2013-12-24 12:32:07 zmycoco2 阅读数 6242


本科毕业设计(论文)开题报告

 


         

课题名称

基于数字图像处理的车牌定位和分割的研究

毕业设计的内容和意义 

采用数字图像处理的原理和技术,进行车牌区域的准确定位和分割的研究,给出相应的算法,并通过VC编程实现。

毕业设计的具体内容:

1.熟悉和了解数字图像处理的原理和技术。

2.熟悉VC的编程和调试方法。

3.掌握数字图像处理的常规算法,尤其对图像的几何校正,边缘检测、区域定位和图像分割原理和算法要有深入的了解。

4. 完成车牌区域的准确定位和分割的设计方案,给出相应的算法,并通过编程实现。

本课题研究的意义:

在交通路口的违章监视,在高速公路收费入口,在涵洞、桥梁的入口以及在停车场和加油站的管理中,都需要对汽车牌照进行记录,而目前这些工作大多数都是由人工完成的,工作量很大,有时也难免会出现错误,如果改用智能系统进行自动的检测和识别,则会大大提高工作的速度,降低管理人员的工作量,提高服务的效率与质量。

在国内现有技术的基础之上进一步研究汽车牌照智能识别技术实现对实时采集到的汽车牌照图像进行分析,准确定位分割、提取出图像中的汽车牌照,并快速自动智能地识别出汽车牌照,还可以全面消除人为因素,因而对车牌识别技术的研究和应用系统开发具有重要的现实意义。

车牌自动识别系统从上一世纪80年代开始进入应用研究阶段、这个阶段的研究没有形成完整的系统体系,而是就某一具体的问题进行研究,通常采用简单的图像处理方法来解决。进入20世纪90年代后,随着计算机视觉的发展和计算机性能的提高,开始出现车牌识别的系统化研究。中国、美国、日本、法国等国家相继投入大量的人力、物力进行应用研究,随着社会的进一步发展,交通状况急需更快的发展来适应经济发展需要,各国更加关注对该系统的研究和应用。

文献[1]中阐述了智能交通系统的概念于1990年由美国智能交通学会(ITS America,当时名称为IVHS America)提出,并在世界各国大力推广。经过10多年的推广、试行和发展,智能交通系统目前己在世界上经济发达国家和经济较为发达国家的一些都市及高速公路系统中实施。实践证明,迄今为止,在美国、欧洲、亚洲都已有成功应用的范例。在国外,以色列Hi-Tech公司的See/Car System系列,香港Asia VisionTechnology公司的VECON产品,新加坡Optasia公司的VLPRS系列都是比较成熟的产品。虽然国外汽车牌照识别系统研究工作己有一定进展,但并不适合我国汽车牌照识别,其原因主要有我国车牌本身的特点决定的。我国车辆牌照缺乏统一的标准,根据不同汽车、车型、用途,规定了多种牌照格式(例如分为军车、警车、普通车等);悬挂位置随机,使得车牌识别过程中缺乏规律,使车牌定位分割、字符切分难度增加,准确性降低;车牌长期暴露易受污损,使得车牌区域模糊不清,易发生粘连、断裂等现象,在国外发达国家不允许由于环境、道路或人为因素造成汽车牌照污染严重的车辆上路行驶;我国车辆牌照由汉字、字母和数字组成,汉字的识别与字母和数字的识别有很大的不同,从而增加了识别的难度;其他国家汽车牌照的底色和字符颜色统一,只有对比度较强的两种颜色,而我国汽车牌照底色和字符有蓝/白、黑/红、黑/白等多种颜色组合;还有设置的营运牌照及张贴的广告信息,容易在车牌定位时产生干扰、误定位;车牌附近环境恶劣,往往有复杂的外形及安全杠等,不利于快速定位。

文献[2]中阐述了国内在90年代也开始了车牌识别的研究。由于中国车牌与国外的差异,加上车牌上汉字的存在。所以照搬国外的技术并不完全可行。对于国内的己应用系统中较成功的有浙江大学开发的基于web模式的LPR系统,中科院自动化研究所汉王科技公司开发的“汉王眼车牌识别系统”。另外,亚洲视觉科技有限公司、深圳吉通电子有限公司、中国信息产业部下属的中智交通电子有限公司等也有自己的产品,另外西安交通大学的图像处理和识别研究室、上海交通大学的计算机科学和工程系、清华大学人工智能国家重点实验室等也做过类似的研究。目前这些系统普遍存在的问题有:全天候识别率并不稳定,

特别是在夜间,或不良天气下识别率会降低到50%左右。还有许多其它问题需要解决,如国内许多论文谈及已实现的系统,都是在对近似理想条件下的汽车图像识别,对于车牌倾斜角度很大,车牌上字符模糊等情况提出的解决办法甚少。因此这样的系统即使识别率较高,也是建立在苛刻的特定的拍照环境下的。车牌自动识别系统产品中还存在一些不足,因而LPR技术的研究还有许多工作要做:从目前一些产品的性能指标可以看出,LPR系统的识别率和识别速度有待提高。研究高速、准确的定位与识别算法是当前的主要任务。上述产品中所使用的汽车图像均为灰度图像,而车牌本身是彩色物体,其底色和字符颜色为有限的几种,具有明显的颜色特征,车牌定位及字符的分割和识别没有用到颜色特征,采用彩色图像模式,目前的算法也很少涉及颜色特征,这在一定程度上影响了系统的性能。对于车牌彩色信息的利用有待于深入研究。另外目前只能处理单个车牌的汽车图像,对于一幅图像中多个车牌的识别则无能为力。这使得目前对多个车道进行监控时,需要多套摄像设备和车牌识别所需的计算机。如能深入研究一幅图像中多个车牌的识别问题,则可降低系统成本,提高工作效率。

所以从技术上对牌照自动识别系统进行进一步的改进完善是很有必要的。在软件上这主要要求提高字符识别率,同时提高软件的运行速度,提高实时性。相信随着研究的深入,LPR技术定会走向成熟。

文献[3]中阐述了目前国内外汽车牌照定位与识别技术主要采用软硬结合方式和软件方式两种技术方案。所谓软硬结合方式,就是首先通过专用的图像抓拍设备获取一幅适合于计算机识别汽车牌照的高质量图像,然后用软件和硬件结合的方式对所获取的专用图像进行牌照识别,它的最大优点就是识别率高,能够全天候工作。所谓软件方式,就是通过识别软件对普通的车辆图像进行牌照识别,它的最大优点就是成本低,通用性好。车牌自动识别系统主要有摄像装置、视频采集接口、计算机和辅助照明装置组成。计算机通过视频采集接口采集摄像装置摄入的视频图像,经处理和识别得到车牌号。在自然光较暗影响识别效果时,由辅助照明装置提供摄像光源。硬件部分包括车辆感应器,高速摄影装置等。车辆感应器的功能是感应车辆的到来,触发高速摄影装置在一定时间内动作抓拍图像。如在高速公路上,通常在收费处前方公路两侧埋置电磁感应圈,当车辆驶入感应区内,电磁感应圈产生电流,触发摄影头工作。除此之外,还有激光红外线车辆感应器等。埋置电磁感应线圈的缺点是工程量大,而激光红外线车辆感应器容易引起二次触发,即脱车引起的触发拍照。动态车牌图像捕捉系统主要由高分辨率摄像机,多光谱照明灯,图像处理器及控制器组成。它根据亮度变化,即可完成车牌的抓拍。相比而言,动态车牌图像捕捉

系统可以在白天和夜间等多种情况下工作,清楚捕捉高速运动中的汽车牌照图像,其效果不受日光,车灯等环境因素的影响。大量实验表明该方案是最理想的解决可靠性的方案。

图像输入通常由硬件完成,牌照定位与字符识别通常由软件完成。

文献[4][5][6]中阐述了日前存在的大量的车牌定位算法,选择一个好的定位算法成为车牌识别的一个关键问题。文中针对基于投影法的车牌定位算法。在VC平台上对车牌图像进行预处理后,再通过找点和标出矩形即可实现车牌的定位。通过大量的试验得出,本算法可以解决车牌定位时遇到的绝大部分问题,具有较高的研究价值和社会经济效益。

文献[7]中对智能交通系统的核心技术——汽车牌照识别技术进行了研究,在图像处理技术的基础上,着重研究了车牌区域定位技术,析了日前有代表性的车牌定位方法,介绍了利用粒子图像测速关联PIV(Particle Image Velocimeter)算法原理,提出了一种采用车牌字符笔画2个边缘互相关值最大的方法进行车牌定位的算法,准确而快速地检出了车牌区域,为后续车牌字符识别打下了很好的基础。

文献[8][9][10][11]中阐述了针对不同尺寸车牌图像的定位问题,提出了一种新的自适应车牌定位方法。该方法首先根据车牌区域的共性来提取图像的纵向边缘;然后由车牌区纵向纹理和边缘密度等特征,采用一系列步骤自适应去除干扰边缘来保留类车牌特征区域;最后通过横向形态学运算使类车牌区闭合,以有效地克服以往形态学结构元素难以随车牌尺寸变化自适应选取的问题;同时提出了根据场景实际情况,选用灰度调整和颜色来判别模块的观点。通过实际场景中大量车牌样本的验证结果表明,该算法不仅准确率较高,而且自适应性良好,具有实用价值。

参考文献:

[1] 刘允才.智能交通国际发展概况和国内优先考虑的课题[J].公路,2001,11(11):26-34.

[2] Liu Jilin,Ma Hongqing.A High Performance License Plate Recognition System Basedon the Web Technique[D].

[3] 郑南宁,张西宁,戴莹,朱海安.行驶车辆牌照自动识别系统[J].西安交通大学学报,1991,l:43-53.

[4] 张俭鸽,李娜.车牌定位在VC中的实现[J].中国科技信息,2009, (13):123-124.

[5] 郑影.基于VC++的汽车牌照定位与识别系统的设计[D].吉林大学硕士学位论文,2009.

[6] 张宏林.精通Visual C++数字图像模式识别技术及工程实践[M]:第2版.北

京:人民邮电出版社,2008.

[7] 张丽伟,张晶.基于图像处理的车牌定位方法的研究[J].长春工程学院学报(自然科学版),2009,10(2):100-103.

[8] 李宇成,阴亮.基于图像的运动车辆速度测量[J].北方工业大学学报,2008(3):32—36.

[9] 王广宇.汽车牌照识别系统综述[J].郑州轻工业学院学报(自然科学报),2001,16(2):47-50.

[10] 李波,曾致远,周建中.一种自适应车牌图像定位新方法[J].中国图象图形学报,2009,14(10):1978-1984.

[11]Kenneth.R.Castleman.Digital Image Processing,Prentice Hall.1998,4.

本课题主要利用数字图像处理的原理和技术,完成车牌区域的准确定位和分割的设计方案,研究相应的算法,并通过编程实现。

其具体内容如下:

1、理解和掌握数字图像处理的原理和技术,能熟练运用数字图像处理的常规算法。

2、深入研究预处理中的灰度化、二值化、背景削弱、中值滤波等原理,以及图像的灰度变换空间滤波处理等,探索车牌定位常用的方法,研究现在流行的一些算法,总结出其优点和缺点,能够继承传统方法的优点,并加以改进和提高。

3、掌握算法实现的编程语言,熟练运用设计实现的平台Visual C++ 6.0,提高查阅资料的能力,并通过编程实现车牌的定位。

4、研究一种新型的车牌定位方法,本课题采用多层次分割的思想,每次分割都尽可能地减少分析范围,经过多次分割后最终定位出车牌区域。

第1-2周     收集资料,熟悉课题,确定系统总体研究方案。

第3周        熟悉资料,写出开题报告。

第4—5周     熟悉数字图像处理的主要内容。

第6—7周     熟悉VC语言的编程和调试方法。

第8—9周     熟悉并掌握数字图像的常规算法,重点研究边缘检测和区域分割等算法。

第10-11周   用VC编程实现并调试各个处理模块。

第12-13周   对整个系统进行软件联调,整理设计成果。

第14周       撰写论文。

第15周       修改论文,准备答辩。

第16周       毕业答辩。

在车辆识别系统中,牌照区域定位是影响车牌识别系统性能的重要因素之一车牌定位准确与否直接影响字符识别的准确率,以往的拍照定位重要包括:J.Barroso等基于提出的基于水平线搜索的定位方法;R.Parisi提出的机遇TFC变换的频域分析法;Charl Coeitzee等提出的基于Niblack二值化算法及自适应边界搜索算法的定位方法。这些方法或者对背景比较复及光照条件比较敏感,或者定位速度比较慢,为了克服这些缺陷,本课题提出了基于特征的车辆牌照实时定位算法和多层次分割算法,能够更高效地实现车牌的准确定位和分割,充分体现了该系统的实时性。

指导教师

意  见

指导教师签名:

         年   月   日

教研室意见

  主任签名:

      年   月   日

系部意见

 

                                         教学主任签名:

                                                 年   月   日

 

2019-07-02 22:08:48 qq_37486501 阅读数 155

数字图像处理中的图像分割

  1. 图像分割: 将图像分割成若干个互不相交的区域
  2. 基于灰度的不连续性
    (1): 边缘检测
    [
    基于一阶微分的各种梯度算子:
    基于二阶微分的拉普拉斯算子
    高斯-拉普拉斯算子(LOG算子): 用高斯平滑去噪, 用拉普拉斯进行边缘检测
    ]
    (2):轮廓提取与跟踪
    轮廓提取: 掏空内部点, 背景白前景黑, 从左上角扫描为“黑”=0, 且8邻域也都为黑, 则说明该像素点是目标物体内部点, 置”白“=1
    轮廓跟踪: 顺序地找出目标区域边界上的像素点, 以跟踪目标边界, 并且同时记录边界信息(边界链码)
    (3):Hough变换
  3. 基于灰度的相似性
    (1):灰度阈值分割:
    用一个或者几个灰度阈值T 将图像的灰度级范围分成几个部分, 将每个像素的灰度值和阈值相比较, 根据比较结果将像素归类——前景目标与背景区分开
    (2): 基于区域的分割
    [
    区域生长: 灰度相似则扩展
    区域的分裂与合并 : 按某种一致性准则, 不断分裂, 合并区域
    ]
2017-12-17 10:51:28 sinat_39805237 阅读数 1002

五 基于区域的分割

1区域生长算法借助种子连接预先设定的性质相似的区域


2.区域分裂与聚合

将原图作为树根R,选择属性Q,如果不满足Q就对区域进行分割,每次分成四个象限。从R开始,不满足Q就分成4个象限,其中满足Q的不再分割,不满足的继续分成四个象限,直到规定最小的尺寸结束。然后对分割后的进行聚合,当连接区域共同满足Q时,才连接到一起,最终满足分割要求。


六 分水岭算法

原理:给一幅灰度图像,为了阻止上升的水面从图像边缘溢出,在图像的四周用水把围起来了,随着水面的上升,会有水坝被淹没,为了防止两个盆地的水汇合,再次构建较短的水坝(有几个单一像素组成),不断重复,直到水达到最高位(对应于图像中的最高灰度值)。最终的水坝对应于分水线,也就是我们期望的分割结果。


为了防止过度分割,可进行预处理和标记

分割中运动的应用在空间域或频率域处理。

如果对你有所帮助,谢谢您的鼓励^_^

(一块不少,五块更好)

红包还不收?


2018-03-12 14:27:49 u013162035 阅读数 4140

5.1图像分割概述

图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。现有的图像分割方法主要分以下几类:基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法以及基于特定理论的分割方法等。从数学角度来看,图像分割是将数字图像划分成互不相交的区域的过程。图像分割的过程也是一个标记过程,即把属于同一区域的像索赋予相同的编号。
图像分割是图像识别和计算机视觉至关重要的预处理。没有正确的分割就不可能有正确的识别。但是,进行分割仅有的依据是图像中像素的亮度及颜色,由计算机自动处理分割时,将会遇到各种困难。例如,光照不均匀、噪声的影响、图像中存在不清晰的部分,以及阴影等,常常发生分割错误。因此图像分割是需要进一步研究的技术。人们希望引入一些人为的知识导向和人工智能的方法,用于纠正某些分割中的错误,是很有前途的方法,但是这又增加了解决问题的复杂性。
图像分割算法从大的方面讲可以分为两类:
 全自动图像分割:一般采用聚类算法来最大化前景与背景的差。
 用户互动式图像分割:用户提供前景和背景的种子,然后对前景背景建立概率分布模型。

5.2图像分割方法

5.2.1阈值分割

图像阈值化分割是一种传统的最常用的图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术。它特别适用于目标和背景占据不同灰度级范围的图像。它不仅可以极大的压缩数据量,而且也大大简化了分析和处理步骤,因此在很多情况下,是进行图像分析、特征提取与模式识别之前的必要的图像预处理过程。
图像阈值化的目的是要按照灰度级,对像素集合进行一个划分,得到的每个子集形成一个与现实景物相对应的区域,各个区域内部具有一致的属性,而相邻区域不具有这种一致属性。这样的划分可以通过从灰度级出发选取一个或多个阈值来实现。
阈值分割的优点是计算简单、运算效率较高、速度快。在重视运算效率的应用场合(如用于硬件实现),它得到了广泛应用。人们发展了各种各样的阈值处理技术,包括全局阈值、自适应阈值、最佳阈值等等。
 基本原理
基本原理是:通过设定不同的特征阈值,把图像象素点分为若干类。
常用的特征包括:直接来自原始图像的灰度或彩色特征;由原始灰度或彩色值变换得到的特征。设原始图像为fx,y ,按照一定的准则 f(x,y)中找到特征值T,将图像分割为两个部分,分割后的图像为:若取:b0=0 (黑),b1=1 (白),即为我们通常所说的图像二值化。
 方法
阈值分割方法实际上是输入图像 到输出图像 的如下变换:
这里写图片描述
其中,T为阈值,对于物体的图像元素g(i,j)=1 ,对于背景的图像元素 g(i,j)=0
由此可见,阈值分割算法的关键是确定阈值,如果能确定一个合适的阈值就可准确地将图像分割开来。阈值确定后,将阈值与像素点的灰度值逐个进行比较,而且像素分割可对各像素并行地进行,分割的结果直接给出图像区域。
关于阈值分割请参考笔者的另外的文章。

阈值化

5.2.2区域分割

区域分割是讲图像按照相似性准则分成不同的区域,主要包括区域增长,区域分裂合并和分水岭等几种类型。
 区域生长
区域生长是一种串行区域分割的图像分割方法。区域生长是指从某个像素出发,按照一定的准则,逐步加入邻近像素,当满足一定的条件时,区域生长终止。区域生长的好坏决定于初始点(种子点)的选取,生长准则,终止条件。区域生长是从某个或者某些像素点出发,最后得到整个区域,进而实现目标的提取。
区域生长的基本思想是将具有相似性质的像素集合起来构成区域。具体先对每个需要分割的区域找一个种子像素作为生长的起点,然后将种子像素周围邻域中与种子像素有相同或相似性质的像素(根据某种事先确定的生长或相似准则来判定)合并到种子像素所在的区域中。将这些新像素当作新的种子像素继续进行上面的过程,直到再没有满足条件的像素可被包括进来。这样一个区域就长成了。
区域生长需要选择一组能正确代表所需区域的种子像素,确定在生长过程中的相似性准则,制定让生长停止的条件或准则。相似性准则可以是灰度级、彩色、纹理、梯度等特性。选取的种子像素可以是单个像素,也可以是包含若干个像素的小区域。大部分区域生长准则使用图像的局部性质。生长准则可根据不同原则制定,而使用不同的生长准则会影响区域生长的过程。
 区域分裂合并
区域生长是从某个或者某些像素点出发,最后得到整个区域,进而实现目标提取。分裂合并差不多是区域生长的逆过程:从整个图像出发,不断分裂得到各个子区域,然后再把前景区域合并,实现目标提取。分裂合并的假设是对于一幅图像,前景区域由一些相互连通的像素组成的,因此,如果把一幅图像分裂到像素级,那么就可以判定该像素是否为前景像素。当所有像素点或者子区域完成判断以后,把前景区域或者像素合并就可得到前景目标。
在这类方法中,最常用的方法是四叉树分解法。设R代表整个正方形图像区域,P代表逻辑谓词。基本分裂合并算法步骤如下:
(1)对任一个区域,如果H(Ri)=FALSE就将其分裂成不重叠的四等份;
(2)对相邻的两个区域Ri和Rj,它们也可以大小不同(即不在同一层),如果条件H(Ri∪Rj)=TRUE满足,就将它们合并起来。
(3)如果进一步的分裂或合并都不可能,则结束。
分裂合并法的关键是分裂合并准则的设计。这种方法对复杂图像的分割效果较好,但算法较复杂,计算量大,分裂还可能破坏区域的边界。
 分水岭分割
分水岭分割方法,是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形成分水岭。分水岭的概念和形成可以通过模拟浸入过程来说明。在每一个局部极小值表面,刺穿一个小孔,然后把整个模型慢慢浸入水中,随着浸入的加深,每一个局部极小值的影响域慢慢向外扩展,在两个集水盆汇合处构筑大坝,即形成分水岭。
关于分水岭分割请参看笔者的另一篇博文。
分水岭算法

5.2.3边缘分割

图像分割的一种重要途径是通过边缘检测,即检测灰度级或者结构具有突变的地方,表明一个区域的终结,也是另一个区域开始的地方。这种不连续性称为边缘。不同的图像灰度不同,边界处一般有明显的边缘,利用此特征可以分割图像。
图像中边缘处像素的灰度值不连续,这种不连续性可通过求导数来检测到。对于阶跃状边缘,其位置对应一阶导数的极值点,对应二阶导数的过零点(零交叉点)。因此常用微分算子进行边缘检测。常用的一阶微分算子有Roberts算子、Prewitt算子和Sobel算子,二阶微分算子有Laplace算子和Kirsh算子等。在实际中各种微分算子常用小区域模板来表示,微分运算是利用模板和图像卷积来实现。这些算子对噪声敏感,只适合于噪声较小不太复杂的图像。
由于边缘和噪声都是灰度不连续点,在频域均为高频分量,直接采用微分运算难以克服噪声的影响。因此用微分算子检测边缘前要对图像进行平滑滤波。LoG算子和Canny算子是具有平滑功能的二阶和一阶微分算子,边缘检测效果较好,
 步骤
第一步:滤波:边缘检测算法主要是基于图像强度的一阶和二阶导数,但导数的计算对噪声很敏感,因此必须使用滤波器来改善与噪声有关的边缘检测器的性能.需要指出,大多数滤波器在降低噪声的同时也导致了边缘强度的损失,因此,增强边缘和降低噪声之间需要折衷.
第二步:增强:增强边缘的基础是确定图像各点邻域强度的变化值.增强算法可以将邻域(或局部)强度值有显著变化的点突显出来.边缘增强一般是通过计算梯度幅值来完成的.
第三步:检测:在图像中有许多点的梯度幅值比较大,而这些点在特定的应用领域中并不都是边缘,所以应该用某种方法来确定哪些点是边缘点.最简单的边缘检测判据是梯度幅值阈值判据.
第四步:定位:如果某一应用场合要求确定边缘位置,则边缘的位置可在子像素分辨率上来估计,边缘的方位也可以被估计出来.
在边缘检测算法中,前三个步骤用得十分普遍。这是因为大多数场合下,仅仅需要边缘检测器指出边缘出现在图像某一像素点的附近,而没有必要指出边缘的精确位置或方向.边缘检测误差通常是指边缘误分类误差,即把假边缘判别成边缘而保留,而把真边缘判别成假边缘而去掉.边缘估计误差是用概率统计模型来描述边缘的位置和方向误差的.我们将边缘检测误差和边缘估计误差区分开,是因为它们的计算方法完全不同,其误差模型也完全不同。
关于边缘分割请参考笔者的另一篇文章。
边缘检测

5.2.4图论分割

此类方法把图像分割问题与图的最小割(min cut)问题相关联。首先将图像映射为带权无向图G=

5.2.4.1 grabCut()函数

 grabCut()函数讲解

C++:void grabCut( InputArray img, 
                  InputOutputArray mask, 
                  Rect rect,
                  InputOutputArray bgdModel, 
                  InputOutputArray fgdModel,
                  int iterCount, 
                  int mode = GC_EVAL );

【参数】
第一个参数,img,待分割的源图像,必须是8位3通道(CV_8UC3)图像,在处理的过程中不会被修改;
第二个参数,mask,掩码图像,如果使用掩码进行初始化,那么mask保存初始化掩码信息;在执行分割的时候,也可以将用户交互所设定的前景与背景保存到mask中,然后再传入grabCut函数;在处理结束之后,mask中会保存结果。mask只能取以下四种值:
GCD_BGD(=0),背景;
GCD_FGD(=1),前景;
GCD_PR_BGD(=2),可能的背景;
GCD_PR_FGD(=3),可能的前景。
如果没有手工标记GCD_BGD或者GCD_FGD,那么结果只会有GCD_PR_BGD或GCD_PR_FGD;
第三个参数,rect用于限定需要进行分割的图像范围,只有该矩形窗口内的图像部分才被处理;
第四个参数,bgdModel,背景模型,如果为null,函数内部会自动创建一个bgdModel;bgdModel必须是单通道浮点型(CV_32FC1)图像,且行数只能为1,列数只能为13x5;
第五个参数,fgdModel,前景模型,如果为null,函数内部会自动创建一个fgdModel;fgdModel必须是单通道浮点型(CV_32FC1)图像,且行数只能为1,列数只能为13x5;
第六个参数, iterCount,迭代次数,必须大于0;
第七个参数, mode,用于指示grabCut函数进行什么操作,可选的值有:
GC_INIT_WITH_RECT(=0),用矩形窗初始化GrabCut;
GC_INIT_WITH_MASK(=1),用掩码图像初始化GrabCut;
GC_EVAL(=2),执行分割。

 grabCut()函数源代码

/*【grabCut( )源代码】*************************************************************
 * @Version:OpenCV 3.0.0(Opnencv2和Opnencv3差别不大,Linux和PC的对应版本源码完全一样,均在对应的安装目录下)  
 * @源码路径:…\opencv\sources\modules\imgproc\src\ grabcut.cpp
 * @起始行数:528行   
********************************************************************************/
void cv::grabCut( InputArray _img, InputOutputArray _mask, Rect rect,
                  InputOutputArray _bgdModel, InputOutputArray _fgdModel,
                  int iterCount, int mode )
{
    Mat img = _img.getMat();
    Mat& mask = _mask.getMatRef();
    Mat& bgdModel = _bgdModel.getMatRef();
    Mat& fgdModel = _fgdModel.getMatRef();

    if( img.empty() )
        CV_Error( CV_StsBadArg, "image is empty" );
    if( img.type() != CV_8UC3 )
        CV_Error( CV_StsBadArg, "image mush have CV_8UC3 type" );

    GMM bgdGMM( bgdModel ), fgdGMM( fgdModel );
    Mat compIdxs( img.size(), CV_32SC1 );

    if( mode == GC_INIT_WITH_RECT || mode == GC_INIT_WITH_MASK )
    {
        if( mode == GC_INIT_WITH_RECT )
            initMaskWithRect( mask, img.size(), rect );
        else // flag == GC_INIT_WITH_MASK
            checkMask( img, mask );
        initGMMs( img, mask, bgdGMM, fgdGMM );
    }

    if( iterCount <= 0)
        return;

    if( mode == GC_EVAL )
        checkMask( img, mask );

    const double gamma = 50;
    const double lambda = 9*gamma;
    const double beta = calcBeta( img );

    Mat leftW, upleftW, upW, uprightW;
    calcNWeights( img, leftW, upleftW, upW, uprightW, beta, gamma );

    for( int i = 0; i < iterCount; i++ )
    {
        GCGraph<double> graph;
        assignGMMsComponents( img, mask, bgdGMM, fgdGMM, compIdxs );
        learnGMMs( img, mask, compIdxs, bgdGMM, fgdGMM );
        constructGCGraph(img, mask, bgdGMM, fgdGMM, lambda, leftW, upleftW, upW, uprightW, graph );
        estimateSegmentation( graph, mask );
    }
}

5.2.4.2 grabCut实例

参考附件【demo1】

这里写图片描述

图1

5.2.5能量泛函分割

基于能量泛函的分割方法主要指的是活动轮廓模型(active contour model)以及在其基础上发展出来的算法,其基本思想是使用连续曲线来表达目标边缘,并定义一个能量泛函使得其自变量包括边缘曲线,因此分割过程就转变为求解能量泛函的最小值的过程,一般可通过求解函数对应的欧拉(Euler.Lagrange)方程来实现,能量达到最小时的曲线位置就是目标的轮廓所在。按照模型中曲线表达形式的不同,活动轮廓模型可以分为两大类:参数活动轮廓模型(parametric active contour model)和几何活动轮廓模型(geometric active contour model)。
参数活动轮廓模型是基于Lagrange框架,直接以曲线的参数化形式来表达曲线,最具代表性的是由Kasset a1(1987)所提出的Snake模型。该类模型在早期的生物图像分割领域得到了成功的应用,但其存在着分割结果受初始轮廓的设置影响较大以及难以处理曲线拓扑结构变化等缺点,此外其能量泛函只依赖于曲线参数的选择,与物体的几何形状无关,这也限制了其进一步的应用。
几何活动轮廓模型的曲线运动过程是基于曲线的几何度量参数而非曲线的表达参数,因此可以较好地处理拓扑结构的变化,并可以解决参数活动轮廓模型难以解决的问题。而水平集(Level Set)方法(Osher,1988)的引入,则极大地推动了几何活动轮廓模型的发展,因此几何活动轮廓模型一般也可被称为水平集方法。

5.2.6直方图分割

与其他图像分割方法相比,基于直方图的方法是非常有效的图像分割方法,因为他们通常只需要一个通过像素。在这种方法中,直方图是从图像中的像素的计算,并在直方图的波峰和波谷是用于定位图像中的簇。颜色和强度可以作为衡量。
这种技术的一种改进是递归应用直方图求法的集群中的形象以分成更小的簇。重复此操作,使用更小的簇直到没有更多的集群的形成。
基于直方图的方法也能很快适应于多个帧,同时保持他们的单通效率。直方图可以在多个帧被考虑的时候采取多种方式。同样的方法是采取一个框架可以应用到多个,和之后的结果合并,山峰和山谷在以前很难识别,但现在更容易区分。直方图也可以应用于每一个像素的基础上,将得到的信息被用来确定的像素点的位置最常见的颜色。这种方法部分基于主动对象和一个静态的环境,导致在不同类型的视频分割提供跟踪。
对于直方图分割方法,也可以归结为基于阈值的分割方法。关于直方图更多相关知识请参考笔者的一些列文章。
直方图A
直方图B
直方图C
直方图D

5.2.7其他分割方法

随着人工智能的不断发展,最近的分割方法及本都是基于深度学习的方法,主要有DeepMask,FCN,FCN+CRF,SSD,Deeplib等以深度学习为基础的算法为主流。
值得注意的是,如果是要做专有的图像分割,这类算法使用前要稍微慎重些。主要原因就是这些算法都需要大量标注样本的支持。
由于笔着水平有限,而且该专栏是基于OpenCV的讲解,其他分割方法请感兴趣的朋友自行学习吧!

本章参考附件

点击进入

2018-11-26 17:01:05 qq_40980917 阅读数 1805

电子科技大学 格拉斯哥学院 2017级谭茗珊
1.背景:
医学图像分割技术的发展是一个从人工分割到半自动分割和自动分割的逐步发展过程。早期的图像分割完全是靠人工完成的。完全的人工分割方法是在原始图像上直接画出期望的边界。这种方法费时费力,分割结果完全依赖于分割者的解剖知识和经验,而且分割结果难以再现;半自动的分割方法大大减少了人为因素的影响,而且分割速度快,分割精度高,但操作者的知识和经验仍然是图像分割过程的一个重要组成部分。近年来,由于大量的新兴技术如模糊技术和人工智能技术在图像分割中的应用,图像分割领域中也涌现出一些自动的分割技术。自动分割方法能完全脱离人为干预,由计算机实现医学图像分割的全过程。由于自动分割方法的运算量较大,目前大部分的自动分割方法都是在工作站上实现的。
2.摘要:
医学图像处理中图像分割是最具挑战性和最富有挑战性的课题,结构分析,运动分析,三维可视化等一系列操作均是以准确的图像分割为基础。由于医学影像设备成像技术的特点,使得图像存在噪声,导致图像中目标物体部分边缘不清晰,给图像分割造成一定难度。通过运用ITK-SNAP软件对图像进行预处理,使用python并搭建tensorflow环境,对图像加以训练和测试,不断改进算法改进现有MRI脑肿瘤图像分割算法,利用模糊C均值算法、区域增长算法、以及结合模糊相似度理论和区域结构识别技术的分割算法实现脑肿瘤MRI图像的分割,使其能够对图像进行准确识别,定性,定量分析,结果的准确性依据分割评价体系得以判断。

3.图像分割处理
3.1非线性平滑处理
由于磁共振图像在采集过程中,有脉冲干扰,因此图像具有较强的噪声,为了消除噪声,选用非线性平滑中值滤波预处理图片;
中值滤波是一种去除噪声的非线性处理方法。其基本思想是把数字图像中一点的值在该点的一个领域中各值的中值替代。
3.2全局阈值分割
一般图像分割是基于图像二值化的基础上进行的,其目的是可减少图像的灰度分布范围,简化运算,从而大大提高分割速度。
但如遇到特殊情况,例如脑部的头骨,高密度,灰度值高,处于亮区域,而我们感兴趣的区域(肿瘤)的灰度是软组织,灰度值低,处于暗区域。而肿瘤周围的软组织也是灰度值低的暗区域,与肿瘤的区别很小。此时,原始方法已不再能分辨。所以在程序中,必须舍弃。现有的二值化自动分割函数,改为手动的全局阈值分割。通过观察,设置特定的阈值点,从而进行有效手动分割,将处于亮区域的头骨和其他组织分割开,又保留了其他组织的原有特性。将其作为预处理图像

3.3肿瘤分割
经过手动的全局阈值分割后的图片,虽然消除了头骨的部分,但由于我们感兴趣的部分(肿瘤)并没有从周围组织里面分割出来,因此还需要进一步的处理。由于肿瘤和周围的组织灰度值比较接近,我们分别选用最大方差阈值法和形态学两种方法来处理。
3.3.1最大方差阈值法分割
最大方差阈值也叫大津阈值,他是在差别域最小二乘法原理的基础上推导出来的,不管是图像的直方图有无明显的双峰,此方法都能取得很好的效果。其原理是把直方图在某一阈值处分割成为两组,当被分成的两组间的方差为最大时,决定阈值。
3.3.2形态学分割
区域生长的基本思想是将具有相似性质的像素结合起来构成区域,具体是先对每个需要分割的区域找一个种子像素作为生长起点,然后将种子像素周围区域中与种子像素有相同或相似性质的像素种子合并到种子像素所在区域中,将这些新像素当作种子像素继续进行上面的过程,直到再也没有满足条件的像素可以被包括进来,这样,一个区域就生成了。经实验显示,采用形态学进行分割之后,脑部的肿瘤可以清晰地显示出来,但与此同时一些血管同时也显示出来了。
具体的算法步骤为:
求出图像的梯度;
采用圆形结构元素执行形态学开操作运算;
进行腐蚀运算;
采用圆形结构元素执行形态学闭运算操作;
进行膨胀运算;
经过开闭运算后,图像进行重建;
将重建的图像叠加在原有图像上。

4.结论:
由于医学图像的复杂多样性和分割问题的困难性,通常针对某项任务选用合适的算法,目前没有一个分割方法能适用于不同的任务,医学图像的分割方法有很多,最常用的方法是阈值分割法和形态学分割法。但通常,直接采用普通的阈值分割和形态学分割法,很难提取到满意的目标图像。本文分别对这两种方法稍作改进,采用图像阈值法时,先进行手动的阈值分割,然后再使用最大方差阈值法,效果更好;采用形态学分割时,圆形结构元素作为种子,也得到了目标图像。因此尽管医学图像分割比较复杂,只要灵活采用图像分割方法,可以得到比较满意的分割图像。

5.参考文献
[1]李彦东.卷积神经网络研究综述
[2]田捷.医学图像与医学分析[M].
[3]陈灵娜.一种新的肝肿瘤CT图像分割方法[J]
[4]马子睿.基于数字形态学的医学图像分割研究方法[J]
[5]俞海平.MRI脑肿瘤图像分割与矩特征研究[J]

没有更多推荐了,返回首页