己。

    微信扫一扫下方二维码即可关注:

            

    展开全文
  • 在前面一篇文章中,我和大家一起从源码的层面上分析了视图的绘制流程,了解了视图绘制流程中onMeasure、onLayout、onDraw这三个最重要步骤的工作原理,那么今天我们将继续对View进行深入探究,学习一下视图状态以及...

    转载请注明出处:http://blog.csdn.net/guolin_blog/article/details/17045157


    在前面一篇文章中,我带着大家一起从源码的层面上分析了视图的绘制流程,了解了视图绘制流程中onMeasure、onLayout、onDraw这三个最重要步骤的工作原理,那么今天我们将继续对View进行深入探究,学习一下视图状态以及重绘方面的知识。如果你还没有看过我前面一篇文章,可以先去阅读 Android视图绘制流程完全解析,带你一步步深入了解View(二) 。


    相信大家在平时使用View的时候都会发现它是有状态的,比如说有一个按钮,普通状态下是一种效果,但是当手指按下的时候就会变成另外一种效果,这样才会给人产生一种点击了按钮的感觉。当然了,这种效果相信几乎所有的Android程序员都知道该如何实现,但是我们既然是深入了解View,那么自然也应该知道它背后的实现原理应该是什么样的,今天就让我们来一起探究一下吧。


    一、视图状态


    视图状态的种类非常多,一共有十几种类型,不过多数情况下我们只会使用到其中的几种,因此这里我们也就只去分析最常用的几种视图状态。


    1. enabled

    表示当前视图是否可用。可以调用setEnable()方法来改变视图的可用状态,传入true表示可用,传入false表示不可用。它们之间最大的区别在于,不可用的视图是无法响应onTouch事件的。


    2. focused

    表示当前视图是否获得到焦点。通常情况下有两种方法可以让视图获得焦点,即通过键盘的上下左右键切换视图,以及调用requestFocus()方法。而现在的Android手机几乎都没有键盘了,因此基本上只可以使用requestFocus()这个办法来让视图获得焦点了。而requestFocus()方法也不能保证一定可以让视图获得焦点,它会有一个布尔值的返回值,如果返回true说明获得焦点成功,返回false说明获得焦点失败。一般只有视图在focusable和focusable in touch mode同时成立的情况下才能成功获取焦点,比如说EditText。


    3. window_focused

    表示当前视图是否处于正在交互的窗口中,这个值由系统自动决定,应用程序不能进行改变。


    4. selected

    表示当前视图是否处于选中状态。一个界面当中可以有多个视图处于选中状态,调用setSelected()方法能够改变视图的选中状态,传入true表示选中,传入false表示未选中。


    5. pressed

    表示当前视图是否处于按下状态。可以调用setPressed()方法来对这一状态进行改变,传入true表示按下,传入false表示未按下。通常情况下这个状态都是由系统自动赋值的,但开发者也可以自己调用这个方法来进行改变。


    我们可以在项目的drawable目录下创建一个selector文件,在这里配置每种状态下视图对应的背景图片。比如创建一个compose_bg.xml文件,在里面编写如下代码:

    <selector xmlns:android="http://schemas.android.com/apk/res/android">
    
        <item android:drawable="@drawable/compose_pressed" android:state_pressed="true"></item>
        <item android:drawable="@drawable/compose_pressed" android:state_focused="true"></item>
        <item android:drawable="@drawable/compose_normal"></item>
    
    </selector>
    这段代码就表示,当视图处于正常状态的时候就显示compose_normal这张背景图,当视图获得到焦点或者被按下的时候就显示compose_pressed这张背景图。


    创建好了这个selector文件后,我们就可以在布局或代码中使用它了,比如将它设置为某个按钮的背景图,如下所示:

    <?xml version="1.0" encoding="utf-8"?>
    <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
        android:layout_width="match_parent"
        android:layout_height="match_parent"
        android:orientation="vertical" >
        
    	<Button 
    	    android:id="@+id/compose"
    	    android:layout_width="60dp"
    	    android:layout_height="40dp"
    	    android:layout_gravity="center_horizontal"
    	    android:background="@drawable/compose_bg"
    	    />
        
    </LinearLayout>

    现在运行一下程序,这个按钮在普通状态和按下状态的时候就会显示不同的背景图片,如下图所示:




    这样我们就用一个非常简单的方法实现了按钮按下的效果,但是它的背景原理到底是怎样的呢?这就又要从源码的层次上进行分析了。


    我们都知道,当手指按在视图上的时候,视图的状态就已经发生了变化,此时视图的pressed状态是true。每当视图的状态有发生改变的时候,就会回调View的drawableStateChanged()方法,代码如下所示:

    protected void drawableStateChanged() {
        Drawable d = mBGDrawable;
        if (d != null && d.isStateful()) {
            d.setState(getDrawableState());
        }
    }
    在这里的第一步,首先是将mBGDrawable赋值给一个Drawable对象,那么这个mBGDrawable是什么呢?观察setBackgroundResource()方法中的代码,如下所示:
    public void setBackgroundResource(int resid) {
        if (resid != 0 && resid == mBackgroundResource) {
            return;
        }
        Drawable d= null;
        if (resid != 0) {
            d = mResources.getDrawable(resid);
        }
        setBackgroundDrawable(d);
        mBackgroundResource = resid;
    }

    可以看到,在第7行调用了Resource的getDrawable()方法将resid转换成了一个Drawable对象,然后调用了setBackgroundDrawable()方法并将这个Drawable对象传入,在setBackgroundDrawable()方法中会将传入的Drawable对象赋值给mBGDrawable。


    而我们在布局文件中通过android:background属性指定的selector文件,效果等同于调用setBackgroundResource()方法。也就是说drawableStateChanged()方法中的mBGDrawable对象其实就是我们指定的selector文件。


    接下来在drawableStateChanged()方法的第4行调用了getDrawableState()方法来获取视图状态,代码如下所示:

    public final int[] getDrawableState() {
        if ((mDrawableState != null) && ((mPrivateFlags & DRAWABLE_STATE_DIRTY) == 0)) {
            return mDrawableState;
        } else {
            mDrawableState = onCreateDrawableState(0);
            mPrivateFlags &= ~DRAWABLE_STATE_DIRTY;
            return mDrawableState;
        }
    }

    在这里首先会判断当前视图的状态是否发生了改变,如果没有改变就直接返回当前的视图状态,如果发生了改变就调用onCreateDrawableState()方法来获取最新的视图状态。视图的所有状态会以一个整型数组的形式返回。


    在得到了视图状态的数组之后,就会调用Drawable的setState()方法来对状态进行更新,代码如下所示:

    public boolean setState(final int[] stateSet) {
        if (!Arrays.equals(mStateSet, stateSet)) {
            mStateSet = stateSet;
            return onStateChange(stateSet);
        }
        return false;
    }
    这里会调用Arrays.equals()方法来判断视图状态的数组是否发生了变化,如果发生了变化则调用onStateChange()方法,否则就直接返回false。但你会发现,Drawable的onStateChange()方法中其实就只是简单返回了一个false,并没有任何的逻辑处理,这是为什么呢?这主要是因为mBGDrawable对象是通过一个selector文件创建出来的,而通过这种文件创建出来的Drawable对象其实都是一个StateListDrawable实例,因此这里调用的onStateChange()方法实际上调用的是StateListDrawable中的onStateChange()方法,那么我们赶快看一下吧:
    @Override
    protected boolean onStateChange(int[] stateSet) {
        int idx = mStateListState.indexOfStateSet(stateSet);
        if (DEBUG) android.util.Log.i(TAG, "onStateChange " + this + " states "
                + Arrays.toString(stateSet) + " found " + idx);
        if (idx < 0) {
            idx = mStateListState.indexOfStateSet(StateSet.WILD_CARD);
        }
        if (selectDrawable(idx)) {
            return true;
        }
        return super.onStateChange(stateSet);
    }

    可以看到,这里会先调用indexOfStateSet()方法来找到当前视图状态所对应的Drawable资源下标,然后在第9行调用selectDrawable()方法并将下标传入,在这个方法中就会将视图的背景图设置为当前视图状态所对应的那张图片了。


    那你可能会有疑问,在前面一篇文章中我们说到,任何一个视图的显示都要经过非常科学的绘制流程的,很显然,背景图的绘制是在draw()方法中完成的,那么为什么selectDrawable()方法能够控制背景图的改变呢?这就要研究一下视图重绘的流程了。


    二、视图重绘


    虽然视图会在Activity加载完成之后自动绘制到屏幕上,但是我们完全有理由在与Activity进行交互的时候要求动态更新视图,比如改变视图的状态、以及显示或隐藏某个控件等。那在这个时候,之前绘制出的视图其实就已经过期了,此时我们就应该对视图进行重绘。


    调用视图的setVisibility()、setEnabled()、setSelected()等方法时都会导致视图重绘,而如果我们想要手动地强制让视图进行重绘,可以调用invalidate()方法来实现。当然了,setVisibility()、setEnabled()、setSelected()等方法的内部其实也是通过调用invalidate()方法来实现的,那么就让我们来看一看invalidate()方法的代码是什么样的吧。


    View的源码中会有数个invalidate()方法的重载和一个invalidateDrawable()方法,当然它们的原理都是相同的,因此我们只分析其中一种,代码如下所示:

    void invalidate(boolean invalidateCache) {
        if (ViewDebug.TRACE_HIERARCHY) {
            ViewDebug.trace(this, ViewDebug.HierarchyTraceType.INVALIDATE);
        }
        if (skipInvalidate()) {
            return;
        }
        if ((mPrivateFlags & (DRAWN | HAS_BOUNDS)) == (DRAWN | HAS_BOUNDS) ||
                (invalidateCache && (mPrivateFlags & DRAWING_CACHE_VALID) == DRAWING_CACHE_VALID) ||
                (mPrivateFlags & INVALIDATED) != INVALIDATED || isOpaque() != mLastIsOpaque) {
            mLastIsOpaque = isOpaque();
            mPrivateFlags &= ~DRAWN;
            mPrivateFlags |= DIRTY;
            if (invalidateCache) {
                mPrivateFlags |= INVALIDATED;
                mPrivateFlags &= ~DRAWING_CACHE_VALID;
            }
            final AttachInfo ai = mAttachInfo;
            final ViewParent p = mParent;
            if (!HardwareRenderer.RENDER_DIRTY_REGIONS) {
                if (p != null && ai != null && ai.mHardwareAccelerated) {
                    p.invalidateChild(this, null);
                    return;
                }
            }
            if (p != null && ai != null) {
                final Rect r = ai.mTmpInvalRect;
                r.set(0, 0, mRight - mLeft, mBottom - mTop);
                p.invalidateChild(this, r);
            }
        }
    }
    在这个方法中首先会调用skipInvalidate()方法来判断当前View是否需要重绘,判断的逻辑也比较简单,如果View是不可见的且没有执行任何动画,就认为不需要重绘了。之后会进行透明度的判断,并给View添加一些标记位,然后在第22和29行调用ViewParent的invalidateChild()方法,这里的ViewParent其实就是当前视图的父视图,因此会调用到ViewGroup的invalidateChild()方法中,代码如下所示:
    public final void invalidateChild(View child, final Rect dirty) {
        ViewParent parent = this;
        final AttachInfo attachInfo = mAttachInfo;
        if (attachInfo != null) {
            final boolean drawAnimation = (child.mPrivateFlags & DRAW_ANIMATION) == DRAW_ANIMATION;
            if (dirty == null) {
                ......
            } else {
                ......
                do {
                    View view = null;
                    if (parent instanceof View) {
                        view = (View) parent;
                        if (view.mLayerType != LAYER_TYPE_NONE &&
                                view.getParent() instanceof View) {
                            final View grandParent = (View) view.getParent();
                            grandParent.mPrivateFlags |= INVALIDATED;
                            grandParent.mPrivateFlags &= ~DRAWING_CACHE_VALID;
                        }
                    }
                    if (drawAnimation) {
                        if (view != null) {
                            view.mPrivateFlags |= DRAW_ANIMATION;
                        } else if (parent instanceof ViewRootImpl) {
                            ((ViewRootImpl) parent).mIsAnimating = true;
                        }
                    }
                    if (view != null) {
                        if ((view.mViewFlags & FADING_EDGE_MASK) != 0 &&
                                view.getSolidColor() == 0) {
                            opaqueFlag = DIRTY;
                        }
                        if ((view.mPrivateFlags & DIRTY_MASK) != DIRTY) {
                            view.mPrivateFlags = (view.mPrivateFlags & ~DIRTY_MASK) | opaqueFlag;
                        }
                    }
                    parent = parent.invalidateChildInParent(location, dirty);
                    if (view != null) {
                        Matrix m = view.getMatrix();
                        if (!m.isIdentity()) {
                            RectF boundingRect = attachInfo.mTmpTransformRect;
                            boundingRect.set(dirty);
                            m.mapRect(boundingRect);
                            dirty.set((int) boundingRect.left, (int) boundingRect.top,
                                    (int) (boundingRect.right + 0.5f),
                                    (int) (boundingRect.bottom + 0.5f));
                        }
                    }
                } while (parent != null);
            }
        }
    }
    可以看到,这里在第10行进入了一个while循环,当ViewParent不等于空的时候就会一直循环下去。在这个while循环当中会不断地获取当前布局的父布局,并调用它的invalidateChildInParent()方法,在ViewGroup的invalidateChildInParent()方法中主要是来计算需要重绘的矩形区域,这里我们先不管它,当循环到最外层的根布局后,就会调用ViewRoot的invalidateChildInParent()方法了,代码如下所示:
        public ViewParent invalidateChildInParent(final int[] location, final Rect dirty) {
            invalidateChild(null, dirty);
            return null;
        }
    这里的代码非常简单,仅仅是去调用了invalidateChild()方法而已,那我们再跟进去瞧一瞧吧:
    public void invalidateChild(View child, Rect dirty) {
        checkThread();
        if (LOCAL_LOGV) Log.v(TAG, "Invalidate child: " + dirty);
        mDirty.union(dirty);
        if (!mWillDrawSoon) {
            scheduleTraversals();
        }
    }
    这个方法也不长,它在第6行又调用了scheduleTraversals()这个方法,那么我们继续跟进:
    public void scheduleTraversals() {
        if (!mTraversalScheduled) {
            mTraversalScheduled = true;
            sendEmptyMessage(DO_TRAVERSAL);
        }
    }
    可以看到,这里调用了sendEmptyMessage()方法,并传入了一个DO_TRAVERSAL参数。了解Android异步消息处理机制的朋友们都会知道,任何一个Handler都可以调用sendEmptyMessage()方法来发送消息,并且在handleMessage()方法中接收消息,而如果你看一下ViewRoot的类定义就会发现,它是继承自Handler的,也就是说这里调用sendEmptyMessage()方法出的消息,会在ViewRoot的handleMessage()方法中接收到。那么赶快看一下handleMessage()方法的代码吧,如下所示:
    public void handleMessage(Message msg) {
        switch (msg.what) {
        case DO_TRAVERSAL:
            if (mProfile) {
                Debug.startMethodTracing("ViewRoot");
            }
            performTraversals();
            if (mProfile) {
                Debug.stopMethodTracing();
                mProfile = false;
            }
            break;
        ......
    }

    熟悉的代码出现了!这里在第7行调用了performTraversals()方法,这不就是我们在前面一篇文章中学到的视图绘制的入口吗?虽然经过了很多辗转的调用,但是可以确定的是,调用视图的invalidate()方法后确实会走到performTraversals()方法中,然后重新执行绘制流程。之后的流程就不需要再进行描述了吧,可以参考 Android视图绘制流程完全解析,带你一步步深入了解View(二) 这一篇文章。


    了解了这些之后,我们再回过头来看看刚才的selectDrawable()方法中到底做了什么才能够控制背景图的改变,代码如下所示:

    public boolean selectDrawable(int idx) {
        if (idx == mCurIndex) {
            return false;
        }
        final long now = SystemClock.uptimeMillis();
        if (mDrawableContainerState.mExitFadeDuration > 0) {
            if (mLastDrawable != null) {
                mLastDrawable.setVisible(false, false);
            }
            if (mCurrDrawable != null) {
                mLastDrawable = mCurrDrawable;
                mExitAnimationEnd = now + mDrawableContainerState.mExitFadeDuration;
            } else {
                mLastDrawable = null;
                mExitAnimationEnd = 0;
            }
        } else if (mCurrDrawable != null) {
            mCurrDrawable.setVisible(false, false);
        }
        if (idx >= 0 && idx < mDrawableContainerState.mNumChildren) {
            Drawable d = mDrawableContainerState.mDrawables[idx];
            mCurrDrawable = d;
            mCurIndex = idx;
            if (d != null) {
                if (mDrawableContainerState.mEnterFadeDuration > 0) {
                    mEnterAnimationEnd = now + mDrawableContainerState.mEnterFadeDuration;
                } else {
                    d.setAlpha(mAlpha);
                }
                d.setVisible(isVisible(), true);
                d.setDither(mDrawableContainerState.mDither);
                d.setColorFilter(mColorFilter);
                d.setState(getState());
                d.setLevel(getLevel());
                d.setBounds(getBounds());
            }
        } else {
            mCurrDrawable = null;
            mCurIndex = -1;
        }
        if (mEnterAnimationEnd != 0 || mExitAnimationEnd != 0) {
            if (mAnimationRunnable == null) {
                mAnimationRunnable = new Runnable() {
                    @Override public void run() {
                        animate(true);
                        invalidateSelf();
                    }
                };
            } else {
                unscheduleSelf(mAnimationRunnable);
            }
            animate(true);
        }
        invalidateSelf();
        return true;
    }
    这里前面的代码我们可以都不管,关键是要看到在第54行一定会调用invalidateSelf()方法,这个方法中的代码如下所示:
    public void invalidateSelf() {
        final Callback callback = getCallback();
        if (callback != null) {
            callback.invalidateDrawable(this);
        }
    }
    可以看到,这里会先调用getCallback()方法获取Callback接口的回调实例,然后再去调用回调实例的invalidateDrawable()方法。那么这里的回调实例又是什么呢?观察一下View的类定义其实你就知道了,如下所示:
    public class View implements Drawable.Callback, Drawable.Callback2, KeyEvent.Callback,
    AccessibilityEventSource {
        ......
    }

    View类正是实现了Callback接口,所以刚才其实调用的就是View中的invalidateDrawable()方法,之后就会按照我们前面分析的流程执行重绘逻辑,所以视图的背景图才能够得到改变的。


    另外需要注意的是,invalidate()方法虽然最终会调用到performTraversals()方法中,但这时measure和layout流程是不会重新执行的,因为视图没有强制重新测量的标志位,而且大小也没有发生过变化,所以这时只有draw流程可以得到执行。而如果你希望视图的绘制流程可以完完整整地重新走一遍,就不能使用invalidate()方法,而应该调用requestLayout()了。这个方法中的流程比invalidate()方法要简单一些,但中心思想是差不多的,这里也就不再详细进行分析了。


    这样的话,我们就将视图状态以及重绘的工作原理都搞清楚了,相信大家对View的理解变得更加深刻了。感兴趣的朋友可以继续阅读 Android自定义View的实现方法,带你一步步深入了解View(四) 。


    关注我的技术公众号,每天都有优质技术文章推送。关注我的娱乐公众号,工作、学习累了的时候放松一下自己。

    微信扫一扫下方二维码即可关注:

            

    展开全文
  • 不知不觉中,带你一步步深入了解View系列的文章已经写到第四篇了,回顾一下,我们一共学习了LayoutInflater的原理分析、视图的绘制流程、视图的状态及重绘等知识,算是把View中很多重要的知识点都涉及到了。...
  • Android View原理浅析——View的工作原理 下图是Android的UI管理系统的层级关系。 PhoneWindow是Android系统中最基本的窗口系统,继承自Windows类,负责管理界面显示以及事件响应。它是Activity与View系统交互的...
  • ModelAndView详解

    万次阅读 多人点赞 2014-06-24 11:37:26
    ModelAndView详解 WebServlet应用服务器Spring浏览器  ModelAndView ...ModelAndView类别就如其名称所示,是代表了MVC Web程序中Model与View的对象,不过它只是方便您一次返回这两个对象的h
  • Android View的绘制流程

    万次阅读 多人点赞 2018-03-29 19:51:21
    本文主要是梳理 View 绘制的整体流程,帮助开发者对 View 的绘制有一个更深层次的理解。整体流程View 绘制中主要流程分为measure,layout, draw 三个阶段。measure :根据父 view 传递的 MeasureSpec 进行计算大小...
  • View的事件传递及分发机制

    千次阅读 2018-11-06 10:15:49
    前言 ...我们在处理滑动冲突的时候,从哪里下手,毫无头绪;我们先来看下事件的传递及分发机制,系统是如何传递事件,分发事件的,给我们处理相关问题提供基础知识。 先了解下Activity的层级结构,便于更好的理解事件的...
  • 基础篇——View和ViewGroup的区别

    万次阅读 多人点赞 2018-09-07 17:35:53
    写代码的四点: 1.明确需求。要做什么? 2.分析思路。要怎么做?(1,2,3……) 3.确定步骤。每一个思路要用到哪些语句、方法和对象。 4.代码实现。用具体的语言代码将思路实现出来。... 1.... 2.... 3.......
  • PyTorch中view的用法

    万次阅读 多人点赞 2018-08-22 20:14:11
    相当于numpy中resize()的功能,但是用法可能不太一样。...比如说是不管你原先的数据是[[[1,2,3],[4,5,6]]]还是[1,2,3,4,5,6],因为它们排成一维向量都是6个元素,所以只要view后面的参数一致,得到的结果都...
  • Android 自定义View (一)

    万次阅读 多人点赞 2014-04-21 15:20:04
    很多的Android入门程序猿来说对于Android自定义View,可能都是比较恐惧的,但是这又是高手进阶的必经之路,所有准备在自定义View上面花一些功夫,多写一些文章。先总结下自定义View的步骤: 1、自定义View的属性 2、...
  • PyTorch中view()函数

    万次阅读 热门讨论 2018-08-27 14:33:11
    view()函数作用是将一个多行的Tensor,拼接成一行。 import torch a = torch.Tensor(2,3) print(a) # tensor([[0.0000, 0.0000, 0.0000], # [0.0000, 0.0000, 0.0000]]) print(a.view(1,-1)) # tensor([[0.0000, ...
  • PyTorch中permute的用法

    万次阅读 多人点赞 2018-08-20 20:07:08
    permute(dims) 将tensor的维度换位。 参数:参数是一系列的整数,代表原来张量的维度。比如三维就有0,1,2这些dimension。 例: import torch import numpy as np ...print(unpermuted.siz...
  • hive lateral view 与 explode详解

    万次阅读 多人点赞 2016-07-16 21:28:14
    1.explodehive wiki对于expolde的解释如下:explode() takes in an array (or a map) as an input and outputs the elements of the array (map) as separate rows. UDTFs can be used in the SELECT expression ...
  • Android 自定义View (二) 进阶

    万次阅读 多人点赞 2014-04-22 11:39:25
    继续自定义View之旅,前面已经介绍过一个自定义View的基础的例子,Android 自定义View (一),如果你还对自定义View不了解可以去看看。今天给大家带来一个稍微复杂点的例子。 自定义View显示一张图片,下面包含图片...
  • Android应用层View绘制流程与源码分析

    万次阅读 多人点赞 2015-05-31 16:30:18
    【工匠若水 http://blog.csdn.net/yanbober 转载烦请注明...我们有分析到Activity中界面加载显示的基本流程原理,记不记得最终分析结果就是下面的关系:看见没有,如上图中id为content的内容就是整个View树的结构,所
  • 网上有大量关于自定义View原理的文章,但存在一些问题:内容不全、思路不清晰、无源码分析、简单问题复杂化 等 今天,我将全面总结自定义View原理中的measure过程,我能保证这是市面上的最全面、最清晰、最易懂的 ...
  • vue之router-view组件的使用

    万次阅读 多人点赞 2018-04-26 19:01:08
    开发的时候有时候会遇到一种情况,比如 :点击这个链接跳转到其他组件的情况,通常会跳转到新的页面,蛋是,我们不想跳转到新页面,只在当前页面切换着显示,那么就要涉及到路由的嵌套了,也可以说是子路由的使用。...
  • Android:手把手教你写一个完整的自定义View

    万次阅读 多人点赞 2017-03-14 10:11:27
    今天,我将手把手教你写一个自定义View,并理清自定义View所有应该的注意点 阅读本文前,请先阅读我写的一系列自定义View文章 自定义View基础 - 最易懂的自定义View原理系列(1) 自定义View Measure过程 - 最...
1 2 3 4 5 ... 20
收藏数 2,990,542
精华内容 1,196,216
关键字:

view