• 所谓数字图像处理,是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。20 世纪 50 年代,电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息,这便是早期的图像处理。早期图像处理...

    所谓数字图像处理,是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。20 世纪 50 年代,电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息,这便是早期的图像处理。早期图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。数字图像处理作为一门学科大约形成于 20 世纪 60 年代初期。图像处理中,一般输入的是质量低的图像,而输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。

    下面维视图像为您简单介绍一下数字图像处理的常用技术方法:

    图像编码压缩:图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。

    图像变换:由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理。这样不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。小波变换这种方式在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。

    图像描述:图像描述是图像识别和理解的必要前提。作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。对于特殊的纹理图像可采用二维纹理特征描述。随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法。

    图像分割:图像分割是数字图像处理中的关键技术之一。图像分割是将图像中有意义的特征部分提取出来,其有意义的特征如图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一。

    图像增强和复原:图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。图像复原要求对图像降质的原因有一定的了解,一般应根据降质过程建立“降质模型”,再采用某种滤波方法,恢复或重建原来的图像。

    图像分类(识别):图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。图像分类常采用经典的模式识别方法,有统计模式分类和句法(结构)模式分类,近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视。

    接下来,维视图像再为大家讲讲图像的基本属性有哪些:

    图像的亮度:也称为灰度,它是颜色的明暗变化,常用 0 %~ 100 % ( 由黑到白 ) 表示。以下三幅图是不同亮度对比。

     

    图像的对比度:即画面黑与白的比值,也就是从黑到白的渐变层次。比值越大,从黑到白的渐变层次就越多,从而色彩表现越丰富。以下两幅图是不同对比度下的画面对比。

     

    直方图:表示图像中具有每种灰度级的象素的个数,反映图像中每种灰度出现的频率。图像在计算机中的存储形式,就像是有很多点组成一个矩阵,这些点按照行列整齐排列,每个点上的值就是图像的灰度值,直方图就是每种灰度在这个点矩阵中出现的次数。下图就是一幅图片的灰度直方图:

     

    图像的噪声:就像对于听觉而言,在打电话时对方说话我们有时候会听到很嘈杂的噪声,以至于听不清楚对方在说什么。同样的,对于图像,原本我们可以很清晰的看到一幅图像,但是有时候图像上会有一些我们不需要的图案,使我们无法很清楚的看清一幅图,这就是图像的噪声。

    除了以上我们介绍过的几种常用的数字图像处理技术方法外,一般还有:

    直方图均衡化:通过灰度变换将一幅图像转换为另一幅具有均衡直方图的图像,即在一定灰度范围内具有相同的象素点数的图像的过程。

    图像的加减运算:两幅图像的加减运算,就是将图像对应的存储矩形点列上的灰度值进行加减运算。图像相加可以将一幅图像的内容加到另一幅图像上,可以实现二次曝光,也可一对同一个场景的多幅图像求平均值,这样可以降低噪声。图像相减可以用于运动检测或去除图像中不需要的加性图案。

    常用的去噪方法:主要是采用滤波器对带噪声图像进行滤波处理,如算术平均滤波、中值滤波等。

    随着计算机技术的发展,数字图像处理技术已经深入到我们生活中的方方面面,其中,在娱乐休闲上的应用更是深入人心,如电影特效制作、电脑电子游戏、数码相机、视频播放、数字电视等。维视图像公司研发的XAVIS软件平台和SVS工业智能相机系统等,均包含了丰富的数字图像处理技术和方法,可轻松完成各种数字图像处理任务,为客户的图像处理结果提供专业而可靠的保障。

    展开全文
  • 一般认为机器视觉“是通过光学装置和非接触传感器自动地接受和处理一个真实场景的图像,通过分析图像获得所需信息或用于控制机器运动的装置”,可以看出智能图像处理技术在机器视觉中占有举足轻重的位置。...

    机器视觉(Machine Vision)是人工智能领域中发展迅速的一个重要分支,目前正处于不断突破、走向成熟的阶段。一般认为机器视觉“是通过光学装置和非接触传感器自动地接受和处理一个真实场景的图像,通过分析图像获得所需信息或用于控制机器运动的装置”,可以看出智能图像处理技术在机器视觉中占有举足轻重的位置。

     

      智能图像处理是指一类基于计算机的自适应于各种应用场合的图像处理和分析技术,本身是一个独立的理论和技术领域,但同时又是机器视觉中的一项十分重要的技术支撑。人工智能、机器视觉和智能图像处理技术之间的关系如图1所示。

    图1智能图像处理的支撑作用

     

      具有智能图像处理功能的机器视觉,相当于人们在赋予机器智能的同时为机器按上了眼睛,使机器能够“看得见”、“看得准”,可替代甚至胜过人眼做测量和判断,使得机器视觉系统可以实现高分辨率和高速度的控制。而且,机器视觉系统与被检测对象无接触,安全可靠。

     

    1. 机器视觉技术▲▲▲

     

      机器视觉的起源可追溯到20世纪60年代美国学者L.R.罗伯兹对多面体积木世界的图像处理研究,70年代麻省理工学院(MIT)人工智能实验室“机器视觉”课程的开设。到80年代,全球性机器视觉研究热潮开始兴起,出现了一些基于机器视觉的应用系统。90年代以后,随着计算机和半导体技术的飞速发展,机器视觉的理论和应用得到进一步发展。

     

      进入21世纪后,机器视觉技术的发展速度更快,已经大规模地应用于多个领域,如智能制造、智能交通、医疗卫生、安防监控等领域。目前,随着人工智能浪潮的兴起,机器视觉技术正处于不断突破、走向成熟的新阶段。

     

      在中国,机器视觉的研究和应用开始于20世纪90年代。从跟踪国外品牌产品起步,经过二十多年的努力,国内的机器视觉从无到有,从弱到强,不仅理论研究进展迅速,而且已经出现一些颇具竞争力的公司和产品。估计随着国内对机器视觉研究、开发和推广的不断深入,赶上和超越世界水平已不是遥不可及的事情了。

     

      常见机器视觉系统主要可分为两类,一类是基于计算机的,如工控机或PC,另一类是更加紧凑的嵌入式设备。典型的基于工控机的机器视觉系统主要包括:光学系统,摄像机和工控机(包含图像采集、图像处理和分析、控制/通信)等单元,如图2所示。机器视觉系统对核心的图像处理要求算法准确、快捷和稳定,同时还要求系统的实现成本低,升级换代方便。

    图2机器视觉系统案例

     

    2. 智能图像处理技术▲▲▲

      机器视觉的图像处理系统对现场的数字图像信号按照具体的应用要求进行运算和分析,根据获得的处理结果来控制现场设备的动作,其常见功能如下:

     

      (1)图像采集

      图像采集就是从工作现场获取场景图像的过程,是机器视觉的第一步,采集工具大多为CCD或CMOS照相机或摄像机。照相机采集的是单幅的图像,摄像机可以采集连续的现场图像。就一幅图像而言,它实际上是三维场景在二维图像平面上的投影,图像中某一点的彩色(亮度和色度)是场景中对应点彩色的反映。这就是我们可以用采集图像来替代真实场景的根本依据所在。

     

      如果相机是模拟信号输出,需要将模拟图像信号数字化后送给计算机(包括嵌入式系统)处理。现在大部分相机都可直接输出数字图像信号,可以免除模数转换这一步骤。不仅如此,现在相机的数字输出接口也是标准化的,如USB、VGA、1394、HDMI、WiFi、Blue Tooth接口等,可以直接送入计算机进行处理,以免除在图像输出和计算机之间加接一块图像采集卡的麻烦。后续的图像处理工作往往是由计算机或嵌入式系统以软件的方式进行。

     

      (2)图像预处理

      对于采集到的数字化的现场图像,由于受到设备和环境因素的影响,往往会受到不同程度的干扰,如噪声、几何形变、彩色失调等,都会妨碍接下来的处理环节。为此,必须对采集图像进行预处理。常见的预处理包括噪声消除、几何校正、直方图均衡等处理。

      通常使用时域或频域滤波的方法来去除图像中的噪声;采用几何变换的办法来校正图像的几何失真;采用直方图均衡、同态滤波等方法来减轻图像的彩色偏离。总之,通过这一系列的图像预处理技术,对采集图像进行“加工”,为体机器视觉应用提供“更好”、“更有用”的图像。

     

      (3)图像分割

      图像分割就是按照应用要求,把图像分成各具特征的区域,从中提取出感兴趣目标。在图像中常见的特征有灰度、彩色、纹理、边缘、角点等。例如,对汽车装配流水线图像进行分割,分成背景区域和工件区域,提供给后续处理单元对工件安装部分的处理。

     

      图像分割多年来一直是图像处理中的难题,至今已有种类繁多的分割算法,但是效果往往并不理想。近来,人们利用基于神经网络的深度学习方法进行图像分割,其性能胜过传统算法。

     

      (4)目标识别和分类

      在制造或安防等行业,机器视觉都离不开对输入图像的目标进行识别和分类处理,以便在此基础上完成后续的判断和操作。识别和分类技术有很多相同的地方,常常在目标识别完成后,目标的类别也就明确了。近来的图像识别技术正在跨越传统方法,形成以神经网络为主流的智能化图像识别方法,如卷积神经网络(CNN)、回归神经网络(RNN)等一类性能优越的方法。

     

      (5)目标定位和测量

      在智能制造中,最常见的工作就是对目标工件进行安装,但是在安装前往往需要先对目标进行定位,安装后还需对目标进行测量。安装和测量都需要保持较高的精度和速度,如毫米级精度(甚至更小),毫秒级速度。这种高精度、高速度的定位和测量,倚靠通常的机械或人工的方法是难以办到的。在机器视觉中,采用图像处理的办法,对安装现场图像进行处理,按照目标和图像之间的复杂映射关系进行处理,从而快速精准地完成定位和测量任务。

     

      (6)目标检测和跟踪

      图像处理中的运动目标检测和跟踪,就是实时检测摄像机捕获的场景图像中是否有运动目标,并预测它下一步的运动方向和趋势,即跟踪。并及时将这些运动数据提交给后续的分析和控制处理,形成相应的控制动作。图像采集一般使用单个摄像机,如果需要也可以使用两个摄像机,模仿人的双目视觉而获得场景的立体信息,这样更加有利于目标检测和跟踪处理。

    3. 机器视觉的应用▲▲▲

      如图3所示,机器视觉应用广泛,如安防、制造、教育、出版、医疗、交通、军事领域等。在这些机器数额的应用中,智能图像处理都是不可或缺的,这里仅简要介绍其中几个方面的应用。

    图3常见机器视觉应用场合

     

      (1)智能制造

      为了实现中国智能制造2025这一宏伟目标,离不开机器视觉。例如,在智能图像处理一直处于领先地位的广东迅通科技股份有限公司(以下简称“迅通科技”)针对这一需求开发出了机器视觉分析仪平台,见图4。其中,迅通科技为某知名汽车厂商装配流水线开发的车门限位器自动定位、检测和识别的系统,见图5。该系统通过智能图像识别方式,自动检测型号是否正确,定位是否准确,完全代替了人工操作,检测准确率达到100%。此前,每个工位需要4个工人用眼睛来检查、定位16种型号限位器,员工不仅很容易疲劳,还时常出现差错。

      (2)教育考试

      考试试卷时常发现因排版或印刷错误影响学生考试,利用智能图像处理技术,机器自动对印刷后的试卷和原版试卷进行比对,发现不一致之处,会自动提示并报警,完全替代之前只能通过人工对试卷进行校验。

     

      (3)出版印刷

      和教育考试类似,专业出版印刷厂由于印刷的图书、报纸杂志,以及承接来自企业产品包装和宣传资料的种类多,数量大,排版和印刷中经常出错。为此,需安排不少专业人员进行校对,耗费大量的资金和时间。通过利用智能图像处理技术进行自动校对,既提高了校对准确度,又缩短了校对时间,降低了印刷成本,缩短了出版物的交付周期。

     

      (4)安防监控

      这是当前备受机器视觉关注的一个领域。机器视觉打破了传统视频监控系统的限制,增加了系统的智能,使得智能视频分析得以逐步实现。以公共场所的视频监控为例,通过运用机器视觉技术,可以实现对可疑人物的自动检测、人脸识别、实时跟踪,必要时还可以实现多摄像机接连跟踪,同时发出告警,存储现场信息。

     

      (5)智能交通

      机器视觉在交通领域有着广泛的应用。例如,在高速公路上及卡口处,对来往车辆进行车型、牌照等识别,甚至对行驶车辆的违规行为进行识别。在汽车上对驾驶员面部图像进行分析,判断驾驶员是否处于疲劳驾驶状态。再如,无人驾驶汽车借助于机器视觉技术,使用摄像头、激光/毫米波/超声波雷达、GPS等感知道路环境信息,自动规划和控制车辆的安全行驶。

     

      有数据显示,2016年全球机器视觉系统的市场规模约46亿美元, 2017年约50亿美元,预计2018年达到55亿美元,年增长率为10%左右。中国机器视觉市场的增长是从2010年开始的,2017年市场规模约68亿元,预计到2020年或达780亿元,市场增长率将超过100%。

    4. 技术瓶颈及今后的发展▲▲▲

      在机器视觉的智能图像处理技术的发展中,还存在不少技术瓶颈,如:

      1)稳定性:某种处理方法往往在研究和开发中表现良好,但在复杂多变的应用环境中,却不时地出现问题。例如人脸识别系统,在目标配合时识别率可高达95%以上,但在实际监控环境下,识别率就会大大下降。

      2)实时性:如果图像的采集速度、处理速度较慢,再加上新近引入的深度学习类算法,加大了系统实时处理的难度,跟不上机器运行和控制的节奏。

      3)准确性:机器视觉系统要求图像识别和测量的准确性接近100%,任何微小的误差都有可能带来不可预测的后果。例如目标定位的误差会使装配出来的设备不符合要求。

      4)系统能力:目前的嵌入式图像处理系统,存在芯片的计算能力不足,存储空间有限等问题,常常不能满足运算量较大的图像处理运算,如神经网络的迭代运算,大规模矩阵运算等。

     

      今后机器视觉中智能图像处理的发展主要体现在以下几个方面:

      1)算法:传统算法继续不断有所突破,新一波人工智能浪潮带来不少新的性能优良的图像处理算法,如深度学习(DL),卷积神经网络(CNN),生成对抗网络(GAN),等等。

      2)实时性:出现更多结构新颖、资源充足、运算快速的硬件平台支撑,例如基于多CPU、多GPU的并行处理结构的计算机,海量存储单元等。

      3)嵌入式:新的高速的信号处理器阵列,超大规模FPGA芯片。

      4)融合处理:从单图像传感器发展到多传感器(多视点)的融合处理,可更加充分地获取现场信息。还可融合多类传感器,如图像传感器、声音传感器、温度传感器等共同完对现场目标定位、识别和测量。

     

      总之,无论是“中国制造2025”还是“工业4.0”都离不开人工智能,离不开计算机视觉,而智能图像处理是机器视觉的核心技术,随着图像处理水平的不断提高,一定会有力地推动机器视觉的迅速发展。

     

    深圳辰视智能科技有限公司是一家集机器视觉、工业智能化于一体的高新技术企业,是由一支中国科学院机器视觉技术研究的精英团队在深圳创立。

    辰视智能拥有基于深度学习的三维视觉引导、机器人运动控制、视觉检测、三维建模等方面的核心技术,并研发了机器人三维视觉引导系统 、机器人二维视觉引导系统、三维检测系统、产品外观检测系统等可根据客户需求定制化的智能产品。以高效·低成本·模块化的方式为自动化集成商、自动化设备厂商、机器人厂家提供机器视觉的相关解决方案。

    辰视智能致力于技术的不断研究、创新、突破,为合作伙伴提供世界领先的机器视觉产品及技术。

    展开全文
  • 航天和航空技术方面的应用数字图像处理技术在航天和航空技术方面的应用,除了JPL对月球、火星照片的处理之外,另一方面的应用是在飞机遥感和卫星遥感技术中。许多国家每天派出很多侦察飞机对地球上有兴趣的地...

    数字图像处理应用领域

    图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大。

    1)航天和航空方面

    航天和航空技术方面的应用数字图像处理技术在航天和航空技术方面的应用,除了JPL对月球、火星照片的处理之外,另一方面的应用是在飞机遥感和卫星遥感技术中。许多国家每天派出很多侦察飞机对地球上有兴趣的地区进行大量的空中摄影。对由此得来的照片进行处理分析,以前需要雇用几千人,而现在改用配备有高级计算机的图像处理系统来判读分析,既节省人力,又加快了速度,还可以从照片中提取人工所不能发现的大量有用情报。从60年代末以来,美国及一些国际组织发射了资源遥感卫星(如LANDSAT系列)和天空实验室(如SKYLAB),由于成像条件受飞行器位置、姿态、环境条件等影响,图像质量总不是很高。因此,以如此昂贵的代价进行简单直观的判读来获取图像是不合算的,而必须采用数字图像处理技术。如LANDSAT系列陆地卫星,采用多波段扫描器(MSS),在900km高空对地球每一个地区以18天为一周期进行扫描成像,其图像分辨率大致相当于地面上十几米或100米左右(如1983年发射的LANDSAT-4,分辨率为30m)。这些图像在空中先处理(数字化,编码)成数字信号存入磁带中,在卫星经过地面站上空时,再高速传送下来,然后由处理中心分析判读。这些图像无论是在成像、存储、传输过程中,还是在判读分析中,都必须采用很多数字图像处理方法。现在世界各国都在利用陆地卫星所获取的图像进行资源调查(如森林调查、海洋泥沙和渔业调查、水资源调查等),灾害检测(如病虫害检测、水火检测、环境污染检测等),资源勘察(如石油勘查、矿产量探测、大型工程地理位置勘探分析等),农业规划(如土壤营养、水份和农作物生长、产量的估算等),城市规划(如地质结构、水源及环境分析等)。中国也陆续开展了以上诸方面的一些实际应用,并获得了良好的效果。在气象预报和对太空其它星球研究方面,数字图像处理技术也发挥了相当大的作用。

    2)生物医学工程方面

    数字图像处理在生物医学工程方面的应用十分广泛,而且很有成效。除了上面介绍的CT技术之外,还有一类是对医用显微图像的处理分析,如红细胞、白细胞分类,染色体分析,癌细胞识别等。此外,在X光肺部图像增晰超声波图像处理心电图分析立体定向放射治疗等医学诊断方面都广泛地应用图像处理技术。

    3)通信工程方面

    当前通信的主要发展方向是声音、文字、图像和数据结合的多媒体通信。具体地讲是将电话、电视和计算机以三网合一的方式在数字通信网上传输。其中以图像通信最为复杂和困难,因图像的数据量十分巨大,如传送彩色电视信号的速率达100Mbit/s以上。要将这样高速率的数据实时传送出去,必须采用编码技术来压缩信息的比特量。在一定意义上讲,编码压缩是这些技术成败的关键。除了已应用较广泛的熵编码、DPCM编码、变换编码外,国内外正在大力开发研究新的编码方法,如分行编码、自适应网络编码、小波变换图像压缩编码等。

    4)工业和工程方面

    在工业和工程领域中图像处理技术有着广泛的应用,如自动装配线中检测零件的质量、并对零件进行分类印刷电路板疵病检查弹性力学照片的应力分析流体力学图片的阻力和升力分析邮政信件的自动分拣,在一些有毒、放射性环境内识别工件及物体的形状和排列状态,先进的设计和制造技术中采用工业视觉等等。其中值得一提的是研制具备视觉、听觉和触觉功能的智能机器人,将会给工农业生产带来新的激励,目前已在工业生产中的喷漆、焊接、装配中得到有效的利用。

    5)军事、公安方面

    在军事方面图像处理和识别主要用于导弹的精确末制导,各种侦察照片的判读,具有图像传输、存储和显示的军事自动化指挥系统,飞机、坦克和军舰模拟训练系统等;公安业务图片的判读分析,指纹识别,人脸鉴别,不完整图片的复原,以及交通监控、事故分析等。目前已投入运行的高速公路不停车自动收费系统中的车辆和车牌的自动识别都是图像处理技术成功应用的例子。

    6)文化艺术方面

    目前这类应用有电视画面的数字编辑,动画的制作,电子图像游戏,纺织工艺品设计,服装设计与制作,发型设计,文物资料照片的复制和修复,运动员动作分析和评分等等,现在已逐渐形成一门新的艺术–计算机美术。

    7)机器人视觉

    机器视觉作为智能机器人的重要感觉器官,主要进行三维景物理解和识别,是目前处于研究之中的开放课题。机器视觉主要用于军事侦察、危险环境的自主机器人邮政、医院和家庭服务的智能机器人,装配线工件识别、定位,太空机器人的自动操作等。

    8)视频和多媒体系统

    目前,电视制作系统广泛使用的图像处理、变换、合成,多媒体系统中静止图像和动态图像的采集、压缩、处理、存贮和传输等。

    9)科学可视化

    图像处理和图形学紧密结合,形成了科学研究各个领域新型的研究工具。

    10)电子商务

    在当前呼声甚高的电子商务中,图像处理技术也大有可为,如身份认证、产品防伪、水印技术等。
    总之,图像处理技术应用领域相当广泛,已在国家安全、经济发展、日常生活中充当越来越重要的角色,对国计民生的作用不可低估。

    展开全文
  • 电子科技大学 格拉斯哥学院 2017级 甘诗语 (一)前言 21世纪是一个充满信息的时代,图像作为人类感知世界的视觉基础,是人类获取信息、表达信息和传递信息的重要手段。因此,如何获得准确的图像也...图像处理技术...

    电子科技大学 格拉斯哥学院 2017级 甘诗语
    (一)前言
    21世纪是一个充满信息的时代,图像作为人类感知世界的视觉基础,是人类获取信息、表达信息和传递信息的重要手段。因此,如何获得准确的图像也成为了21世纪的一个重要话题。
    (二)正文
    图像处理(image processing)又称为影像处理,是用计算机对图像进行达到所需结果的技术。起源于20世纪20年代,一般为数字图像处理。图像处理技术的主要内容包括图像压缩、增强复原、匹配描述识别3个部分,常见的处理有图像数字化、图像编码、图像增强、图像复原、图像分割和图像分析等。图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为。而图像作为人类感知世界的视觉基础,是人类获取信息、表达信息和传递信息的重要手段,因此,图像处理技术对于现代生活有着不可或缺的作用。
    一般而言,按照颜色和灰度的多少可以将图像分为二值图像、灰度图像、索引图像和真彩色RGB图像四种基本类型。二值图像的二维矩阵仅由0、1两个值构成,“0”代表黑色,“1”代白色,通常用于文字、线条图的扫描识别(OCR)和掩膜图像的存储。灰度图像矩阵元素的取值范围通常为[0,255]。因此其数据类型一般为8位无符号整数的(int8),这就是人们经常提到的256灰度图像。“0”表示纯黑色,“255”表示纯白色,中间的数字从小到大表示由黑到白的过渡色。索引图像的文件结构比较复杂,除了存放图像的二维矩阵外,还包括一个称之为颜色索引矩阵MAP的二维数组。RGB图像与索引图像一样都可以用来表示彩色图像。与索引图像一样,它分别用红(R)、绿(G)、蓝(B)三原色的组合来表示每个像素的颜色。但与索引图像不同的是,RGB图像每一个像素的颜色值(由RGB三原色表示)直接存放在图像矩阵中,由于每一像素的颜色需由R、G、B三个分量来表示,M、N分别表示图像的行列数,三个M x N的二维矩阵分别表示各个像素的R、G、B三个颜色分量。RGB图像的数据类型一般为8位无符号整形,通常用于表示和存放真彩色图像。
    通过取样和量化过程将一个以自然形式存在的图像变换为适合计算机处理的数字形式。图像在计算机内部被表示为一个数字矩阵。通过数字化后的图像数据往往十分巨大,因此为了便于图像的传输和储存,图像编码和压缩也十分的重要。
    以上为图像处理的基本介绍。除此之外,图像处理还具有强化图像和复原图像的能力,这一作用就显得图像处理的重要性了。因此,我认为,图像处理技术在气象监测、卫星探测、医用检查、甚至考古等方面都有着很大的价值。通过卫星拍摄得到的气象图片通常会有模糊,且图像的对比度不明显,这些图像上的不足给气象分析带来了很多困难。图像处理可以改进图像的质量,是图像对比度增加,滤去图片上不必要的因素,是气象图片更具有专一和针对性,使得气象分析更精准。同理,图像处理技术对于医学方面的检查也具有类似重要的作用。人眼的分辨率有限,且人眼容易疲劳也不能自动滤去不重要的信息,因此图像处理技术的优良特性正好可以作为人类的“眼睛”去精确的观测这个世界。
    图像处理技术的复原技术也能让我们在考古方面更进一步。如果能得到清晰明确的考古材料,人类的考古工作也会容易很多。然而出土的古典文献、绘画浮雕大多经过了岁月的风化,已经模糊不清,考古人员无法精确地获得信息。此时,图像复原技术就显示出重要的作用。图像复原常用二种方法。当不知道图像本身的性质时,可以建立退化源的数学模型,然后施行复原算法除去或减少退化源的影响。当有了关于图像本身的先验知识时,可以建立原始图像的模型,然后在观测到的退化图像中通过检测原始图像而复原图像。
    (三)结论
    图像处理技术或许不像雷达导弹技术那样,能够直接给社会带来很多收益。相对而言,图像处理技术更像是一种“软技术”、“辅助技术”。它能够将图像整理得更适合人们的视角,让信息以一种更加清晰的方式呈现在人们的面前。同时,成熟的图像处理技术势必会为其他技术的发展提供方便。

    展开全文
  • 图像处理在医学方面的应用 1、背景: 在上学期的新生研讨课中,曾兵院长介绍了图像处理的相关原理和应用图像处理(image processing)是一种用计算机对图像进行分析,以达到所需结果的技术。在获得图像之后,需要...
  • 针对智能交通系统、数字图像处理技术的特点,我们可以着重分析研究数字图像处理技术在智能交通系统中信息采集、车牌识别、车辆检测与跟踪等多方面的应用。 介绍:图像处理,是指用计算机对图像进行分析,以达到所需...
  • 四种主流的视频图像处理技术——北京明景科技 数字视频和数字图像比传统的图像和视频分辨率要高,处理方便,易于操作和整理。但由于部分设备性能不足、客观条件限制等因素,在实际的视频监控应用中,仍会出现...
  • 数字图像处理技术

    2018-11-25 19:28:31
    数字图像处理技术 所谓数字图像处理,是指利用计算机对图像进行分析、加工、和处理,使其满足视觉、心理或其他要求的技术,主要有去除噪声、增强、复原、分割、提取特征等处理的方法。20 世纪 50 年代,电子计算机...
  • 数字图像处理技术在当代社会发展迅速,发挥着不可替代的作用,被广泛应用于航空航天、通信、医学工业生产等领域中。随着现代科技的不断发展、技术的不断进步,人们对数字图像处理的速度和质量提出了越来越高的要求...
  • 多核结构处理、GPU处理FPGA很快在实时性图像处理领域得到了迅速的发展。本章将重点介绍基于FPGA的实时性图像处理。 FPGA通过为每个功能建立单独的硬件来实现整个应用程序所需要的逻辑功能,这使其很适合图像...
  • 图像处理在刑事侦查中的应用 摘要 本文是基于电子科技大学新生研讨课上所了解到的内容,个人在课下思考后的想法。在曾兵教授的课上,我们第一次了解到了图像与视频处理技术。我认为该项技术目前所能达到的成果...
  • 数字图像处理的发展 20世纪60年代随着计算机技术的发展而发展起来的新兴技术。早期图像处理的目的是改善图像的质量,以人为对象,以改善人的视觉效果为目的;1964年美国最新喷气推进实验室对航天探测器“徘徊者7号”...
  • 本书详细介绍了利用Delphi进行图像处理技术,常用的图像格式,以及Delphi图像处理的常用方法Scanline。本书共8章,内容包括图像的基本概念、图像的点运算、图像的几何变换、图像的颜色系统、图像的增强、图像代数...
  • 一,前言卷积神经网络(Constitutional Neural Networks, CNN)是在多层神经网络的基础上发展起来的针对图像分类和识别而特别设计的一种深度学习方法。先回顾一下多层神经网络: 多层神经网络包括一个输入层和一个...
  • 下载地址:网盘下载内容简介前言当前,信息处理技术和计算机技术取得了长足的进步,数字图像处理技术已在工业检测、航空航天、星球探测、军事侦察、公安防暴、人机交互、文化艺术等领域受到了广泛的重视并取得了众多...
  • 数字图像处理主要有两个目的: 1、改善图示的信息以便人们解释;2、为存储、传输和表示而对图像进行的处理。   数字图像处理是什么: 数字图像可以理解为一个二维函数f(x,y),其中 x 和 y 是空间(平面)坐标,而...
  • 图像处理(image processing),用计算机对图像进行分析,以达到所需...图像处理技术一般包括图像压缩,增强和复原,匹配、描述和识别3个部分。 概述 编辑 21世纪是一个充满信息的时代,图像作为人类感知世
  • 数字图像处理方法的重要性源于两个主要应用领域: 改善图像信息以便解释。 为存储、传输和表示而对图像数据进行处理,以便于机器自动理解。 图像处理(image processing): 用计算机对图像...
  • 人工智能与图像处理在机器人视觉中的应用 在大一学期我参加了学院所组织的新生研讨课,其中图像处理的内容引起了我的兴趣,本文便是基于课上所讲内容与个人思考见解所写。 当我们提到图像处理,我们都会不约而同的...
1 2 3 4 5 ... 20
收藏数 121,030
精华内容 48,412