2018-08-22 15:49:09 Replus_ 阅读数 8313

声明:       

       这篇文章的主要目的是通过建立一维傅里叶变换与图像傅里叶变换中相关概念的对应关系来帮助读者理解图像处理中的离散傅里叶变换,因此,理解图像中离散傅里叶变换的前提条件是读者需要了解一维傅里叶变换的基本知识,详情可参考:https://zhuanlan.zhihu.com/p/19763358


基本数学概念的对应关系:

       一维傅里叶变换的作用对象是信号,信号是一维连续的,其数学表现形式如图1所示,该图反应的是随着时间不断推移,信号强度的变换情况,可称为时域:

图1

       而图像处理中的傅里叶变换的作用对象是二维矩阵。二维矩阵的数学表现形式如下图所示,反应了随着位置的不断改变,灰度值大小的变化情况。我们在此将其称为“距离-灰度变化图”:

图2

       从正面看去,由x轴与灰度值轴构成的切面图如图3所示:

图3

       图3与图1的本质是类似的,都是一个自变量一个因变量。因此可以构成对应关系:时间<->距离、信号强度<->灰度值。

傅里叶变换结果的对应关系:

       一维傅里叶变换的原理可以通俗的理解为:将一个复杂无规律的信号拆分成多个简单有规律的子信号来表示(如果对泰勒展开有深刻的理解的话,可以将傅里叶变换理解为将任意一个函数分解为任意个多项式的组合)。如图4所示。

图4

       为了定量表示这个结果,我们用下图进行表达。其中,横轴为频率大小,纵轴为振幅(即信号的最高强度),该图可称为频谱

图5

       通过观察频谱,我们可以发现,频谱中的每个点在时域中都对应一个函数(这个特点很重要,说明了频谱和时域的对应关系是点与线)。

       因此,通过类比,可将图像处理中傅里叶变换理解为:将一个复杂无规律的图像拆分成多个简单有规律的子图像来表示(此处画图太麻烦,请读者自行发挥想象力对图4中的众多子信号,想象成不断起伏的平面)。

       那要如何定量表达众多分解后的子图像呢?

       我们先来看一下图像傅里叶变换后的表现形式,即图像的“频谱”。

       现在,我们就通过类比,来理解这上幅图中的各个方向的自变量到底对应信号频谱中的哪个变量。

       在信号的频谱中,频率的定义为:单位时间内完成周期性变化的次数。而在上文“基本数学概念的对应关系”中,我们已经将时间和距离对应起来了。那么此处只需要将频率定义中的“时间”换成“距离”即可。最终得到用于表达图像傅里叶变换结果的“频谱”中频率的定义:单位距离内完成周期性变化的次数。由于图像中表达距离的单位是像素大小,所以对这个定义进一步可理解为:N个像素内灰度值完成周期性变化的次数。因此我们就成功的将图像“频谱”和信号“频谱”中的自变量联立起来了。在信号频谱中的频率是x(横)轴,而在图像的频谱中频率是(xy轴构成的)平面。距离原点越远,则说明频率越大。因此,窗口边缘处即为高频区域,原点周边即为低频区域。

注意:上文提到了对于信号来说,频谱中的一个点对应子信号时域中的一条线。通过类比,我们可以得出结论:图像频谱中的一个点对应子图像的一整张距离-灰度变化图。(而图像傅里叶变换的数学公式也反应了这个特点)

       同样的,信号频谱中的y轴反应子信号,信号强度的变化范围,而图像频谱中的z轴反应子图像的灰度值的变化范围。频谱窗口中对应的点越亮,则说明该点对应频率的变化范围越大。

总结与举例:

       综上,可对图像频谱进行解读:

       距离原点越远=频率越高=原图中灰度值的变化越频繁。

       灰度值越大=幅值越大=原图中灰度值变化的范围越大。

       因此,低通滤波能保留图像的大致轮廓信息是因为,一张图像所记录到的主要信息(由于受到关照等必然因素的影响)在图像上灰度值的变化是缓慢的,因此主要信息集中在低频区域。而噪音等偶然因素是突然附加到图像上使得灰度值快速变化,而且密密麻麻,这导致N个像元内,灰度值的变化不仅频繁,而且变化的范围还很大。因此,噪音就位于图像频谱的高频区域,表现为高灰度值。

 

 

2016-11-25 15:02:59 xholes 阅读数 2681

几何变换

几何变换是图像处理和图像分析的重要内容,按照变换性质可以分为位置变换、形状变换以及复合变换。图像的几何变换方式是使得图像在变换矩阵T的作用下变换为另一幅图像,具体表达如下。在matlab中,可以调用imtransform()函数来对图像进行空间变换。



位置变换

平移

平移变换时,如果图像的尺寸未变大,那么可能出现图像只能保存部分,被移出图像的部分需要补0或者255,这将会使得图像的部分信息丢失。


旋转

图像的旋转变换是指以图像的中心为原点,将图像上的所有像素点旋转一个相同个角度。和平移一样,变换后的也可能会出现空白区域,需要填补。在matlab中,韩式imrolate()可以用来实现对图像的旋转变换。假设旋转的角度为\alpha ,那么变换公式如下: 


镜像

图像的镜像变换并不改变图像的形状,其类型主要包括水平镜像变换、垂直镜像变换、对角线镜像变换三种类型。其中,对角镜像可以看成是水平镜像和垂直镜像的复合变换。假设图像的高度为h,宽度为w,那么三种镜像变换公式对应如下:
                     

形状变换

裁剪

顾名思义,裁剪就是在原图像中提取一部分图像出来。提出出来的图像可以是规则的矩形,也可以是不规则的多边形。在matlab中,提供了imcrop()函数来对图像进行裁剪操作。

缩放

图像的缩放指的是按照一定的比例对图像的两个坐标轴进行缩放而获得新图像,若两个轴的比例相同,则成为全比例缩放。图像的缩放可能会造成图像的畸变。图像的缩小是通过减少像素的个数来实现的,因此需要选择保留的像素点使得尽量能够保证图像的基本信息特征。常用的方法有等间隔采样法和局部均值法。等间隔采样就是通过相同的间隔就近采取像素点作为保留的点,而局部均值就是利用等间隔构成的图像子块求得子图块像素均值作为保留点。图像的放大需要更多的像素来填充放大后的无像素区域,一般采用最近邻域法和线性插值法。最近邻域法是按照最近的像素填充该区域而现象插值法是根据周围四份像素点的距离比有四个邻域的像素灰度值进行线性插值得出该区域各个像素点的灰度值。matlab中,imresize()函数默认的是最近邻域法。图像的缩放变换表达式如下:


错切

图像的错切变换实际上就是平面金乌在投影平面上的非垂直投影,分为水平方向的错切与垂直方向的错切。图像的旋转可以分解为三次错切来实现。两种错切公式如下:


复合变换

复合变换可以看成是之前所述的多种变换的叠加,将基本的变换矩阵T1,T2,T3……进行相乘就可以得到复合变换的变换矩阵T。
2006-05-09 17:13:00 byxdaz 阅读数 7862

                                                                 图像处理中常见变换

   (1)KL变换
    KL变换是遥感图像增强和信息提取中用得最多的线性变换,是对原波段图像进行波谱信息的线性投影变换,在尽可能不减少信息量的前提下,将原图像的高维多光谱空间的像元亮度值投影到新的低维空间,减少特征空间维数,达到数据压缩、提高信噪比、提取相关信息、降维处理和提取原图像特征信息的目的,并能有效地提取影像信息。它可使原来多波段图像经变换后提供出一组不相关的图像变量,最前面的主分量具有较大的方差,包含了原始影像的主要信息,所以要集中表达信息,突出图像的某些细部特征,可采用主分量变换来完成。

    (2)去相关拉伸变换
    通过去相关拉伸变换把相关性很高的波段进行去相关拉伸处理,减弱它们之间的相关性,然后进行拉伸,从而使深色区域的地物差异界线反映得更加清楚。

    (3)纹理特征提取变换
    纹理特征的提取方法比较简单,它是用一个活动的窗口在图像上连续滑动,分别计算出窗口中的方差、均值、最大值、最小值及二者之差和信息熵等,形成相应的纹理图像,当目标的光谱特性比较接近时,纹理特征对于区分目标可以起到积极的作用。选取适当的数据动态变化范围,进行纹理特征提取后,使影像的纹理特征得到突出,有利于提取构造信息。

    (4)锐化增强
    调整图像的锐化程度使地物在图像上的差别便于人眼识别,可达到信息增强的目的。对图像进行锐化增强实际上是利用变换函数把原图像进行灰度级转换,增大相邻像元的灰度值之差,从而达到突出图像细节的目的。

    (5)定向滤波
    利用定向滤波对TM图像频率特征进行筛选,将图像中的线与边缘特征信息增强,突出给定方向的线性影像信息,抑制其他方向的无用信息。采用45°方向滤波,滤波背景值用100%,滤波核设为3。滤波后突出了断裂的线性影像,断裂两侧的色调影像花纹明显不同,断裂造成的山脊错断等特征在影像上非常明显。

    (6)缨帽变换
    采用缨帽变换可以将TM图像除热红外波段的6个波段压缩成3个分量,其中的土壤亮度指数分量是6个波段的加权和,反映了总体的反射值;绿色植被指数分量反映了绿色生物量的特征;土壤特征分量反映了可见光和近红外与较长的红外的差值,它对土壤湿度和植物湿度最为敏感。这样的三个分量就是TM数据进行缨帽变换后的新空间,它可以对植被、土壤等地面景物作更为细致、准确的分析,应用这种处理方法可增强影像上深色区域的信息。

    (7)芒塞尔彩色空间变换
    在计算机内定量处理色彩时通常采用RGB(Red、Green、Blue)表色系统,但在视觉上定性的描述色彩时,采用HSV显色系统更直观些。Munsell HSV变换就是对标准处理彩色合成图像在红(R)、绿(G)、蓝(B)编码赋色方面的一种彩色图像增强方法,它是借助改变彩色合成过程中的光学参数的变化来扩展图像色调差异,将图像彩色坐标系中红、绿、蓝三原色组成的彩色空间(RGB)变换为由Hue(色度),Saturation (饱和度),value(纯度)三个变量构成的HSV色彩模型。其目的是为了更有效地抑制地形效应和增强岩石单元的波段差异,并通过彩色编码增强处理达到最佳的图像显示效果。HSV色彩模型能够准确、定量地描述颜色特征。

    (8)非监督分类
    遥感图像分类是将图像的所有像元按其性质分为若干个类别的技术过程,多光谱遥感图像分类是以每个像元的多光谱矢量数据为基础进行的,分类算法的核心是确定判别函数和相应的判别准则,如果我们事先没有类别的先验知识,在这种情况下对未知类别的样本进行分类的方法称之为非监督分类(Unsupervised Classification),非监督分类只能把样本区分为若干类别,而不能给出样本的描述。本次对中甸幅的小中甸盆地子区应用非监督分类中的K-均值算法,其基本思想是通过迭代,逐次移动各类的中心,直至得到最好的聚类结果为止,这种算法是一个迭代算法,迭代过程中类别中心按最小二程误差的原则进行移动,因此类别中心的移动是合理的。其缺点是要事先已知类别数,在实际中类别数通常根据实验的方法来确定。

    (9)波段彩色合成
    对两个波段的图像进行比值运算,可减弱背景而突出类别或目标信息,消除山影、云影等的影响,区分易混淆的地物。

    (10)对数变换
对数变换的主要功能是压缩图像亮区的灰阶值,拉伸暗区的灰阶值,从而突出暗区的构造形迹。子区的色彩更加丰富,影纹更加清晰,有利于岩性的识别。

    (11)比值处理
    比值处理采用高质量比值功能,使比值图像得到拉伸,有效地消除了地形影响,使阴影区的结构得到显示。处理出来的图像色彩丰富,既保留了原有地貌特征,又突出了线环构造,为盆地的研究提供了更为直观可靠的资料,立体感得到增强,阴影区结构清楚。

   (12)小波变换

   (13)付立叶变换

  (14)HOUGH变换

  (15)Karhunen-Loeve变换

  (16)投影变换

2011-04-11 18:52:00 masikkk 阅读数 2999

傅立叶变换在图像处理中非常的有用。因为不仅傅立叶分析涉及图像处理的很多方面,傅立叶的改进算法,

比如离散余弦变换,gabor与小波在图像处理中也有重要的分量。

印象中,傅立叶变换在图像处理以下几个话题都有重要作用:
1.图像增强与图像去噪
绝大部分噪音都是图像的高频分量,通过低通滤波器来滤除高频——噪声; 边缘也是图像的高频分量,可以通过添加高频分量来增强原始图像的边缘;
2.图像分割之边缘检测
提取图像高频分量
3.图像特征提取:
形状特征:傅里叶描述
纹理特征:直接通过傅里叶系数来计算纹理特征
其他特征:将提取的特征值进行傅里叶变换来使特征具有平移、伸缩、旋转不变性
4.图像压缩
可以直接通过傅里叶系数来压缩数据;常用的离散余弦变换是傅立叶变换的实变换;

傅立叶变换
傅里叶变换是将时域信号分解为不同频率的正弦信号或余弦函数叠加之和。连续情况下要求原始信号在一个周期内满足绝对可积条件。离散情况下,傅里叶变换一定存在。冈萨雷斯版<图像处理>里面的解释非常形象:一个恰当的比喻是将傅里叶变换比作一个玻璃棱镜。棱镜是可以将光分解为不同颜色的物理仪器,每个成分的颜色由波长(或频率)来决定。傅里叶变换可以看作是数学上的棱镜,将函数基于频率分解为不同的成分。当我们考虑光时,讨论它的光谱或频率谱。同样,傅立叶变换使我们能通过频率成分来分析一个函数。
傅立叶变换有很多优良的性质。比如线性,对称性(可以用在计算信号的傅里叶变换里面);

时移性:函数在时域中的时移,对应于其在频率域中附加产生的相移,而幅度频谱则保持不变;

频移性:函数在时域中乘以e^jwt,可以使整个频谱搬移w。这个也叫调制定理,通讯里面信号的频分复用需要用到这个特性(将不同的信号调制到不同的频段上同时传输);
卷积定理:时域卷积等于频域乘积;时域乘积等于频域卷积(附加一个系数)。(图像处理里面这个是个重点)

信号在频率域的表现
在频域中,频率越大说明原始信号变化速度越快;频率越小说明原始信号越平缓。当频率为0时,表示直流信号,没有变化。因此,频率的大小反应了信号的变化快慢。高频分量解释信号的突变部分,而低频分量决定信号的整体形象。
在图像处理中,频域反应了图像在空域灰度变化剧烈程度,也就是图像灰度的变化速度,也就是图像的梯度大小。对图像而言,图像的边缘部分是突变部分,变化较快,因此反应在频域上是高频分量;图像的噪声大部分情况下是高频部分;图像平缓变化部分则为低频分量。也就是说,傅立叶变换提供另外一个角度来观察图像,可以将图像从灰度分布转化到频率分布上来观察图像的特征。书面一点说就是,傅里叶变换提供了一条从空域到频率自由转换的途径。对图像处理而言,以下概念非常的重要:

图像高频分量:图像突变部分;在某些情况下指图像边缘信息,某些情况下指噪声,更多是两者的混合;
低频分量:图像变化平缓的部分,也就是图像轮廓信息
高通滤波器:让图像使低频分量抑制,高频分量通过
低通滤波器:与高通相反,让图像使高频分量抑制,低频分量通过
带通滤波器:使图像在某一部分的频率信息通过,其他过低或过高都抑制
还有个带阻滤波器,是带通的反。


模板运算与卷积定理
在时域内做模板运算,实际上就是对图像进行卷积。模板运算是图像处理一个很重要的处理过程,很多图像处理过程,比如增强/去噪(这两个分不清楚),边缘检测中普遍用到。根据卷积定理,时域卷积等价与频域乘积。因此,在时域内对图像做模板运算就等效于在频域内对图像做滤波处理。
比如说一个均值模板,其频域响应为一个低通滤波器;在时域内对图像作均值滤波就等效于在频域内对图像用均值模板的频域响应对图像的频域响应作一个低通滤波。


图像去噪
图像去噪就是压制图像的噪音部分。因此,如果噪音是高频额,从频域的角度来看,就是需要用一个低通滤波器对图像进行处理。通过低通滤波器可以抑制图像的高频分量。但是这种情况下常常会造成边缘信息的抑制。常见的去噪模板有均值模板,高斯模板等。这两种滤波器都是在局部区域抑制图像的高频分量,模糊图像边缘的同时也抑制了噪声。还有一种非线性滤波-中值滤波器。中值滤波器对脉冲型噪声有很好的去掉。因为脉冲点都是突变的点,排序以后输出中值,那么那些最大点和最小点就可以去掉了。中值滤波对高斯噪音效果较差。

椒盐噪声:对于椒盐采用中值滤波可以很好的去除。用均值也可以取得一定的效果,但是会引起边缘的模糊。
高斯白噪声:白噪音在整个频域的都有分布,好像比较困难。
冈萨雷斯版图像处理P185:算术均值滤波器和几何均值滤波器(尤其是后者)更适合于处理高斯或者均匀的随机噪声。谐波均值滤波器更适合于处理脉冲噪声。


图像增强
有时候感觉图像增强与图像去噪是一对矛盾的过程,图像增强经常是需要增强图像的边缘,以获得更好的显示效果,这就需要增加图像的高频分量。而图像去噪是为了消除图像的噪音,也就是需要抑制高频分量。有时候这两个又是指类似的事情。比如说,消除噪音的同时图像的显示效果显著的提升了,那么,这时候就是同样的意思了。
常见的图像增强方法有对比度拉伸,直方图均衡化,图像锐化等。前面两个是在空域进行基于像素点的变换,后面一个是在频域处理。我理解的锐化就是直接在图像上加上图像高通滤波后的分量,也就是图像的边缘效果。对比度拉伸和直方图均衡化都是为了提高图像的对比度,也就是使图像看起来差异更明显一些,我想,经过这样的处理以后,图像也应该增强了图像的高频分量,使得图像的细节上差异更大。同时也引入了一些噪音。


本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/wang_cww/archive/2010/08/09/5799221.aspx

2016-09-09 00:53:31 lpsl1882 阅读数 2530

  图像处理分析过程中,检测特定的形状是重要的一步。霍夫变换(Hough)通过转换坐标系,将特定形状的检测映射到参数空间中,从而根据参数空间中的值来确定特定形状的相关信息。
  Hough变换的比较简单的应用例子有检测直线和检测圆。

检测直线

  设空间中有若干点,我们要判断这些点是否能构成一条直线,即为直线检测。平面中直线的通用公式为xcos(θ)+ysin(θ)=ρ。常用的y=wx+b公式,因为不能兼容y=b的情况,所以不能使用。对于某个点,其坐标是(xi,yi),过该点的直线有无数条,这些直线统一表示为xicos(θ)+yisin(θ)=ρ,其中xi,yi是常量。反过来看,代表这些直线的公式,可以看做θ为自变量,ρ为因变量,xi,yi为常量参数的直线公式。这样,在x-y空间过(xi,yi)的无数条直线,可以在θρ空间中用一条线代表。见下图:
  这里写图片描述
  这里写图片描述
  上图是x-y空间,下图是θρ空间。其中红、绿、蓝三条线可以汇聚成一个点,说明这三条线对应的点,其在θρ空间中的直线参数是一样的。反过来就是说,穿过这三个点的无数直线中,有“三”条直线,其θ,ρ值相同,这“三“条直线是一根直线,即这三个点可以共线。
  

检测圆

  设空间有若干点,我们要判断这些点是否能构成一个圆的轮廓,即为圆检测。圆的表达式为(xx)2+(yy)2=R,参数有x,y,R。这说明,圆对应的映射空间是三维的,即xyR空间。x,y都表示空间,因此我们可以暂时将R设为常量,构建xy空间,令x’为自变量,y’为因变量,作图如下:
  这里写图片描述
  这里写图片描述
  上图是x-y空间,下图是x’-y’空间。图中绘制了一个圆和一个矩形,其中圆的轮廓并不是完全规则的。经过Hough变换后,圆上的点的变换曲线基本汇聚在一起,而矩形上的点则不能汇聚,这样就检测到圆。由于我们获取的图像并不一定是规则图形,其在参数空间中不一定能汇聚到一个点,而是在一个区域中汇聚起来,为了容许这类误差,我们可以用窗来检测参数空间中的曲线汇聚区域,而不是找曲线汇聚点,以此来检测不完全规则的特定形状。
  如果我们不知道R的值,那么我们就需要给定R取值的离散区间[R1,R2...Rn],取该区间中的值,重复做n次Hough变换检测。这样的话工作量会非常大,为了提升效率,往往会借助图像中的其他特征。
  另外,我们可以看出,由于不知道圆的尺度,我们不得不重复做多次检测。在实际的形状检测工作中,我们并不知道需要检测的复杂形状,经过了何种平移、缩放、旋转甚至是扭曲,因此需要引入不变性特征,或者针对所有可能的平移、缩放、旋转变换情况,统统做一遍检测。物体检测跟踪需要相当多的计算量。据了解,人脑为了进行视觉模式识别,至少消耗了一半的神经资源,所以人可以闭目养神,却不能捂耳朵、捏住鼻子养神:)

没有更多推荐了,返回首页