• 噪声分类: 高斯噪声 是随机噪声, 服从高斯分布 ...椒盐噪声 ...胡椒噪声、盐噪声 ...平滑的目的: 在表刘源是图像基本特征的前提下, 消除或衰减噪声的影响, 提高视觉效果 基础知识: (1): 滤波: 使用空间...

    噪声分类:

    • 高斯噪声
    1. 是随机噪声, 服从高斯分布
    2. 主要特点表现为:麻点
    • 椒盐噪声
    1. 胡椒噪声、盐噪声
    2. 主要特点表现为:黑白点

    噪声的描述

    1. 均方误差 MSE : MSE越大,失真率越大
    2. 峰值信噪比 PSNR: PSNR越大,失真度越小

    图像平滑(去噪)

    1. 平滑的目的: 在表刘源是图像基本特征的前提下, 消除或衰减噪声的影响, 提高视觉效果

    2. 基础知识:
      (1): 滤波: 使用空间模版(滤波器)处理图像的过程
      (2): 模版与模版运算: 模版和邻域大小相同

    3. 常用图像平滑方法(空间平滑滤波):

    • 均值滤波 (邻域平均法)——线性空间滤波
      MATLAB实现均值滤波,见我的博客:
      https://blog.csdn.net/qq_37486501/article/details/80274928
      (1): 基本思想: 某像素点灰度值=邻域中所有像素灰度值平均值 来代替
      (2): 优点: 在一定程度上可衰减噪声影响——拉小灰度差异
      (3): 缺点: 图像的边缘轮廓细节变模糊——边缘轮廓也做均值,导致的变模糊

    • 中值滤波(中位数)——非线性滤波
      MATLAB实现中值滤波,见我的博客:
      https://blog.csdn.net/qq_37486501/article/details/80274960
      (1): 基本思想: 某像素的灰度值=窗口内所有像素的灰度中值 来代替
      (2):窗口:
      有不同形状(
      一维:线状
      二维:十字、正方形、菱形、圆形)
      有不同大小(窗口大小中必含奇数元素, 为了保证中心像素值)
      (3): 优点:
      在去噪同时,较好的保持边缘轮廓细节
      适合处理椒盐噪声(因为: 不是去噪声点, 而使改变其灰度值)

    • 小波去噪
      将信号通过小波变换(采用Mallat算法)后,信号产生的小波系数含有信号的重要信息,将信号经小波分解后小波系数较大,噪声的小波系数较小,并且噪声的小波系数要小于信号的小波系数,通过选取一个合适的阀值,大于阀值的小波系数被认为是有信号产生的,应予以保留,小于阀值的则认为是噪声产生的,置为零从而达到去噪的目的。

    • 高斯滤波
      高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程。高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。高斯滤波的具体操作是:用一个模板(或称卷积、掩模)扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度值去替代模板中心像素点的值。

    • 双边滤波器去噪
      双边滤波器(Bilateral filter)是一种可以保边去噪的滤波器。可以滤除图像数据中的噪声,且还会保留住图像的边缘、纹理等(因噪声是高频信号,边缘、纹理也是高频信息,高斯滤波会在滤除噪声的同时使得边缘模糊)。是使用一个卷积核(模板矩阵),叠加到待处理像素点上,使用对应邻域像素点的加权求和来作为新的输出像素点的值一种方法,简单来说,双边滤波和高斯滤波一样,不同只在于模板矩阵的不同。

    展开全文
  • 数字图像处理》课程中噪声的消除处理过程
  • 噪声表现形式:噪声在图像上常表现为一引起较强视觉效果的孤立像素点或像素...另外,在图像处理的某些环节当输入的像对象并不如预想时也会在结果图像中引入噪声 噪声数字图像的影响:对于数字图像信号,噪声表为或大

    噪声表现形式

    噪声在图像上常表现为一引起较强视觉效果的孤立像素点或像素块。一般,噪声信号与要研究的对象不相关,它以无用的信息形式出现,扰乱图像的可观测信息。通俗的说就是噪声让图像不清楚。

    噪声来源

    两个方面

    (1)图像获取过程中

    两种常用类型的图像传感器CCD和CMOS采集图像过程中,由于受传感器材料属性、工作环境、电子元器件和电路结构等影响,会引入各种噪声,如电阻引起的热噪声、场效应管的沟道热噪声、光子噪声、暗电流噪声、光响应非均匀性噪声。

    (2)图像信号传输过程中

    由于传输介质和记录设备等的不完善,数字图像在其传输记录过程中往往会受到多种噪声的污染。另外,在图像处理的某些环节当输入的对象并不如预想时也会在结果图像中引入噪声。

    噪声对数字图像的影响

    对于数字图像信号,噪声表为或大或小的极值,这些极值通过加减作用于图像像素的真实灰度值上,对图像造成亮、暗点干扰,极大降低了图像质量,影响图像复原、分割、特征提取、图像识别等后继工作的进行。

    噪声的描述和分类

    噪声可以看作随机信号,具有统计学上的特征属性。功率谱密度功率频谱分布PDF)即是噪声的特征之一,通过功率谱密度分类噪声。

    (1)高斯噪声

    高斯噪声是指它的概率密度函数服从高斯分布(即正态分布)的一类噪声。如果一个噪声,它的幅度分布服从高斯分布,而它的功率谱密度又是均匀分布的,则称它为高斯白噪声。高斯白噪声的二阶矩不相关,一阶矩为常数,是指先后信号在时间上的相关性。

    概率密度函数PDF:


    其中z表示灰度值,μ表示z的平均值或期望值,σ表示z的标准差。标准差的平方σ2称为z的方差。

    产生原因:1)图像传感器在拍摄时市场不够明亮、亮度不够均匀;2)电路各元器件自身噪声和相互影响;

    3)图像传感器长期工作,温度过高。


    (2)瑞利噪声

    瑞利噪声的概率密度函数由下式给出:

    均值:


    方差:

    注意 距原点的位移和其密度图形的基本形状向右变形的事实,瑞利密度对于近似偏移的直方图十分适用。

    (3)伽马(爱尔兰)噪声

    伽马噪声的PDF由下式给出:

    其中,a>0,b为正整数且“!”表示阶乘。其密度的均值和方差由下式给出:

    下图显示了伽马密度的曲线,尽管上式经常被用来表示伽马密度,严格地说,只有当分母为伽马函数Г(b)时才是正确的。当分母如表达式所示时,该密度近似称为爱尔兰密度。


     

    (4)指数分布噪声

    指数噪声的PDF可由下式给出:

    其中a>0。概率密度函数的期望值和方差是:

    注意,指数分布的概率密度函数是当b=l时爱尔兰概率分布的特殊情况。

    (5)均匀噪声分布

    均匀噪声分布的概率密度,由下式给出:

        

    概率密度函数的期望值和方差可由下式给出:

               

    (6)脉冲噪声(椒盐噪声)

    (双极)脉冲噪声的PDF可由下式给出:

            

    如果b>a,灰度值b在图像中将显示为一个亮点,相反,a的值将显示为一个暗点。若Pa或Pb为零,则脉冲噪声称为单极脉冲。如果Pa和Pb均不可能为零,尤其是它们近似相等时,脉冲噪声值将类似于随机分布在图像上的胡椒和盐粉微粒。由于这个原因,双极脉冲噪声也称为椒盐噪声。同时,它们有时也称为散粒和尖峰噪声。在我们的讨论中,将交替使用脉冲噪声和椒盐噪声这两个术语。

     噪声脉冲可以是正的,也可以是负的。标定通常是图像数字化过程的一部分。因为脉冲干扰通常与图像信号的强度相比较大,因此,在一幅图像中,脉冲噪声总是数字化为最大值(纯黑或纯白)。这样,通常假设a,b是饱和值,从某种意义上看,在数字化图像中,它们等于所允许的最大值和最小值。由于这一结果,负脉冲以一个黑点(胡椒点)出现在图像中。由于相同的原因,正脉冲以白点(盐点)出现在图像中。对于一个8位图像,这意味着a=0(黑)。b=255(白)。显示了脉冲噪声的概率密度函数。

            前述的一组PDF为在实践中模型化宽带噪声干扰状态提供了有用的工具。例如,在一幅图像中,高斯噪声的产生源于电子电路噪声和由低照明度或高温带来的传感器噪声。瑞利密度分布在图像范围内特征化噪声现象时非常有用。指数密度分布和伽马密度分布在激光成像中有一些应用。像前几章所提及的那样,脉冲噪声主要表现在成像中的短暂停留中,例如,错误的开关操作。均匀密度分布可能是在实践中描述得最少的,然而,均匀密度作为模拟随机数产生器的基础是非常有用的。

    不同的噪声在图像的表现形式

    下图为原始测试图像

    加入不同噪声后图像(椒盐噪声是惟一一种引起退化的视觉可见的噪声类型。):


    展开全文
  • 数字图像处理数字图像处理 一学习内容总结 第一章 绪论 1 什么是数字图像处理 2 使用数字图像处理领域的实例 3 数字图像处理的基本步骤 4 图像处理系统的组成 第二章 数字图像处理基础 1 视觉感知要素 2 光和电磁...

    数字图像处理


    一、学习内容总结

    1. 第一章 绪论

    本章主要有几个目的:

    1. 定义我们称之为数字图像处理领域的范围;
    2. 通过考察几个领域,给出图像处理技术状况的概念;
    3. 讨论图像处理用到的几种方法;
    4. 概述通用目的的典型图像处理系统的组成。

    1.1 什么是数字图像处理

    我们给出一些定义:

    • 强度灰度:一幅图像可以被定义为一个二维函数 f(x,y),其中 x,y 是空间(平面)坐标,而在任何一处的幅值 f 被称为在该点的灰度或强度。
    • 数字图像:当 x,y 或灰度值 f有限的离散数值时,称该图像为数字图像。也就是说数字图像是由有限数量的元素组成,每个元素都有特定的位置和幅值。这些元素被称为图画元素图像元素像素
    • 数字图像处理 : 指用特定的计算机来处理数字图像。

    本书中将数字图像处理界定为其输入和输出都是图像的处理。

    1.2 使用数字图像处理领域的实例

    • 伽马射线成像:医学和天文。
    • X射线成像:最早用于成像的电磁辐射源之一,医学诊断。
    • 紫外波段成像 :荧光显微镜。
    • 可见光及红外线成像 :可见显微镜技术,遥感,天气预测和预报,红外卫星图像,自动视觉检测,检测丢失的部件,指纹图像。
    • 微波波段成像 :雷达。
    • 无线电波段成像 :天文学和医学(核磁共振)。
    • 其他方式 :声波成像,电子显微镜方法,(由计算机产生的)合成图像。

    1.3 数字图像处理的基本步骤

    这里写图片描述

    1.4 图像处理系统的组成

    这里写图片描述

    2. 第二章 数字图像处理基础

    本章主要介绍数字图像处理一些基本概念

    2.1 视觉感知要素

    • 人眼的结构

      重点介绍视网膜里的两类光感受器

      • 锥状体 :对颜色高度敏感,这种视觉称为白昼视觉或者亮视觉。高照明水平下执行。
      • 杆状体 :没有彩色感觉,对低照明度敏感,称为暗视觉或微光视觉。低照明水平下执行。
    • 亮度适应与辨别

      • 亮度适应现象 :视觉系统不能同时在一个范围内工作,它是通过改变其整个灵敏度来完成这一较大变动的。
      • 韦伯比 :较大:亮度辨别能力较差;反之,较好。
    • 感知亮度 不是简单的强度的函数

      • 视觉系统往往会在不同强度区域的边界处出现“下冲”或“上冲”现象。
      • 同时对比、错觉

    2.2 光和电磁波谱

    • 电磁波是能量的一种,任何有能量的物体都会释放电磁波谱。它可以用 波长 (λ)、频率(v)或能量(E) 来描述,其中

    λ=c/v

    E=hv

    • 光是一种特殊的电磁辐射,可以被人眼感知。
      • 单色光 是没有颜色的光,也成为无色光。唯一属性就是它的强度或者大小,用 灰度级 来表示。单色图像常被称为 灰度图像
      • 彩色光源 的质量可以用发光强度、光通量和亮度 来表示。

    2.3 图像感知和获取

    • 图像获取方式

      • 使用单个传感器来获取图像
      • 使用条带传感器获取图像
      • 使用传感器阵列获取图像
    • 简单的图像形成模型

      用形如 f(x,y) 的二维函数来表示图像,那么:

      0<f(x,y)<

      f(x,y) 可以用两个分量来表征:

      • 入射分量 入射到被观察场景的光源照射总量,用i(x,y) 表示;
      • 反射分量 场景中物体所反射的光照总量,用r(x,y) 表示。

      所以有:

      f(x,y)=i(x,y)r(x,y),0<i(x,y)<,0<r(x,y)<1

    2.4 图像取样和量化

    • 取样和量化的基本概念

      • 取样 :对坐标值进行数字化
      • 量化 : 对幅值数字化

      数字图像的质量在很大程度上取决于取样和量化中所用的样本数灰度级

    • 数字图像表示

      用数列矩阵来表示一幅数字图像。在实数矩阵中,每个元素称为图像单元、图像元素或像素。

      对比度 一幅图像最高和最低灰度级间的灰度差为对比度。

      存储数字图像所用的比特数为:

      b=M×N×k,M=Nb=N2k

      灰度级数L=2k

    • 空间和灰度分辨率

      • 空间分辨率 :图像中可辨别的最小细节的度量。在数量上,表示每单位距离线对数和每单位距离点数是最通用的度量(必须针对空间单位来规定才有意义)。
      • 灰度分辨率 :指在灰度级中可分辨的最小变化。
    • 图像内插

      用已知数据来估计未知位置的数据处理。是基本的图像重取样方法。可以处理图像的放大和缩小。

    2.5 像素间的基本关系

    • 相邻像素

      位于坐标 (x,y) 处的像素 p 有4个水平和垂直上的相邻像素,用 N4(p) 表示;有四个对角相邻像素,用 ND(p) 表示。如果 p 位于图像边界,则某些邻点可能 落在图像外边。

    • 邻接性、连通性、区域和边界

      • 4邻接、8邻接、混合邻接
    • 距离度量

      • 欧氏距离(圆)
      • D4 城市街区距离(菱形)
      • 棋盘距离(正方形)

    2.6 常用数学工具介绍

    • 阵列和矩阵操作
    • 线性操作和非线性操作
    • 算术操作
    • 集合和逻辑操作
      • 基本集合操作
      • 逻辑操作
      • 模糊集合
    • 空间操作
      • 单像素操作
      • 邻域操作
      • 几何空间变换与图像配准
    • 向量和矩阵操作
    • 图像变换

    3.第三章

    3.1 背景知识

    • 空间域 就是简单的包含图像像素的平面。空间域处理可用以下方式表示:

    g(x,y)=T[f(x,y)],T(x,y)

    • 灰度变换函数
      s=T(r),r,s

    3.2 基本灰度变换函数

    • 图像反转

      得到灰度范围为 [0,L1] 的一幅图像的反转图像:(得到等效的照片底片)

      s=L1r

    • 对数变换

      对数变换的通用形式:

      s=clog(1+r)

      扩展图像中暗像素的值,同时压缩更高灰度级的值。反对数变换的作用与此相反。

    这里写图片描述

    • 幂律变换(伽马)变换

      基本形式:

      s=crγ

      γ<1 变亮,大于1变暗,c=γ=1 恒等变换。

    这里写图片描述
    * 分段线性变换函数
    * 对比度拉伸:扩展图像灰度级动态范围处理,因此它可以跨越记录介质和显示装置的全部灰度范围。

    根据$r,s$ 的取值,变换可以为线性函数和阈值处理函数。
    
    • 灰度级分层:突出特定图像灰度范围的亮度。有两种方法:

      • 突出范围 [A,B] 内的灰度,并将所有其他灰度降低到一个更低的级别;
      • 突出范围[A,N] 内的灰度,并保持所有其他灰度级不变。
    • 比特平面分层:突出特定比特为整个图像外观作贡献。

      • 4个高阶比特平面,特别是最后两个比特平面,包含了在视觉上很重要的大多数数据。
      • 低阶比特平面在图像中贡献更精细的灰度细节。

      得出结论:储存四个高阶比特平面将允许我们以可接受的细节来重建原图像。这样可减少50%的存储量。

    3.3 直方图的处理

    • 理论基础:若一幅图像的像素倾向于占据可能的灰度级并且分布均匀,则该图像会有高对比度的外观并展示灰色调的较大变化。

    • 直方图均衡:

      • 灰度范围为 [0,L1] 的数字图像的直方图是离散函数 h(rk)=nk,其中 rk 是第 k 级灰度值,nk 是图像中灰度为rk 的像素的个数。
      • 通过转换函数T(rk)变换,得到直方图均衡化。
      • 应用:自适应对比度增强。
    • 直方图匹配:用于处理后有特殊直方图的方法。

    • 局部直方图处理:以图像中每个像素邻域中的灰度分布为基础设计变换函数,来增强图像中小区域的细节。

    • 在图像增强中使用直方图统计:提供这样一种增强图像的方法:

      在仅处理均值和方差时,实际上直接从取样值来估计它们,不必计算直方图。这些估计被称为取样均值和取样方差。

    3.4 空间滤波基础

    • 空间滤波机理

      • 空间滤波器的组成:
      • 一个邻域
      • 对该邻域包围的图像像素执行的预定义操作

      滤波产生的是一个新像素,新像素的坐标等于邻域中心的坐标,像素的值是滤波操作的结果。

    • 空间相关与卷积

      • 相关:滤波器模板移过图像并计算每个位置乘积之和的处理。一个大小为m×n 的滤波器与一幅图像 f(x,y) 做相关操作,可表示为w(x,y)f(x,y)
      • 卷积:与相关机理相似,但滤波器首先要旋转180o 一个大小为m×n 的滤波器与一幅图像 f(x,y) 做j卷积操作,可表示为w(x,y)f(x,y)

    3.5 平滑空间滤波器

    用于模糊处理和降低噪声。

    • 平滑线性滤波器(均值滤波器)

      它使用滤波器确定的邻域内像素的平均灰度值代替图像中每个像素的值。应用:

      • 降低噪声
      • 灰度级数量不足而引起的伪轮廓效应的平滑处理
      • 去除图像的不相关细节
    • 统计排序(非线性)滤波器

      最有代表性的是中值滤波器 ,特点:

      • 将像素邻域内灰度的中值(在中值计算中,包括原像素值)代替该像素的值;
      • 对处理脉冲噪声(椒盐噪声)非常有效。

    3.6 锐化空间滤波器

    • 拉普拉斯算子:最简单的各向同性微分算子,是一个线性算子。因其为微分算子,因此强调的是图像中灰度的 突变而不是灰度级缓慢变换的区域。

    • 非锐化隐蔽和高提升滤波:从原图像中减去一部分非锐化的版本。步骤:

      • 模糊原图像
      • 从原图像减去模糊图像
      • 将模板加到原图像上
    • 梯度:图像处理中的一阶微分用梯度实现。对于函数f(x) ,在坐标(x,y) 处的梯度定义为二维列向量。它指出在位置f(x,y)f的最大变化率方向。

      应用:边缘增强。

    4.第四章

    本章主要为傅里叶变换的原理打一个基础,并介绍在基本的图像滤波中如何使用傅里叶变换。

    4.1. 基本概念

    • 傅里叶概念:任何周期函数都可以表示为不同频率的正弦和或余弦和的形式,每个正弦项和或余弦项乘以不同的系数(傅里叶级数)。
    • 傅里叶变换:在非周期函数用正弦和或余弦和乘以加权函数的积分来表示的公式。
    • 介绍复数、傅里叶级数、冲击及其取样特征、连续函数的傅里叶变换以及之前提过的卷积。

    4.2. 取样与取样函数中的傅里叶变换

    • 取样

      在连续函数f(x,y) 中模拟取样的一种方法是:用一个ΔT 单位间隔的冲击串作为取样函数去乘以f(t) .

    • 取样函数的傅里叶变换

      空间域来两个函数乘积的傅里叶变换是两个函数在频率域的卷积。

    • 取样定理

      如果以超过函数最高频率的两倍的取样来获取样本,连续的带限函数可以完全从它的样本集来恢复。

    4.3. DFT小结

    在课本上,作者给了我们详细的总结:

    这里写图片描述
    这里写图片描述
    这里写图片描述

    4.4. 频率域滤波

    • 步骤
      • 等到填充参数PQ
      • 形成大小为P×Q 的填充后的图像fp(x,y)
      • (1)x+y 乘以fp(x,y)移到其变换中心
      • 计算上一步骤的DTF,得到F(u,v)
      • 生成实的、对称的滤波函数H(u,v)
      • 得到处理后的图像gp(x,y)
      • gp(x,y) 的做上限提取M×N区域 ,得到最终的处理结果g(x,y)
    • 空间域与频率域间的纽带是卷积定理。

    4.5. 使用频率域滤波器平滑图像

    三种低通滤波器来平滑图像

    • 定义总结

    这里写图片描述

    • 特性
      • 理想低通滤波器(ILFP)
      • 特性:模糊和振铃。
      • 布特沃斯低通滤波器(BLPF)
      • 特性:随着阶数增高,其振铃和负值变明显。(一阶时无)
      • 高斯低通滤波器(GLPF)
      • 特性:无振铃

    4.6. 使用频率域滤波器锐化图像

    • 三种高通滤波器来锐化图像
      • 定义总结

    这里写图片描述
    * 特性

    * 理想高通滤波器(IHPF)
      * 有振铃
    * 布特沃斯高通滤波器(BHPF)
      * 比IHPF更平滑
    * 高斯低通滤波器(GHPF)
      * 比前两个更平滑,即使微小物体和细线条得到的结果也比较其清晰
    
    • 其他方式

      • 拉普拉斯算子
      • 钝化模板、高提升滤波和高频强调滤波
      • 同态滤波

    4.7.选择性滤波器

    处理指定频段或者频率域的小区域

    • 带阻滤波器和带通滤波器

      • 带阻滤波器
        这里写图片描述

      • 带通滤波器

      • 通过1减去带阻得到。

    • 陷波滤波器:拒绝事先定义的关于频率矩形中心的一个邻域的频率。

      • 陷波带阻滤波器

      用中心已被平移到陷波滤波中心的高通滤波器的乘积来构造。

      • 陷波带通滤波器

      通过1减去带阻得到。

    展开全文
  • 数字图像中的噪声

    2018-10-29 21:45:51
    噪声数字图像处理之前,必须首先了解数字图像中噪声的来源,产生机理及噪声的数学模型。系统的分析了CCD相机成像过程中的噪声组成,指出数字图像中主要的噪声种类包括模式噪声、暗电流噪声、光子噪声、读出噪声、...

    1. https://blog.csdn.net/zhougynui/article/details/51764798

    2.

    对噪声数字图像处理之前,必须首先了解数字图像中噪声的来源,产生机理及噪声的数学模型。系统的分析了CCD相机成像过程中的噪声组成,指出数字图像中主要的噪声种类包括模式噪声、暗电流噪声、光子噪声、读出噪声、热噪声、以及量化噪声,以下对各个噪声做具体说明。
      (1)模式噪声在数字图像成像过程中形成,相机传感器通过感知光子的强度和数量,转换为一定对应强度关系的电信号,在此过程中,受现代工艺水平的限制,还无法做到所有感光元件性能绝对一致统一,形成了图像获取过程中的噪声。

      (2)暗电流噪声指在没有入射光照条件下,对MCP两端施加电压信号,通道中输出的反向电流,可看作背景白噪声「sod,暗电流噪声对工作温度和制造工艺敏感,在低温条件下可忽略不计。

      (3)光子噪声指光子的离散性或粒子性所引起的噪声,即便光照功率恒定,每一时刻到达传感器的光子数量也是随机的,这种数量的变动造成了光子噪声。

      (4)读出噪声包括读出电路中各种电子元气件所具有的固有噪声和电路设计中引入的噪声。

      (5)热噪声存在于所有电子元器件及传输介质中,任何的放大电路都存在热噪声,减少热噪声最好的方法就是将电路至于极低的温度环境下,这在现实应用中是不可能实现的。

      (6)量化噪声是由于数字图像是经过模数电路量化转换的,在采样过程中存在信息的损失和近似误差。

        图像噪声降低了图像的视觉效果,影响和限制了后续其它图像处理算法的妙果,图像去噪己经成为图像处理领域中必不可少的一环。
    --------------------- 
    作者:bi_diu1368 
    来源:CSDN 
    原文:https://blog.csdn.net/bi_diu1368/article/details/82778181 
    版权声明:本文为博主原创文章,转载请附上博文链接!

    展开全文
  • 数字图像处理系统 一个基本的数字图像处理系统由图像输入、图像存储、图像输出、图像通信、图像处理和分析五个模块组成。 数字图像输入模块:获取图像,通过数字设备将要处理的连续图像转换为计算机处理的数字图像 ...
    数字图像处理系统

    一个基本的数字图像处理系统由图像输入、图像存储、图像输出、图像通信、图像处理和分析五个模块组成。

    • 数字图像输入模块:获取图像,通过数字设备将要处理的连续图像转换为计算机处理的数字图像
    • 数字图像存储模块:作为存储单元存储数字图像数据
    • 数字图像输出模块:将处理前后的数字图像显示出来或者永久保存
    • 数字图像通信模块:对图像进行传输和通信
    • 数字图像处理和分析模块:通用图像处理、专用图像处理、图像处理芯片,一般包括处理算法、实现软件和计算机组成
      如下图所示:
      数字图像处理系统
    图像基础
    • 图像表达:建模,图像采样、数字化
    • 图像和视觉基础
    • 图像变化:提高图像质量
    图像处理
    • 图像增强:改善图像质量
    • 图像几何处理:平移、缩放、旋转、扭曲
    • 图像复原:去噪声、去模糊
    • 图像重建:重建原始图像
    • 图像编码压缩:减少存储量和传输量
    • 图像分割:图像区域分割和理解目标表达和描述
    展开全文
  • 数字图像处理噪声

    2020-07-12 23:30:55
    数字图像处理专业课中实验所需要的代码,下载后可直接运行出结果。
  • 数字图像处理技术

    2018-11-25 19:28:31
    所谓数字图像处理,是指利用计算机对图像进行分析、加工、和处理,使其满足视觉、心理或其他要求的技术,主要有去除噪声、增强、复原、分割、提取特征等处理的方法。20 世纪 50 年代,电子计算机已经发展到一定水平...
  •  主要记载学习数字图像处理的基本知识,仅供参考。 目录 一、什么是图像处理? 二、图像的数字化表达 三、数字图像处理的基本知识 一、什么是图像处理?  图像处理就是对图像信息进行加工处理,满足实际的...
  • (注:本文代码大部分可从《数字图像处理 第三版》中找到)使用软件:MATLAB R2018a学习前提:了解matlab的GUI界面的每个按钮参考资料:《数字图像处理 第三版》,CSDN博客使用初音图片P站画师uid:1589657。...
  • 数字图像处理(Digital Image Processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。本专栏将以学习笔记形式对数字图像处理的重点基础知识进行总结整理,欢迎大家一起学习交流...
  • 刚开始认真接触数字图像处理,来了解一下数字图像处理的一个特别大体的框架。 1. 概论 数字图像处理的主要内容: 1⃣️ 图像获取、表示和表现;2⃣️ 图像复原;3⃣️ 图像增强; 4⃣️ 图像分割;5⃣️ 图像...
  • 图像噪声与滤波处理 二、实验目的 1.熟悉MATLAB软件的使用。 2.掌握图像噪声与滤波处理。 三、实验内容 1.对一张图片添加不同强度的高斯噪声、椒盐噪声 2.对图像进行不同模板的均值滤波、高斯加权滤波、中值滤波...
  • 所谓数字图像处理,是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。20 世纪 50 年代,电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息,这便是早期的图像处理。早期图像处理...
  • 在计算机科学中,数字图像处理是利用计算机算法对数字图像进行图像处理。数字图像处理作为数字信号处理的一个子类或领域,比模拟图像处理具有许多优点。它允许更广泛的算法应用于输入数据,可以避免在处理过程中产生...
  • 之前没写完的复习资料放弃了~还是按照老师给的总复习PPT来...数字图像处理:借助于数字计算机来处理数字图像。 图像的来源:主要是电磁能谱,此外还有声波,超声波和电子及计算机产生。 数字图像基础 视觉感知要...
  • 复习着感觉记不住,于是乎,有了这篇博文,如果也同样选修了数字图像处理课程的小伙伴们可以参考一哈! 纯手码字…逢考必过! 概念 采样与量化 灰度变换缓慢的景物:粗采样、细量化 有大量细节变化的图像:...
  • 数字图像处理-冈萨雷斯》笔记第一章 绪论图像处理实例:伽马射线成像、X射线成像、紫外波段成像、可见光以及红外线成像、微波波段成像、无线电波成像、声波成像。图像处理的基本步骤:图像获取、滤波与增强、图像...
  • 数字图像处理方法的重要性源于两个主要应用领域: 改善图像信息以便解释。 为存储、传输和表示而对图像数据进行处理,以便于机器自动理解。 图像处理(image processing): 用计算机对图像...
  • 数字图像处理主要有两个目的: 1、改善图示的信息以便人们解释;2、为存储、传输和表示而对图像进行的处理。   数字图像处理是什么: 数字图像可以理解为一个二维函数f(x,y),其中 x 和 y 是空间(平面)坐标,而...
1 2 3 4 5 ... 20
收藏数 23,606
精华内容 9,442
关键字:

噪声 数字图像处理