精华内容
参与话题
问答
  • Oracle SQL性能优化 SQL优化

    万次阅读 2017-07-31 08:47:44
    (1) 选择最有效率的表名顺序(只在基于规则的优化器(Oracle有两种优化器:RBO基于规则的优化器和CBO基于成本的优化器)中有效): ORACLE的解析器按照从右到左的顺序处理FROM子句中的表名,FROM子句中写在最后的表...

    (1) 选择最有效率的表名顺序(只在基于规则的优化器(Oracle有两种优化器:RBO基于规则的优化器和CBO基于成本的优化器)中有效):
    ORACLE的解析器按照从右到左的顺序处理FROM子句中的表名,FROM子句中写在最后的表(基础表 driving table)将被最先处理,在FROM子句中包含多个表的情况下,你必须选择记录条数最少的表作为基础表。如果有3个以上的表连接查询, 那就需要选择交叉表(intersection table)作为基础表, 交叉表是指那个被其他表所引用的表.
    (2) WHERE子句中的连接顺序.:
    ORACLE采用自下而上的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前, 那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾.
    (3) SELECT子句中避免使用 ‘ * ‘:
    ORACLE在解析的过程中, 会将’*’ 依次转换成所有的列名, 这个工作是通过查询数据字典完成的, 这意味着将耗费更多的时间
    (4) 减少访问数据库的次数:
    ORACLE在内部执行了许多工作: 解析SQL语句, 估算索引的利用率, 绑定变量 , 读数据块等;
    (5) 在SQL*Plus , SQL*Forms和Pro*C中重新设置ARRAYSIZE参数, 可以增加每次数据库访问的检索数据量 ,建议值为200
    (6) 使用DECODE函数来减少处理时间:
    使用DECODE函数可以避免重复扫描相同记录或重复连接相同的表.
    (7) 整合简单,无关联的数据库访问:
    如果你有几个简单的数据库查询语句,你可以把它们整合到一个查询中(即使它们之间没有关系)
    (8) 删除重复记录:
    最高效的删除重复记录方法 ( 因为使用了ROWID)例子:
    DELETE FROM EMP E WHERE E.ROWID > (SELECT MIN(X.ROWID)
    FROM EMP X WHERE X.EMP_NO = E.EMP_NO);
    (9) 用TRUNCATE替代DELETE:
    当删除表中的记录时,在通常情况下, 回滚段(rollback segments ) 用来存放可以被恢复的信息. 如果你没有COMMIT事务,ORACLE会将数据恢复到删除之前的状态(准确地说是恢复到执行删除命令之前的状况) 而当运用TRUNCATE时, 回滚段不再存放任何可被恢复的信息.当命令运行后,数据不能被恢复.因此很少的资源被调用,执行时间也会很短. (译者按: TRUNCATE只在删除全表适用,TRUNCATE是DDL不是DML)
    (10) 尽量多使用COMMIT:
    只要有可能,在程序中尽量多使用COMMIT, 这样程序的性能得到提高,需求也会因为COMMIT所释放的资源而减少:
    COMMIT所释放的资源:
    a. 回滚段上用于恢复数据的信息.
    b. 被程序语句获得的锁
    c. redo log buffer 中的空间
    d. ORACLE为管理上述3种资源中的内部花费
    (11) 用Where子句替换HAVING子句:
    避免使用HAVING子句, HAVING 只会在检索出所有记录之后才对结果集进行过滤. 这个处理需要排序,总计等操作. 如果能通过WHERE子句限制记录的数目,那就能减少这方面的开销. (非oracle中)on、where、having这三个都可以加条件的子句中,on是最先执行,where次之,having最后,因为on是先把不符合条件的记录过滤后才进行统计,它就可以减少中间运算要处理的数据,按理说应该速度是最快的,where也应该比having快点的,因为它过滤数据后才进行sum,在两个表联接时才用on的,所以在一个表的时候,就剩下where跟having比较了。在这单表查询统计的情况下,如果要过滤的条件没有涉及到要计算字段,那它们的结果是一样的,只是where可以使用rushmore技术,而having就不能,在速度上后者要慢如果要涉及到计算的字段,就表示在没计算之前,这个字段的值是不确定的,根据上篇写的工作流程,where的作用时间是在计算之前就完成的,而having就是在计算后才起作用的,所以在这种情况下,两者的结果会不同。在多表联接查询时,on比where更早起作用。系统首先根据各个表之间的联接条件,把多个表合成一个临时表后,再由where进行过滤,然后再计算,计算完后再由having进行过滤。由此可见,要想过滤条件起到正确的作用,首先要明白这个条件应该在什么时候起作用,然后再决定放在那里
    (12) 减少对表的查询:
    在含有子查询的SQL语句中,要特别注意减少对表的查询.例子:
    SELECT TAB_NAME FROM TABLES WHERE (TAB_NAME,DB_VER) = ( SELECT
    TAB_NAME,DB_VER FROM TAB_COLUMNS WHERE VERSION = 604)
    (13) 通过内部函数提高SQL效率.:
    复杂的SQL往往牺牲了执行效率. 能够掌握上面的运用函数解决问题的方法在实际工作中是非常有意义的
    (14) 使用表的别名(Alias):
    当在SQL语句中连接多个表时, 请使用表的别名并把别名前缀于每个Column上.这样一来,就可以减少解析的时间并减少那些由Column歧义引起的语法错误.
    (15) 用EXISTS替代IN、用NOT EXISTS替代NOT IN:
    在许多基于基础表的查询中,为了满足一个条件,往往需要对另一个表进行联接.在这种情况下, 使用EXISTS(或NOT EXISTS)通常将提高查询的效率. 在子查询中,NOT IN子句将执行一个内部的排序和合并. 无论在哪种情况下,NOT IN都是最低效的 (因为它对子查询中的表执行了一个全表遍历). 为了避免使用NOT IN ,我们可以把它改写成外连接(Outer Joins)或NOT EXISTS.
    例子:
    (高效)SELECT * FROM EMP (基础表) WHERE EMPNO > 0 AND EXISTS (SELECT ‘X’ FROM DEPT WHERE DEPT.DEPTNO = EMP.DEPTNO AND LOC = ‘MELB’)
    (低效)SELECT * FROM EMP (基础表) WHERE EMPNO > 0 AND DEPTNO IN(SELECT DEPTNO FROM DEPT WHERE LOC = ‘MELB’)
    (16) 识别’低效执行’的SQL语句:
    虽然目前各种关于SQL优化的图形化工具层出不穷,但是写出自己的SQL工具来解决问题始终是一个最好的方法:
    SELECT EXECUTIONS , DISK_READS, BUFFER_GETS,
    ROUND((BUFFER_GETS-DISK_READS)/BUFFER_GETS,2) Hit_radio,
    ROUND(DISK_READS/EXECUTIONS,2) Reads_per_run,
    SQL_TEXT
    FROM V$SQLAREA
    WHERE EXECUTIONS>0
    AND BUFFER_GETS > 0
    AND (BUFFER_GETS-DISK_READS)/BUFFER_GETS < 0.8
    ORDER BY 4 DESC;

    (17) 用索引提高效率:
    索引是表的一个概念部分,用来提高检索数据的效率,ORACLE使用了一个复杂的自平衡B-tree结构. 通常,通过索引查询数据比全表扫描要快. 当ORACLE找出执行查询和Update语句的最佳路径时, ORACLE优化器将使用索引. 同样在联结多个表时使用索引也可以提高效率. 另一个使用索引的好处是,它提供了主键(primary key)的唯一性验证.。那些LONG或LONG RAW数据类型, 你可以索引几乎所有的列. 通常, 在大型表中使用索引特别有效. 当然,你也会发现, 在扫描小表时,使用索引同样能提高效率. 虽然使用索引能得到查询效率的提高,但是我们也必须注意到它的代价. 索引需要空间来存储,也需要定期维护, 每当有记录在表中增减或索引列被修改时, 索引本身也会被修改. 这意味着每条记录的INSERT , DELETE , UPDATE将为此多付出4 , 5 次的磁盘I/O . 因为索引需要额外的存储空间和处理,那些不必要的索引反而会使查询反应时间变慢.。定期的重构索引是有必要的.:
    ALTER INDEX REBUILD
    (18) 用EXISTS替换DISTINCT:
    当提交一个包含一对多表信息(比如部门表和雇员表)的查询时,避免在SELECT子句中使用DISTINCT. 一般可以考虑用EXIST替换, EXISTS 使查询更为迅速,因为RDBMS核心模块将在子查询的条件一旦满足后,立刻返回结果. 例子:
    (低效):
    SELECT DISTINCT DEPT_NO,DEPT_NAME FROM DEPT D , EMP E
    WHERE D.DEPT_NO = E.DEPT_NO
    (高效):
    SELECT DEPT_NO,DEPT_NAME FROM DEPT D WHERE EXISTS ( SELECT ‘X’
    FROM EMP E WHERE E.DEPT_NO = D.DEPT_NO);
    (19) sql语句用大写的;因为oracle总是先解析sql语句,把小写的字母转换成大写的再执行
    (20) 在java代码中尽量少用连接符“+”连接字符串!
    (21) 避免在索引列上使用NOT 通常, 
    我们要避免在索引列上使用NOT, NOT会产生在和在索引列上使用函数相同的影响. 当ORACLE”遇到”NOT,他就会停止使用索引转而执行全表扫描.
    (22) 避免在索引列上使用计算.
    WHERE子句中,如果索引列是函数的一部分.优化器将不使用索引而使用全表扫描.
    举例:
    低效:
    SELECT … FROM DEPT WHERE SAL * 12 > 25000;
    高效:
    SELECT … FROM DEPT WHERE SAL > 25000/12;
    (23) 用>=替代>
    高效:
    SELECT * FROM EMP WHERE DEPTNO >=4
    低效:
    SELECT * FROM EMP WHERE DEPTNO >3
    两者的区别在于, 前者DBMS将直接跳到第一个DEPT等于4的记录而后者将首先定位到DEPTNO=3的记录并且向前扫描到第一个DEPT大于3的记录.
    (24) 用UNION替换OR (适用于索引列)
    通常情况下, 用UNION替换WHERE子句中的OR将会起到较好的效果. 对索引列使用OR将造成全表扫描. 注意, 以上规则只针对多个索引列有效. 如果有column没有被索引, 查询效率可能会因为你没有选择OR而降低. 在下面的例子中, LOC_ID 和REGION上都建有索引.
    高效:
    SELECT LOC_ID , LOC_DESC , REGION
    FROM LOCATION
    WHERE LOC_ID = 10
    UNION
    SELECT LOC_ID , LOC_DESC , REGION
    FROM LOCATION
    WHERE REGION = “MELBOURNE”
    低效:
    SELECT LOC_ID , LOC_DESC , REGION
    FROM LOCATION
    WHERE LOC_ID = 10 OR REGION = “MELBOURNE”
    如果你坚持要用OR, 那就需要返回记录最少的索引列写在最前面.
    (25) 用IN来替换OR
    这是一条简单易记的规则,但是实际的执行效果还须检验,在ORACLE8i下,两者的执行路径似乎是相同的. 
    低效:
    SELECT…. FROM LOCATION WHERE LOC_ID = 10 OR LOC_ID = 20 OR LOC_ID = 30
    高效
    SELECT… FROM LOCATION WHERE LOC_IN IN (10,20,30);
    (26) 避免在索引列上使用IS NULL和IS NOT NULL
    避免在索引中使用任何可以为空的列,ORACLE将无法使用该索引.对于单列索引,如果列包含空值,索引中将不存在此记录. 对于复合索引,如果每个列都为空,索引中同样不存在此记录. 如果至少有一个列不为空,则记录存在于索引中.举例: 如果唯一性索引建立在表的A列和B列上, 并且表中存在一条记录的A,B值为(123,null) , ORACLE将不接受下一条具有相同A,B值(123,null)的记录(插入). 然而如果所有的索引列都为空,ORACLE将认为整个键值为空而空不等于空. 因此你可以插入1000 条具有相同键值的记录,当然它们都是空! 因为空值不存在于索引列中,所以WHERE子句中对索引列进行空值比较将使ORACLE停用该索引.
    低效: (索引失效)
    SELECT … FROM DEPARTMENT WHERE DEPT_CODE IS NOT NULL;
    高效: (索引有效)
    SELECT … FROM DEPARTMENT WHERE DEPT_CODE >=0;
    (27) 总是使用索引的第一个列:
    如果索引是建立在多个列上, 只有在它的第一个列(leading column)被where子句引用时,优化器才会选择使用该索引. 这也是一条简单而重要的规则,当仅引用索引的第二个列时,优化器使用了全表扫描而忽略了索引
    (28) 用UNION-ALL 替换UNION ( 如果有可能的话):
    当SQL语句需要UNION两个查询结果集合时,这两个结果集合会以UNION-ALL的方式被合并, 然后在输出最终结果前进行排序. 如果用UNION ALL替代UNION, 这样排序就不是必要了. 效率就会因此得到提高. 需要注意的是,UNION ALL 将重复输出两个结果集合中相同记录. 因此各位还是要从业务需求分析使用UNION ALL的可行性. UNION 将对结果集合排序,这个操作会使用到SORT_AREA_SIZE这块内存. 对于这块内存的优化也是相当重要的. 下面的SQL可以用来查询排序的消耗量
    低效:
    SELECT ACCT_NUM, BALANCE_AMT
    FROM DEBIT_TRANSACTIONS
    WHERE TRAN_DATE = ‘31-DEC-95’
    UNION
    SELECT ACCT_NUM, BALANCE_AMT
    FROM DEBIT_TRANSACTIONS
    WHERE TRAN_DATE = ‘31-DEC-95’
    高效:
    SELECT ACCT_NUM, BALANCE_AMT
    FROM DEBIT_TRANSACTIONS
    WHERE TRAN_DATE = ‘31-DEC-95’
    UNION ALL
    SELECT ACCT_NUM, BALANCE_AMT
    FROM DEBIT_TRANSACTIONS
    WHERE TRAN_DATE = ‘31-DEC-95’
    (29) 用WHERE替代ORDER BY:
    ORDER BY 子句只在两种严格的条件下使用索引.
    ORDER BY中所有的列必须包含在相同的索引中并保持在索引中的排列顺序.
    ORDER BY中所有的列必须定义为非空.
    WHERE子句使用的索引和ORDER BY子句中所使用的索引不能并列.
    例如:
    表DEPT包含以下列:
    DEPT_CODE PK NOT NULL
    DEPT_DESC NOT NULL
    DEPT_TYPE NULL
    低效: (索引不被使用)
    SELECT DEPT_CODE FROM DEPT ORDER BY DEPT_TYPE
    高效: (使用索引)
    SELECT DEPT_CODE FROM DEPT WHERE DEPT_TYPE > 0
    (30) 避免改变索引列的类型.:
    当比较不同数据类型的数据时, ORACLE自动对列进行简单的类型转换.
    假设 EMPNO是一个数值类型的索引列.
    SELECT … FROM EMP WHERE EMPNO = ‘123’
    实际上,经过ORACLE类型转换, 语句转化为:
    SELECT … FROM EMP WHERE EMPNO = TO_NUMBER(‘123’)
    幸运的是,类型转换没有发生在索引列上,索引的用途没有被改变.
    现在,假设EMP_TYPE是一个字符类型的索引列.
    SELECT … FROM EMP WHERE EMP_TYPE = 123
    这个语句被ORACLE转换为:
    SELECT … FROM EMP WHERETO_NUMBER(EMP_TYPE)=123
    因为内部发生的类型转换, 这个索引将不会被用到! 为了避免ORACLE对你的SQL进行隐式的类型转换, 最好把类型转换用显式表现出来. 注意当字符和数值比较时, ORACLE会优先转换数值类型到字符类型
    (31) 需要当心的WHERE子句:
    某些SELECT 语句中的WHERE子句不使用索引. 这里有一些例子.
    在下面的例子里, (1)‘!=’ 将不使用索引. 记住, 索引只能告诉你什么存在于表中, 而不能告诉你什么不存在于表中. (2) ‘||’是字符连接函数. 就象其他函数那样, 停用了索引. (3) ‘+’是数学函数. 就象其他数学函数那样, 停用了索引. (4)相同的索引列不能互相比较,这将会启用全表扫描.
    (32) a. 如果检索数据量超过30%的表中记录数.使用索引将没有显著的效率提高.
    b. 在特定情况下, 使用索引也许会比全表扫描慢, 但这是同一个数量级上的区别. 而通常情况下,使用索引比全表扫描要快几倍乃至几千倍!
    (33) 避免使用耗费资源的操作:
    带有DISTINCT,UNION,MINUS,INTERSECT,ORDER BY的SQL语句会启动SQL引擎
    执行耗费资源的排序(SORT)功能. DISTINCT需要一次排序操作, 而其他的至少需要执行两次排序. 通常, 带有UNION, MINUS , INTERSECT的SQL语句都可以用其他方式重写. 如果你的数据库的SORT_AREA_SIZE调配得好, 使用UNION , MINUS, INTERSECT也是可以考虑的, 毕竟它们的可读性很强
    (34) 优化GROUP BY:
    提高GROUP BY 语句的效率, 可以通过将不需要的记录在GROUP BY 之前过滤掉.下面两个查询返回相同结果但第二个明显就快了许多.
    低效:
    SELECT JOB , AVG(SAL)
    FROM EMP
    GROUP JOB
    HAVING JOB = ‘PRESIDENT’
    OR JOB = ‘MANAGER’
    高效:
    SELECT JOB , AVG(SAL)
    FROM EMP
    WHERE JOB = ‘PRESIDENT’
    OR JOB = ‘MANAGER’
    GROUP JOB

    展开全文
  • SQL优化

    千次阅读 多人点赞 2019-10-15 21:29:40
    一、为什么要对SQL进行优化 我们开发项目上线初期,由于业务数据量相对较少,一些SQL的执行效率对程序 运行效率的影响不太明显,而开发和运维人员也...二、SQL优化的一些方法 1.对查询进行优化,应尽量避免全表扫...

    一、为什么要对SQL进行优化
    项目上线初期,由于业务数据量相对较少,一些SQL的执行效率对程序
    运行效率的影响不太明显,而我们也无法判断SQL对程序的运行效率
    有多大,故很少针对SQL进行专门的优化,而随着时间的积累,业务数据量的增
    多,SQL的执行效率对程序的运行效率的影响逐渐增大,此时对SQL的优化就很
    有必要。
    二、SQL优化的一些方法
    1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉
    及的列上建立索引。
    2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使
    用索引而进行全表扫描,如:
    select id from t where num is null
    可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
    select id from t where num=0
    3.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而
    进行全表扫描。
    4.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索
    引而进行全表扫描,如:
    select id from t where num=10 or num=20
    可以这样查询:
    select id from t where num=10
    union all
    select id from t where num=20
    5.in 和 not in 也要慎用,否则会导致全表扫描,如:
    select id from t where num in(1,2,3)
    对于连续的数值,能用 between 就不要用 in 了:
    select id from t where num between 1 and 3
    6.下面的查询也将导致全表扫描:
    select id from t where name like ‘%abc%’
    7.应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用
    索引而进行全表扫描。如:
    select id from t where num/2=100
    应改为:
    select id from t where num=100*2

    8.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引
    而进行全表扫描。如:
    select id from t where substring(name,1,3)=‘abc’–name以abc开头的id
    应改为:
    select id from t where name like 'abc%'
    9.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,
    否则系统将可能无法正确使用索引。
    10.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索
    引中的第一个字段作为条件时才能保证系统使用该索引,
    否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。
    11.不要写一些没有意义的查询,如需要生成一个空表结构:
    select col1,col2 into #t from t where 1=0
    这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
    create table #t(…)
    12.很多时候用 exists 代替 in 是一个好的选择:
    select num from a where num in(select num from b)
    用下面的语句替换:
    select num from a where exists(select 1 from b where num=a.num)
    13.并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当
    索引列有大量数据重复时,SQL查询可能不会去利用索引,
    如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也
    对查询效率起不了作用。
    14.索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降
    低了 insert 及 update 的效率,
    因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,
    视具体情况而定。
    一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的
    索引是否有必要。
    15.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会
    降低查询和连接的性能,并会增加存储开销。
    这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字
    型而言只需要比较一次就够了。
    16.尽可能的使用 varchar 代替 char ,因为首先变长字段存储空间小,可以节
    省存储空间,
    其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。
    17.任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要
    返回用不到的任何字段。
    18.避免频繁创建和删除临时表,以减少系统表资源的消耗。
    19.临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当
    需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好
    使用导出表。
    20.在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代
    替 create table,避免造成大量 log ,
    以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然
    后insert。
    21.如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先
    truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。
    22.尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,
    那么就应该考虑改写。
    23.使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决
    问题,基于集的方法通常更有效。
    24.与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD
    游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数
    据时。
    在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时间
    允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更
    好。
    25.尽量避免大事务操作,提高系统并发能力。
    26.尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合
    理。

    展开全文
  • 数据库优化 - SQL优化

    万次阅读 多人点赞 2019-11-01 21:00:00
    以实际SQL入手,带你一步一步走上SQL优化之路!
    前面一篇文章从实例的角度进行数据库优化,通过配置一些参数让数据库性能达到最优。但是一些“不好”的SQL也会导致数据库查询变慢,影响业务流程。本文从SQL角度进行数据库优化,提升SQL运行效率。

    判断问题SQL

    判断SQL是否有问题时可以通过两个表象进行判断:

    • 系统级别表象
      • CPU消耗严重
      • IO等待严重
      • 页面响应时间过长
      • 应用的日志出现超时等错误

    可以使用sar命令,top命令查看当前系统状态。

    也可以通过Prometheus、Grafana等监控工具观察系统状态。(感兴趣的可以翻看我之前的文章)640?wx_fmt=png

    • SQL语句表象
      • 冗长
      • 执行时间过长
      • 从全表扫描获取数据
      • 执行计划中的rows、cost很大

    冗长的SQL都好理解,一段SQL太长阅读性肯定会差,而且出现问题的频率肯定会更高。更进一步判断SQL问题就得从执行计划入手,如下所示:640?wx_fmt=png

    执行计划告诉我们本次查询走了全表扫描Type=ALL,rows很大(9950400)基本可以判断这是一段"有味道"的SQL。

    获取问题SQL

    不同数据库有不同的获取方法,以下为目前主流数据库的慢查询SQL获取工具

    • MySQL

      • 慢查询日志
      • 测试工具loadrunner
      • Percona公司的ptquery等工具
    • Oracle

      • AWR报告
      • 测试工具loadrunner等
      • 相关内部视图如v$、$session_wait等
      • GRID CONTROL监控工具
    • 达梦数据库

      • AWR报告
      • 测试工具loadrunner等
      • 达梦性能监控工具(dem)
      • 相关内部视图如v$、$session_wait等

    SQL编写技巧

    SQL编写有以下几个通用的技巧:

    • 合理使用索引

    索引少了查询慢;索引多了占用空间大,执行增删改语句的时候需要动态维护索引,影响性能 选择率高(重复值少)且被where频繁引用需要建立B树索引;

    一般join列需要建立索引;复杂文档类型查询采用全文索引效率更好;索引的建立要在查询和DML性能之间取得平衡;复合索引创建时要注意基于非前导列查询的情况

    • 使用UNION ALL替代UNION

    UNION ALL的执行效率比UNION高,UNION执行时需要排重;UNION需要对数据进行排序

    • 避免select * 写法

    执行SQL时优化器需要将 * 转成具体的列;每次查询都要回表,不能走覆盖索引。

    • JOIN字段建议建立索引

    一般JOIN字段都提前加上索引

    • 避免复杂SQL语句

    提升可阅读性;避免慢查询的概率;可以转换成多个短查询,用业务端处理

    • 避免where 1=1写法

    • 避免order by rand()类似写法

    RAND()导致数据列被多次扫描

    SQL优化

    执行计划

    完成SQL优化一定要先读执行计划,执行计划会告诉你哪些地方效率低,哪里可以需要优化。我们以MYSQL为例,看看执行计划是什么。(每个数据库的执行计划都不一样,需要自行了解)explain sql640?wx_fmt=png

    字段 解释
    id 每个被独立执行的操作标识,标识对象被操作的顺序,id值越大,先被执行,如果相同,执行顺序从上到下
    select_type 查询中每个select 字句的类型
    table 被操作的对象名称,通常是表名,但有其他格式
    partitions 匹配的分区信息(对于非分区表值为NULL)
    type 连接操作的类型
    possible_keys 可能用到的索引
    key 优化器实际使用的索引(最重要的列) 从最好到最差的连接类型为consteq_regrefrangeindexALL。当出现ALL时表示当前SQL出现了“坏味道”
    key_len 被优化器选定的索引键长度,单位是字节
    ref 表示本行被操作对象的参照对象,无参照对象为NULL
    rows 查询执行所扫描的元组个数(对于innodb,此值为估计值)
    filtered 条件表上数据被过滤的元组个数百分比
    extra 执行计划的重要补充信息,当此列出现Using filesort , Using temporary 字样时就要小心了,很可能SQL语句需要优化

    接下来我们用一段实际优化案例来说明SQL优化的过程及优化技巧。

    优化案例

    • 表结构

      CREATE TABLE `a`
      (
          `id`          int(11) NOT NULLAUTO_INCREMENT,
          `seller_id`   bigint(20)                                       DEFAULT NULL,
          `seller_name` varchar(100) CHARACTER SET utf8 COLLATE utf8_bin DEFAULT NULL,
          `gmt_create`  varchar(30)                                      DEFAULT NULL,
          PRIMARY KEY (`id`)
      );
      CREATE TABLE `b`
      (
          `id`          int(11) NOT NULLAUTO_INCREMENT,
          `seller_name` varchar(100) DEFAULT NULL,
          `user_id`     varchar(50)  DEFAULT NULL,
          `user_name`   varchar(100) DEFAULT NULL,
          `sales`       bigint(20)   DEFAULT NULL,
          `gmt_create`  varchar(30)  DEFAULT NULL,
          PRIMARY KEY (`id`)
      );
      CREATE TABLE `c`
      (
          `id`         int(11) NOT NULLAUTO_INCREMENT,
          `user_id`    varchar(50)  DEFAULT NULL,
          `order_id`   varchar(100) DEFAULT NULL,
          `state`      bigint(20)   DEFAULT NULL,
          `gmt_create` varchar(30)  DEFAULT NULL,
          PRIMARY KEY (`id`)
      );
      
    • 三张表关联,查询当前用户在当前时间前后10个小时的订单情况,并根据订单创建时间升序排列,具体SQL如下

      select a.seller_id,
             a.seller_name,
             b.user_name,
             c.state
      from a,
           b,
           c
      where a.seller_name = b.seller_name
        and b.user_id = c.user_id
        and c.user_id = 17
        and a.gmt_create
          BETWEEN DATE_ADD(NOW(), INTERVAL – 600 MINUTE)
          AND DATE_ADD(NOW(), INTERVAL 600 MINUTE)
      order by a.gmt_create;
      
    • 查看数据量  

      640?wx_fmt=png

    • 原执行时间640?wx_fmt=png

    • 原执行计划640?wx_fmt=png

    • 初步优化思路

    1. SQL中 where条件字段类型要跟表结构一致,表中user_id 为varchar(50)类型,实际SQL用的int类型,存在隐式转换,也未添加索引。将b和c表user_id 字段改成int类型。
    2. 因存在b表和c表关联,将b和c表user_id创建索引
    3. 因存在a表和b表关联,将a和b表seller_name字段创建索引
    4. 利用复合索引消除临时表和排序

    初步优化SQL

    alter table b modify `user_id` int(10) DEFAULT NULL;
    alter table c modify `user_id` int(10) DEFAULT NULL;
    alter table c add index `idx_user_id`(`user_id`);
    alter table b add index `idx_user_id_sell_name`(`user_id`,`seller_name`);
    alter table a add index `idx_sellname_gmt_sellid`(`gmt_create`,`seller_name`,`seller_id`);
    

    查看优化后执行时间

    640?wx_fmt=png

    查看优化后执行计划640?wx_fmt=png

    查看warnings信息640?wx_fmt=png

    继续优化alter table a modify "gmt_create" datetime DEFAULT NULL;

    查看执行时间

    640?wx_fmt=png

    查看执行计划640?wx_fmt=png

    总结

    1. 查看执行计划 explain
    2. 如果有告警信息,查看告警信息 show warnings;
    3. 查看SQL涉及的表结构和索引信息
    4. 根据执行计划,思考可能的优化点
    5. 按照可能的优化点执行表结构变更、增加索引、SQL改写等操作
    6. 查看优化后的执行时间和执行计划
    7. 如果优化效果不明显,重复第四步操作
     

    系列文章

     
     

    温馨提示

    如果你喜欢本文,请关注我的个人公众号!或者关注我的个人博客www.javadaily.cn

     

     

    展开全文
  • MaxCompute SQL查询优化解析

    千人学习 2016-12-22 14:37:53
    MaxCompute是阿里云的大数据解决方案,它在跨数据中心的超大规模分布式系统上提供多种编程...这个分享会专注于SQL领域,介绍MaxCompute SQL近的发展,如何利用基于代价的优化器以及代码生成技术大幅提高了SQL查询效率。
  • sql优化的几种方式

    万次阅读 多人点赞 2018-11-05 10:20:46
    一、为什么要对SQL进行优化 我们开发项目上线初期,由于业务数据量相对较少,一些SQL的执行效率对程序运行效率的影响不太明显,而开发和运维人员也...二、SQL优化的一些方法 1.对查询进行优化,应尽量避免全表扫描...

    一、为什么要对SQL进行优化

    我们开发项目上线初期,由于业务数据量相对较少,一些SQL的执行效率对程序运行效率的影响不太明显,而开发和运维人员也无法判断SQL对程序的运行效率有多大,故很少针对SQL进行专门的优化,而随着时间的积累,业务数据量的增多,SQL的执行效率对程序的运行效率的影响逐渐增大,此时对SQL的优化就很有必要。

    二、SQL优化的一些方法

    1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。    
        
    2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:    
    select id from t where num is null    
    可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:    
    select id from t where num=0    
        
    3.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。    
        
    4.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:    
    select id from t where num=10 or num=20    
    可以这样查询:    
    select id from t where num=10    
    union all    
    select id from t where num=20    
        
    5.in 和 not in 也要慎用,否则会导致全表扫描,如:    
    select id from t where num in(1,2,3)    
    对于连续的数值,能用 between 就不要用 in 了:    
    select id from t where num between 1 and 3    
        
    6.下面的查询也将导致全表扫描:    
    select id from t where name like '%abc%'    
        
    7.应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:    
    select id from t where num/2=100    
    应改为:    
    select id from t where num=100*2    
        
    8.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:    
    select id from t where substring(name,1,3)='abc'--name以abc开头的id    
    应改为:    
    select id from t where name like 'abc%'    
        
    9.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。    
        
    10.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。    
        
    11.不要写一些没有意义的查询,如需要生成一个空表结构:    
    select col1,col2 into #t from t where 1=0    
    这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:    
    create table #t(...)    
        
    12.很多时候用 exists 代替 in 是一个好的选择:    
    select num from a where num in(select num from b)    
    用下面的语句替换:    
    select num from a where exists(select 1 from b where num=a.num)    
        
    13.并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。    
        
    14.索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,    
    因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。    
    一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。    
        
    15.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。    
    这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。    
        
    16.尽可能的使用 varchar 代替 char ,因为首先变长字段存储空间小,可以节省存储空间,    
    其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。    
        
    17.任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。    
        
    18.避免频繁创建和删除临时表,以减少系统表资源的消耗。

    19.临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使用导出表。    
        
    20.在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,    
    以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。

    21.如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。    
        
    22.尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。    
        
    23.使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。

    24.与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。
    在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。

    25.尽量避免大事务操作,提高系统并发能力。

    26.尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。
     

     

     

    展开全文
  • SQL优化--SQL优化语句的一般步骤

    万次阅读 2018-07-25 15:55:59
    --SQL优化语句的一般步骤 --1.通过show status命令了解各种SQL的执行频率 --2.定位执行效率较低的SQL语句 --3.通过EXPLAIN分析较低SQL的执行计划 --4.通过show profile分析SQL --5.通过trace分析优化器如何选择...
  • SQL优化完整详解

    万次阅读 多人点赞 2010-07-13 13:56:00
    优化SQL步骤 1. 通过 show status和应用特点了解各种 SQL的执行频率 通过 SHOW STATUS 可以提供服务器状态信息,也可以使用 mysqladmin extende d-status 命令获得。 SHOW STATUS 可以根据需要显示 session 级别...
  • 优化SQL语句

    千次阅读 2011-11-16 17:10:54
    一、优化SQL语句,如下面: 1、WHERE子句中的连接顺序.  ORACLE采用自下而上的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前, 那些可以过滤掉最大数量记录的条件必须写在WHERE子句的...
  • 优化 SQL 查询

    千次阅读 2016-12-15 21:09:27
    执行计划是数据库根据SQL语句和相关表的统计信息作出的一个查询方案,这个方案是由查询优化器自动分析产生的,比如一条SQL语句如果用来从一个 10万条记录的表中查1条记录,那查询优化器会选择“索引查找”方式,如果...
  • 利用 force index优化sql语句性能

    万次阅读 2015-07-06 18:32:34
    今天写了一个统计sql,在一个近亿条数据的表上执行,200s都查不出结果。SQL如下:select customer,count(1) c from upv_** where created between "2015-07-06" and "2015-07-07" group by ...
  • 使用SQL tuning advisor(STA)自动优化SQL

    千次阅读 2013-05-30 20:00:27
    Oracle 10g之后的优化器支持两种模式,一个是normal模式,一个是tuning模式。在大多数情况下,优化器处于normal模式。基于CBO的normal模式只考虑很小部分的执行计划集合用于选择哪个执行计划,因为它需要在尽可能短...
  • SQL优化:索引优化

    万次阅读 2017-08-22 08:18:08
     SQL索引在数据库优化中占有一个非常大的比例, 一个好的索引的设计,可以让你的效率提高几十甚至几百倍,在这里将带你一步步揭开他的神秘面纱。  1.1 什么是索引?  SQL索引有两种,聚集索引和非聚集索引,...
  • sql优化

    2020-10-19 10:00:45
    十亿的数据怎么去优化,mysql能撑得住吗?
  • ORACLE SQL DEVELOPER 优化SQL语句

    千次阅读 2016-11-08 14:39:05
    利用oracle sql developer 工具轻松实现SQL优化
  • 优化sql 语句的几种方式

    千次阅读 2015-11-17 18:10:25
    执行计划是数据库根据SQL语句和相关表的统计信息作出的一个查询方案,这个方案是由查询优化器自动分析产生的,比如一条SQL语句如果用来从一个 10万条记录的表中查1条记录,那查询优化器会选择“索引查找”方式,如果...
  • SQL性能优化

    千次阅读 多人点赞 2019-07-25 10:23:14
    SQL性能优化 本文章内容将完整发表在公众号:程序员开发者社区 ,关注后所有文章免费看。 Oracle 优化器RBO, CBO RBO 基于规则的优化器 oracle 10g开始,已经丢弃RBO CBO 基于成本的优化器 oracle 8中开始引入的 ...
  • SQL 性能优化梳理

    万次阅读 多人点赞 2019-10-09 10:33:40
    前言 本文主要针对的是关系型数据数据库MySql。键值类数据库可以参考: ... 先简单梳理下Mysql的基本概念,然后分创建时和查询时这两个阶段的优化展开。... 第二层:服务器解析并优化sql,生成...
  • MySQL 数据库性能优化之SQL优化

    千次阅读 2015-05-29 22:00:34
    数据库性能优化之SQL优化 有人反馈之前几篇文章过于理论缺少实际操作细节,这篇文章就多一些可操作性的内容吧。 注:这篇文章是以 MySQL 为背景,很多内容同时适用于其他关系型数据库,需要有一些索引知识为...
  • 定位及优化SQL语句的性能问题

    千次阅读 2018-09-05 12:29:03
    做MySQL优化,我们要善用EXPLAIN查看SQL执行计划。 下面来个简单的示例,标注(1,2,3,4,5)我们要重点关注的数据 type列,连接类型。一个好的sql语句至少要达到range级别。杜绝出现all级别 key列,使用到的索引名。...
  • 使用explain优化sql

    千次阅读 2017-07-10 15:17:12
    对于复杂、效率低的sql语句,我们通常是使用explain sql 来分析sql语句,这个语句可以打印出,语句的执行过程。这样方便我们分析,进行优化。  首先,说一下,explain查询出来的数据如何分析。 table :这一列...
  • 如何优化sql语句

    千次阅读 2018-03-06 18:07:39
    (1)选择最有效率的表名顺序(只在基于规则的优化器中有效): ORACLE的解析器按照从右到左的顺序处理FROM子句中的表名,FROM子句中写在最后的表(基础表 driving table)将被最先处理,在FROM子句中包含多个表的情况...
  • 优化SQL的技巧

    万次阅读 2016-07-03 21:15:16
    如何适当优化SQL? 许多人在使用SQL时往往会陷入一个误区,即太关注于所得的结果是否正确,而忽略了不同的实现方法之间可能存在的性能差异,这种性能差异在大型的或是复杂的数据库环境中(如联机事务处理OLTP或决策...
  • Sql执行计划,优化sql必备!

    万次阅读 多人点赞 2018-06-22 22:22:29
    SQL执行计划学习背景: 实际项目开发中,由于我们不知道实际查询的时候数据库里发生了什么事情,数据库软件是怎样扫描表、怎样使用索引的,因此,我们能感知到的就只有sql语句运行的时间,在数据规模不大时,查询是...
  • 优化 SQL Server 数据库

    千次阅读 2009-02-27 10:14:00
    4、SQL语句语法的优化。(可以用Sybase的SQL Expert,可惜我没找到unexpired的序列号) 5、清理删除日志。 SQL语句优化的基本原则: 1、使用索引来更快地遍历表。 缺省情况下建立的索引是非群集索引,但
  • 应用游标优化SQL

    千次阅读 2013-01-14 14:11:22
    公司的一个sql平常都是运行一个小时的,突然有一天3个小时还不能出来, sql如下: open cursor for SELECT PROVCODE,  AREACODE,  COUNT(DISTINCT USERNUMBER) MON_USERCOUNT,  SUM(LOGINCOUNT) AS MON_...
  • 使用DBMS_SQLTUNE优化SQL

    千次阅读 2012-10-01 21:02:38
    --创建优化任务 DECLARE my_task_name VARCHAR2 (30); my_sqltext CLOB; BEGIN my_sqltext := 'select * from test_tune t where t.owner=''SCOTT'''; my_task_name := dbms_sqltune.create_tuning_task ( ...
  • 上一章讲了如何设计一张好的表,一张好的表自然需要好的sql语句去操作它。本章就来聊聊如何优化sql语句。

空空如也

1 2 3 4 5 ... 20
收藏数 679,041
精华内容 271,616
关键字:

优化