2019-06-11 11:37:31 millions_02 阅读数 723
  • 人脸识别技术发展及实用方案设计

    主要介绍人脸识别技术的发展与近况,尤其侧重深度学习技术在人脸检测、识别等方向的应用,并从实用人脸识别系统设计中的训练样本筛选,检测跟踪,人脸对齐以及识别算法等技术进行分享。

    2790 人正在学习 去看看 CSDN讲师

图像识别

面部表情识别(FER)

  • 预处理:
  1. 去掉表情无关特征
  2. 标定关键坐标,这一步可以减少旋转和面部变形带来的变化,常用IntraFace
  3. 人脸特征提取:从经过预处理后的人脸图像中提取出人脸上具有代表性的特征信息,并用计算机语言进行描述。
  • 数据增强
    线下数据增强和在线数据增强,通过生成,修改,模拟原图的方式增加训练数据
  • 人脸归一化
    1.光照归一化,去掉光照影响,于各向同性扩散归一化(isotropic diffusion-based normalization)、基于离散余弦变换归一化(DCT-based normalization)和高斯差分(DoG)。
    2.姿态归一
    基于 GAN 的深度模型生成正面人脸
    姿态补偿、姿态估计、表情估计
2019-01-29 11:31:11 qq_38900441 阅读数 287
  • 人脸识别技术发展及实用方案设计

    主要介绍人脸识别技术的发展与近况,尤其侧重深度学习技术在人脸检测、识别等方向的应用,并从实用人脸识别系统设计中的训练样本筛选,检测跟踪,人脸对齐以及识别算法等技术进行分享。

    2790 人正在学习 去看看 CSDN讲师
import dlib                     #人脸识别的库dlib
import numpy as np              #数据处理的库numpy
import cv2                      #图像处理的库OpenCv


class face_emotion():

    def __init__(self):
        # 使用特征提取器get_frontal_face_detector
        self.detector = dlib.get_frontal_face_detector()
        # dlib的68点模型,使用作者训练好的特征预测器
        self.predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")

        #建cv2摄像头对象,这里使用电脑自带摄像头,如果接了外部摄像头,则自动切换到外部摄像头
        self.cap = cv2.VideoCapture(0)
        # 设置视频参数,propId设置的视频参数,value设置的参数值
        self.cap.set(3, 480)
        # 截图screenshoot的计数器
        self.cnt = 0


    def learning_face(self):

        # 眉毛直线拟合数据缓冲
        line_brow_x = []
        line_brow_y = []

        # cap.isOpened() 返回true/false 检查初始化是否成功
        while(self.cap.isOpened()):

            # cap.read()
            # 返回两个值:
            #    一个布尔值true/false,用来判断读取视频是否成功/是否到视频末尾
            #    图像对象,图像的三维矩阵
            flag, im_rd = self.cap.read()

            # 每帧数据延时1ms,延时为0读取的是静态帧
            k = cv2.waitKey(1)

            # 取灰度
            img_gray = cv2.cvtColor(im_rd, cv2.COLOR_RGB2GRAY)

            # 使用人脸检测器检测每一帧图像中的人脸。并返回人脸数rects
            faces = self.detector(img_gray, 0)

            # 待会要显示在屏幕上的字体
            font = cv2.FONT_HERSHEY_SIMPLEX

            # 如果检测到人脸
            if(len(faces)!=0):

                # 对每个人脸都标出68个特征点
                for i in range(len(faces)):
                    # enumerate方法同时返回数据对象的索引和数据,k为索引,d为faces中的对象
                    for k, d in enumerate(faces):
                        # 用红色矩形框出人脸
                        cv2.rectangle(im_rd, (d.left(), d.top()), (d.right(), d.bottom()), (0, 0, 255))
                        # 计算人脸热别框边长
                        self.face_width = d.right() - d.left()

                        # 使用预测器得到68点数据的坐标
                        shape = self.predictor(im_rd, d)
                        # 圆圈显示每个特征点
                        for i in range(68):
                            cv2.circle(im_rd, (shape.part(i).x, shape.part(i).y), 2, (0, 255, 0), -1, 8)
                            #cv2.putText(im_rd, str(i), (shape.part(i).x, shape.part(i).y), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                            #            (255, 255, 255))

                        # 分析任意n点的位置关系来作为表情识别的依据
                        mouth_width = (shape.part(54).x - shape.part(48).x) / self.face_width  # 嘴巴咧开程度
                        mouth_higth = (shape.part(66).y - shape.part(62).y) / self.face_width  # 嘴巴张开程度
                        # print("嘴巴宽度与识别框宽度之比:",mouth_width_arv)
                        # print("嘴巴高度与识别框高度之比:",mouth_higth_arv)

                        # 通过两个眉毛上的10个特征点,分析挑眉程度和皱眉程度
                        brow_sum = 0  # 高度之和
                        frown_sum = 0  # 两边眉毛距离之和
                        for j in range(17, 21):
                            brow_sum += (shape.part(j).y - d.top()) + (shape.part(j + 5).y - d.top())
                            frown_sum += shape.part(j + 5).x - shape.part(j).x
                            line_brow_x.append(shape.part(j).x)
                            line_brow_y.append(shape.part(j).y)

                        # self.brow_k, self.brow_d = self.fit_slr(line_brow_x, line_brow_y)  # 计算眉毛的倾斜程度
                        tempx = np.array(line_brow_x)
                        tempy = np.array(line_brow_y)
                        z1 = np.polyfit(tempx, tempy, 1)  # 拟合成一次直线
                        self.brow_k = -round(z1[0], 3)  # 拟合出曲线的斜率和实际眉毛的倾斜方向是相反的

                        brow_hight = (brow_sum / 10) / self.face_width  # 眉毛高度占比
                        brow_width = (frown_sum / 5) / self.face_width  # 眉毛距离占比
                        # print("眉毛高度与识别框高度之比:",round(brow_arv/self.face_width,3))
                        # print("眉毛间距与识别框高度之比:",round(frown_arv/self.face_width,3))

                        # 眼睛睁开程度
                        eye_sum = (shape.part(41).y - shape.part(37).y + shape.part(40).y - shape.part(38).y +
                                   shape.part(47).y - shape.part(43).y + shape.part(46).y - shape.part(44).y)
                        eye_hight = (eye_sum / 4) / self.face_width
                        # print("眼睛睁开距离与识别框高度之比:",round(eye_open/self.face_width,3))

                        # 分情况讨论
                        # 张嘴,可能是开心或者惊讶
                        if round(mouth_higth >= 0.03):
                            if eye_hight >= 0.056:
                                cv2.putText(im_rd, "amazing", (d.left(), d.bottom() + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.8,
                                            (0, 0, 255), 2, 4)
                            else:
                                cv2.putText(im_rd, "happy", (d.left(), d.bottom() + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.8,
                                            (0, 0, 255), 2, 4)

                        # 没有张嘴,可能是正常和生气
                        else:
                            if self.brow_k <= -0.3:
                                cv2.putText(im_rd, "angry", (d.left(), d.bottom() + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.8,
                                            (0, 0, 255), 2, 4)
                            else:
                                cv2.putText(im_rd, "nature", (d.left(), d.bottom() + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.8,
                                            (0, 0, 255), 2, 4)

                # 标出人脸数
                cv2.putText(im_rd, "Faces: "+str(len(faces)), (20,50), font, 1, (0, 0, 255), 1, cv2.LINE_AA)
            else:
                # 没有检测到人脸
                cv2.putText(im_rd, "No Face", (20, 50), font, 1, (0, 0, 255), 1, cv2.LINE_AA)

            # 添加说明
            im_rd = cv2.putText(im_rd, "S: screenshot", (20, 400), font, 0.8, (0, 0, 255), 1, cv2.LINE_AA)
            im_rd = cv2.putText(im_rd, "Q: quit", (20, 450), font, 0.8, (0, 0, 255), 1, cv2.LINE_AA)

            # 按下s键截图保存
            if (k == ord('s')):
                self.cnt+=1
                cv2.imwrite("screenshoot"+str(self.cnt)+".jpg", im_rd)

            # 按下q键退出
            if(k == ord('q')):
                break

            # 窗口显示
            cv2.imshow("camera", im_rd)

        # 释放摄像头
        self.cap.release()

        # 删除建立的窗口
        cv2.destroyAllWindows()


if __name__ == "__main__":
    my_face = face_emotion()
    my_face.learning_face()

参考https://blog.csdn.net/hpymiss/article/details/80664880

dlibhttps://download.csdn.net/download/qq_38900441/10683693

shape_predictor_68_face_landmarks.dathttps://download.csdn.net/download/qq_38900441/10942823

2018-07-06 21:53:00 DuMorgan 阅读数 2235
  • 人脸识别技术发展及实用方案设计

    主要介绍人脸识别技术的发展与近况,尤其侧重深度学习技术在人脸检测、识别等方向的应用,并从实用人脸识别系统设计中的训练样本筛选,检测跟踪,人脸对齐以及识别算法等技术进行分享。

    2790 人正在学习 去看看 CSDN讲师
问题描述
       根据面部表情显示的情绪对人物图像进行分类。
数据集
       有 35887 张人脸灰度图像的数据,每张图像分辨率48*48,像素点数据存放在csv文件中,图像的表情由数字0~6表示(0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral)。


少量数据的可视化处理:

      将csv文件中pixels列48*48的数值恢复成图片


解决思路:

1、安装开源的人脸识别库。
2、提取数据的Dlib特征及HOG特征。

3、进行SVM算法的训练并对测试集进行算法测试,评估效果。


1、安装部分库

安装Dlib。
        Dlib是一个跨平台的C++公共库,包含了许多机器学习常用的算法,人脸检测与特征点定位算法;同时支持大量的数值算法如矩阵、大整数、随机数运算等等。
安装OpenCV。
        OpenCV全称是Open Source Computer Vision Library,是一个跨平台的计算机视觉库。
安装其他辅助库。
           pip install Numpy #支持高阶大量的维度数组与矩阵运算
           pip install argparse #参数处理库
           pip install sklearn #基于python的机器学习库
           pip install scikit-image #图像处理包,它将图片作为数组进行处理
           pip install pandas #基于Numpy构建的,有数值标签,具有索引。

2、提取数据的Dlib特征及HOG特征
2.1、HOG特征
      方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。
2.2、HOG特征提取过程
    1)灰度化(将图像看做一个x,y,z(灰度)的三维图像);
    2)采用Gamma校正法对输入图像进行颜色空间的标准化(归一化);目的是调节图像的对比度,降低图像局部的阴影和光照变化所造成的影响,同时可以抑制噪音的干扰;
    3)计算图像每个像素的梯度(包括大小和方向);主要是为了捕获轮廓信息,同时进一步弱化光照的干扰。
    4)将图像划分成小cells;
    5)统计每个cell的梯度直方图(不同梯度的个数),即可形成每个cell的特征向量;
    6)将每几个cell组成一个block,一个block内所有cell的特征向量组合起来便得到该block的HOG特征向量。

    7)将图像image内的所有block的HOG特征向量串联起来就可以得到该image的HOG特征向量了。这个就是最终的可供分类使用的特征向量了。

2.3、Dlib特征提取

Dlib会提取图像的特征点。

  

 注:图片来自网络

但本项目中,图片较小,像素点很少,Dlib的特征提取效果较差。


3、算法运行结果


总结及分析

由于图片像素点相对较少,相邻像素差距较大,面部特征无法充分展示,给特征提取造成了很大困难。

由于图片数量较多,提取特征耗时较长。

2016-12-16 09:11:48 tianyake116 阅读数 803
  • 人脸识别技术发展及实用方案设计

    主要介绍人脸识别技术的发展与近况,尤其侧重深度学习技术在人脸检测、识别等方向的应用,并从实用人脸识别系统设计中的训练样本筛选,检测跟踪,人脸对齐以及识别算法等技术进行分享。

    2790 人正在学习 去看看 CSDN讲师
CognitiveJ 是一个开源的,支持 Java 8 API 的库,用于管理和编排 Java 应用和微软的 Cognitive  (Project Oxford) 机器学习和图像处理库的项目,可以让你查询以及分析图像。


人脸识别


人脸检测– 捕获脸部、性别、年龄等相关脸部特征以及图像的标志
表情检测 – 根据图像中的脸部信息推断出表情状态
验证 – 验证同一个人的两张不同表情的差异
识别 – 根据已知的人里识别出某个人
查找相似 —— 对人脸检测、分组以及排名以找出类似的人脸
分组 – 基于脸部特征进行人的分组
Person Group/Person/Face Lists; 创建、管理和训练分组、脸部和人列表用于识别、分组和查找相似的脸部特征
视觉
图像描述 —— 描述图像的可视化内容并返回真实世界中的表述方式
图像分析 —— 抽取图像中的关键信息,例如可判断图片是否包含色情性质
OCR – 检测和提取图像中的文字
缩略图 – 根据图像的关键点来创建缩略图
图层 (体验阶段)


应用图像层到多个图像上,将发现的特征进行可视化展现
在人脸和图像上使用字幕
形象的描述脸部和视觉特征集
对图像中的人脸进行像素化
其他特性


支持本地和远程图像
参数校验
开始


Java 8
MS Cognitive 库的订阅秘钥 (免费注册)
添加来自 JCenter 的依赖
Gradle


1
2
3
4
5
6
7
8
repositories {
        jcenter()
    }
 
    dependencies {
    compile "cognitivej:cognitivej:0.6.2"
    ...
    }
Maven


1
2
3
4
5
6
<dependency>
     <groupId>cognitivej</groupId>
     <artifactId>cognitivej</artifactId>
     <version>0.6.2</version>
     <type>pom</type>
   </dependency>
链式构建器 - 该构建器是 MS Cognitive REST 服务的简单轻量级封装,用来管理参数和响应、HTTP 通讯和重试策略的编排。构建器使用链式设计模式允许方便的在资源处理过程中进行操作。
场景 - 场景是真实世界的一些用例类,大大的简化了构建器和封装类之间的交互。没有理由不让你直接和构建器打交道,场景提供了更多的样板逻辑来减少负担。图层覆盖 - 允许基于查询的结构来创建和生成新的图像。注意:碰撞检测以及边界检测正在开发中。
封装器 简单的关于请求、响应和参数对象的封装,例如 Face, FaceAttributes,Person 等等


脸部检测 可以检测图片中的人脸,并返回一组脸部结果集合。


示例


1
2
3
4
5
6
7
public static void main(String[] args) {
    FaceScenarios faceScenarios = new FaceScenarios(getProperty("azure.cognitive.subscriptionKey"),
            getProperty("azure.cognitive.emotion.subscriptionKey"));
    ImageOverlayBuilder imageOverlayBuilder = ImageOverlayBuilder.builder(IMAGE_URL);
    imageOverlayBuilder.outlineFacesOnImage(faceScenarios.findFaces(IMAGE_URL), RectangleType.FULL,
            CognitiveJColourPalette.STRAWBERRY).launchViewer();
}

2017-03-27 09:48:00 weixin_33713350 阅读数 30
  • 人脸识别技术发展及实用方案设计

    主要介绍人脸识别技术的发展与近况,尤其侧重深度学习技术在人脸检测、识别等方向的应用,并从实用人脸识别系统设计中的训练样本筛选,检测跟踪,人脸对齐以及识别算法等技术进行分享。

    2790 人正在学习 去看看 CSDN讲师

CognitiveJ 是一个开源的,支持 Java 8 API 的库,用于管理和编排 Java 应用和微软的Cognitive(Project Oxford)机器学习和图像处理库的项目,可以让你查询以及分析图像。
一:人脸识别
    1.人脸检测– 捕获脸部、性别、年龄等相关脸部特征以及图像的标志
    2.表情检测 – 根据图像中的脸部信息推断出表情状态
    3.验证 – 验证同一个人的两张不同表情的差异
    4.识别 – 根据已知的人里识别出某个人
    5.查找相似 —— 对人脸检测、分组以及排名以找出类似的人脸
    6.分组 – 基于脸部特征进行人的分组
    7.Person Group/Person/Face Lists; 创建、管理和训练分组、脸部和人列表用于识别、分组和查找相似的脸部特征
二:视觉
    1.图像描述 —— 描述图像的可视化内容并返回真实世界中的表述方式
    2.图像分析 —— 抽取图像中的关键信息,例如可判断图片是否包含色情性质
    3.OCR – 检测和提取图像中的文字
    4.缩略图 – 根据图像的关键点来创建缩略图
三:图层 (体验阶段)
    1.应用图像层到多个图像上,将发现的特征进行可视化展现
    2.在人脸和图像上使用字幕
    3.形象的描述脸部和视觉特征集
    4.对图像中的人脸进行像素化
四:其他特性
    1.支持本地和远程图像
    2.参数校验
五:代码示例
1.Gradle

repositories {
        jcenter()
    }
dependencies {
    compile "cognitivej:cognitivej:0.6.2"
}

2.Maven支持

<dependency>
     <groupId>cognitivej</groupId>
     <artifactId>cognitivej</artifactId>
     <version>0.6.2</version>
     <type>pom</type>
</dependency>

3.链式构建器 - 该构建器是 MS Cognitive REST 服务的简单轻量级封装,用来管理参数和响应、HTTP 通讯和重试策略的编排。构建器使用链式设计模式允许方便的在资源处理过程中进行操作。
封装器 简单的关于请求、响应和参数对象的封装,例如 Face, FaceAttributes,Person 等等
4.脸部检测 可以检测图片中的人脸,并返回一组脸部结果集合。

public static void main(String[] args) {
    FaceScenarios faceScenarios = new FaceScenarios(getProperty("azure.cognitive.subscriptionKey"),
            getProperty("azure.cognitive.emotion.subscriptionKey"));
    ImageOverlayBuilder imageOverlayBuilder = ImageOverlayBuilder.builder(IMAGE_URL);
    imageOverlayBuilder.outlineFacesOnImage(faceScenarios.findFaces(IMAGE_URL), RectangleType.FULL,
            CognitiveJColourPalette.STRAWBERRY).launchViewer();
}

5.脸部特征 用来检测图片中人脸的特征标志信息

public static void main(String[] args) throws IOException {
    FaceScenarios faceScenarios = new FaceScenarios(getProperty("azure.cognitive.subscriptionKey"),
            getProperty("azure.cognitive.emotion.subscriptionKey"));
    Face faces = faceScenarios.findSingleFace(IMAGE_URL);
    ImageOverlayBuilder.builder(IMAGE_URL).outFaceLandmarksOnImage(faces).launchViewer();
}

6.脸部属性检测 显示所检测到的脸部的属性,例如性别、年龄、是否佩戴眼镜等

public static void main(String[] args) {
    FaceScenarios faceScenarios = new FaceScenarios(getProperty("azure.cognitive.subscriptionKey"),
            getProperty("azure.cognitive.emotion.subscriptionKey"));
    List<Face> faces = faceScenarios.findFaces(IMAGE_URL);
    ImageOverlayBuilder.builder(IMAGE_URL).outlineFacesOnImage(faces, RectangleType.CORNERED,
            CognitiveJColourPalette.MEADOW).writeFaceAttributesToTheSide(faces, CognitiveJColourPalette.MEADOW).launchViewer();
}

7.脸部验证 用来验证两个不同的脸部是否属于一个人,包含一个检测的可靠指数。

public static void main(String[] args) {
    FaceScenarios faceScenarios = new FaceScenarios(getProperty("azure.cognitive.subscriptionKey"),
            getProperty("azure.cognitive.emotion.subscriptionKey"));
    ImageOverlayBuilder.builder(CANDIDATE_1);
    imageOverlayBuilder.verify(CANDIDATE_2, faceScenarios.verifyFaces(CANDIDATE_1, CANDIDATE_2)).launchViewer();
}

8.脸部标识 标识出图像中的人。在标识之前,我们需要提供一组候选样本,当前最多支持 1000 个候选样本。

public static void main(String[] args) {
    FaceScenarios faceScenarios = new FaceScenarios(getProperty("azure.cognitive.subscriptionKey"),
            getProperty("azure.cognitive.emotion.subscriptionKey"));
    ImageOverlayBuilder imageOverlayBuilder = ImageOverlayBuilder.builder(IMAGE);
    List<ImageHolder> candidates = candidates();
    People people = ScenarioHelper.createPeopleFromHoldingImages(candidates, ImageNamingStrategy.DEFAULT);
    String groupId = faceScenarios.createGroupWithPeople(randomAlphabetic(6).toLowerCase(), people);
}

9.脸部像素化 将图像中所有的脸部信息标识出来并进行像素化。

public static void main(String[] args) {
    FaceScenarios faceScenarios = new FaceScenarios(getProperty("azure.cognitive.subscriptionKey"),
            getProperty("azure.cognitive.emotion.subscriptionKey"));
    ImageOverlayBuilder imageOverlayBuilder = ImageOverlayBuilder.builder(IMAGE);
    faceScenarios.findFaces(IMAGE).stream().forEach(imageOverlayBuilder:: pixelateFaceOnImage);
    imageOverlayBuilder.launchViewer();
}
public static void main(String[] args) {
    FaceScenarios faceScenarios = new FaceScenarios(getProperty("azure.cognitive.subscriptionKey"),
            getProperty("azure.cognitive.emotion.subscriptionKey"));
    ImageOverlayBuilder.builder(IMAGE_URL).outlineEmotionsOnImage(faceScenarios.findEmotionFaces(IMAGE_URL)).launchViewer();
}

10.视觉描述 使用人类可读的方式来分析和描述图像中的内容。

public static void main(String[] args) {
    ComputerVisionScenario computerVisionScenario = new ComputerVisionScenario(getProperty("azure.cognitive.vision.subscriptionKey"));
    ImageDescription imageDescription = computerVisionScenario.describeImage(IMAGE_URL);
    ImageOverlayBuilder.builder(IMAGE_URL).describeImage(imageDescription).launchViewer();
}

11.OCR 用来分析和提取图像中包含的文字信息。

public static void main(String[] args) {
    ComputerVisionScenario computerVisionScenario = new ComputerVisionScenario(getProperty("azure.cognitive.vision.subscriptionKey"));
    OCRResult ocrResult = computerVisionScenario.ocrImage(IMAGE_URL);
    ImageOverlayBuilder.builder(IMAGE_URL).ocrImage(ocrResult).launchViewer();
}

 

没有更多推荐了,返回首页