单片机起振电容_单片机 电容 - CSDN
  • 单片机晶振不起振的可能原因

    千次阅读 2015-07-03 15:50:07
    遇到单片机晶振不起振是常见现象,那么引起晶振不起振的原因有哪些呢? (1) PCB板布线错误; (2) 单片机质量有问题; (3) 晶振质量有问题; (4) 负载电容或匹配电容与晶振不匹配或者电容质量有问题; (5) PCB板...
    

    博客转自:http://bbs.elecfans.com/forum.php?mod=viewthread&tid=236181

    遇到单片机晶振不起振是常见现象,那么引起晶振不起振的原因有哪些呢?
    (1) PCB
    板布线错误;
    (2)
    单片机质量有问题;
    (3)
    晶振质量有问题;
    (4)
    负载电容或匹配电容与晶振不匹配或者电容质量有问题;
    (5) PCB
    板受潮,导致阻抗失配而不能起振;
    (6)
    晶振电路的走线过长;
    (7)
    晶振两脚之间有走线;
    (8)
    外围电路的影响。
    解决方案,建议按如下方法逐个排除故障:
    (1)
    排除电路错误的可能性,因此你可以用相应型号单片机的推荐电路进行比较。
    (2)
    排除外围元件不良的可能性,因为外围零件无非为电阻,电容,你很容易鉴别是否为良品。
    (3)
    排除晶振为停振品的可能性,因为你不会只试了一二个晶振。
    (4)
    试着改换晶体两端的电容,也许晶振就能起振了,电容的大小请参考晶振的使用说明。
    (5)
    PCB布线时晶振电路的走线应尽量短且尽可能靠近IC,杜绝在晶振两脚间走线。
    有关晶振不起振问题的讨论
          
    最近在给电路更换晶振,4M的,当然也涉及了很多的问题。以前用的是陶瓷的晶振,现在要更新比较好的金属晶振。当然我也知道有更好的晶体晶振,考虑到成本问题所以没有采用。更换了晶振以后【在实验没有问题的情况下,进行生产的,可是问题还是接连的出现了】两个比较重要的故障现象出现了:晶振有3%的概率不起振晶振出现了不稳定性,一会振一会不振,电路出现死机现象。
         
    取回的电路板进行了分析,用示波器来检测,确实是不起振的,所以到网上看了不少大家对于这方面的观点。现在我们的问题已经解决,问题是晶振与串联接地的晶振不匹配的原因。单片机的功率决定了晶振的功率P1而电容的大小又取材于单片机的单片机功率。选择合适又要于晶振比较匹配才是合适的。这里请注意P1于电容的匹配符合于p1=c1*c2/c1+c2+p2【这里的 P2是一般是3~5p的一个值】选择的电容的值越大单片机的耗电能力也就越强。而且易造成不起振的情况。
    一下是论坛上大家的一些讨论总结:可以值得参考一下.
    *
    此问题困扰了好多技术人员,我也做过详尽的分析,主要要考虑这三点:1 晶振两端在工作的动态阻抗问题,此阻抗有一定的范围,因而在设计时会并联一个几百K的电阻来稳定动态阻抗;2 谐振电容的匹配;3 焊接时烙铁的温度太高

    *
    晶振的匹配电容的主要作用是匹配晶振和振荡电路,使电路易于启振并处于合理的激励态下,对频率也有一定的微调作用。对MCU,正确选择晶振的匹配电容,关键是微调晶体的激励状态,避免过激励或欠激励,前者使晶体容易老化影响使用寿命并导致振荡电路EMC特性变劣,而后者则不易启振,工作亦不稳定,所以正确地选择晶体匹配电容是很重要的。

    *
    石英晶体振荡器分非温度补偿式晶体振荡器、温度补偿晶体振荡器(TCXO)、电压控制晶体振荡器(VCXO)、恒温控制式晶体振荡器(OCXO)和数字化/μp补偿式晶体振荡器(DCXO/MCXO)等几种类型。其中,无温度补偿式晶体振荡器是最简单的一种,在日本工业标准(JIS)中,称其为标准封装晶体振荡器(SPXO)。
    你那个可能是TCXO型的吧,加个热敏电阻和电容串联在晶振振子之间怎么样?

    *
    无源晶体与有源晶振的区别、应用范围及用法:
    1
    、无源晶体——无源晶体需要用DSP片内的振荡器,在datasheet上有建议的连接方法。无源晶体没有电压的问题,信号电平是可变的,也就是说是根据起振电路来决定的,同样的晶体可以适用于多种电压,可用于多种不同时钟信号电压要求的DSP,而且价格通常也较低,因此对于一般的应用如果条件许可建议用晶体,这尤其适合于产品线丰富批量大的生产者。无源晶体相对于晶振而言其缺陷是信号质量较差,通常需要精确匹配外围电路(用于信号匹配的电容、电感、电阻等),更换不同频率的晶体时周边配置电路需要做相应的调整。建议采用精度较高的石英晶体,尽可能不要采用精度低的陶瓷警惕。
    2
    、有源晶振——有源晶振不需要DSP的内部振荡器,信号质量好,比较稳定,而且连接方式相对简单(主要是做好电源滤波,通常使用一个电容和电感构成的PI型滤波网络,输出端用一个小阻值的电阻过滤信号即可),不需要复杂的配置电路。有源晶振通常的用法:一脚悬空,二脚接地,三脚接输出,四脚接电压。相对于无源晶体,有源晶振的缺陷是其信号电平是固定的,需要选择好合适输出电平,灵活性较差,而且价格高。对于时序要求敏感的应用,个人认为还是有源的晶振好,因为可以选用比较精密的晶振,甚至是高档的温度补偿晶振。有些DSP内部没有起振电路,只能使用有源的晶振,如TI 6000系列等。有源晶振相比于无源晶体通常体积较大,但现在许多有源晶振是表贴的,体积和晶体相当,有的甚至比许多晶体还要小。

    展开全文
  • 单片机外围电路设计之二:电容 电容,作为电子电路的又一基本元器件,大家也是熟悉不过的了。下面我们谈谈电容的一些基本应用及注意事项。但是,由于电容的应用非常广泛,未必能面面俱到,如果有网友觉得没有谈到...

    单片机外围电路设计之二:电容

     

    电容,作为电子电路的又一基本元器件,大家也是熟悉不过的了。下面我们谈谈电容的一些基本应用及注意事项。但是,由于电容的应用非常广泛,未必能面面俱到,如果有网友觉得没有谈到的地方,希望公共完善。

    1概念

    电容(Capacitance)亦称作“电容量”,是指在给定电位差下的电荷储藏量,记为C,国际单位是法拉(F)。一般来说,电荷在电场中会受力而移动,当导体之间有了介质,则阻碍了电荷移动而使得电荷累积在导体上,造成电荷的累积储存,储存的电荷量则称为电容。电容是电子设备中大量使用的电子元件之一,广泛应用于隔直、耦合、旁路、滤波、调谐回路、能量转换、控制电路等方面。

    电容(或称电容量)是表现电容器容纳电荷本领的物理量。

    电容从物理学上讲,它是一种静态电荷存储介质,可能电荷会永久存在,这是它的特征,它的用途较广,它是电子、电力领域中不可缺少的电子元件。主要用于电源滤波、信号滤波、信号耦合、谐振、滤波、补偿、充放电、储能、隔直流等电路中。

    在电路学里,给定电势差,电容器储存电荷的能力,称为电容(capacitance),标记为C。采用国际单位制,电容的单位是法拉(farad),标记为F。

    电容的符号是C。

    C=εS/d=εS/4πkd(真空)=Q/U

    在国际单位制里,电容的单位是法拉,简称法,

    符号是F,由于法拉这个单位太大,所以常用的电容单位有毫法(mF)、微法(μF)、纳法(nF)和皮法(pF)等,换算关系是:

    1法拉(F)= 1000毫法(mF)=1000000微法(μF)

    1微法(μF)= 1000纳法(nF)= 1000000皮法(pF)。

    电容与电池容量的关系:

    1伏安时=1瓦时=3600焦耳

    w=0.5cuu

    一个电容器,如果带1库的电量时两级间的电势差是1伏,这个电容器的电容就是1法,即:C=Q/U 但电容的大小不是由Q(带电量)或U(电压)决定的,即:C=εS/4πkd 。其中,ε是一个常数,S为电容极板的正对面积,d为电容极板的距离,k则是静电力常量。常见的平行板电容器,电容为C=εS/d(ε为极板间介质的介电常数,S为极板面积,d为极板间的距离)。

    定义式:C=Q/U

    电容器的电势能计算公式:E=CU^2/2=QU/2=Q^2/2C

    多电容器并联计算公式:C=C1+C2+C3+…+Cn

    多电容器串联计算公式:1/C=1/C1+1/C2+…+1/Cn

    三电容器串联:C=(C1*C2*C3)/(C1*C2+C2*C3+C1*C3)

    电容是指容纳电场的能力。任何静电场都是由许多个电容组成,有静电场就有电容,电容是用静电场描述的。一般认为:孤立导体与无穷远处构成电容,导体接地等效于接到无穷远处,并与大地连接成整体。

    2电容的应用

    根据电容在电路中的不同位置,电容表现着不同的状态,常见的分类如下:

    ►►1  按照结构分三大类:固定电容器、可变电容器和微调电容器;

    ►►2  按电解质分类有:有机介质电容器、无机介质电容器、电解电容器和空气介质电容器等;

    ►►3 按用途分有:高频旁路、低频旁路、滤波、调谐、高频耦合、低频耦合、小型电容器;

    ►►4 频旁路:陶瓷电容器、云母电容器、玻璃膜电容器、涤纶电容器、玻璃釉电容器;

    ►►5 低频旁路:纸介电容器、陶瓷电容器、铝电解电容器、涤纶电容器;

    ►►6  滤波:铝电解电容器、纸介电容器、复合纸介电容器、液体钽电容器;

    ►►7 调谐:陶瓷电容器、云母电容器、玻璃膜电容器、聚苯乙烯电容器;

    ►►8  高频耦合:陶瓷电容器、云母电容器、聚苯乙烯电容器;

    ►►9 低耦合:纸介电容器、陶瓷电容器、铝电解电容器、涤纶电容器、固体钽电容器;

    ►►10 小型电容:金属化纸介电容器、陶瓷电容器、铝电解电容器、聚苯乙烯电 容器、固体钽电容器、玻璃釉电容器、金属化涤纶电容器、聚丙烯电容器、云母电容器。

    电容作用

    *电容器的基本作用就是充电与放电,但由这种基本充放电作用所延伸出来的许多电路现象,使得电容器有着种种不同的用途,例如:在电动马达中,用它来产生相移;在照相闪光灯中,用它来产生高能量的瞬间放电等等。而在电子电路中,电容器不同性质的用途尤多,这许多不同的用途,虽然也有截然不同之处,但因其作用均来自充电与放电。下面是一些电容的作用列表:

    耦合电容:用在耦合电路中的电容称为耦合电容,在阻容耦合放大器和其他电容耦合电路中大量使用这种电容电路,起隔直流通交流作用。

    滤波电容:用在滤波电路中的电容器称为滤波电容,在电源滤波和各种滤波器电路中使用这种电容电路,滤波电容将一定频段内的信号从总信号中去除。

    退耦电容:用在退耦电路中的电容器称为退耦电容,在多级放大器的直流电压供给电路中使用这种电容电路,退耦电容消除每级放大器之间的有害低频交连。

    高频消振电容:用在高频消振电路中的电容称为高频消振电容,在音频负反馈放大器中,为了消振可能出现的高频自激,采用这种电容电路,以消除放大器可能出现的高频啸叫。

    谐振电容:用在LC谐振电路中的电容器称为谐振电容,LC并联和串联谐振电路中都需这种电容电路。

    旁路电容:用在旁路电路中的电容器称为旁路电容,电路中如果需要从信号中去掉某一频段的信号,可以使用旁路电容电路,根据所去掉信号频率不同,有全频域(所有交流信号)旁路电容电路和高频旁路电容电路。

    中和电容:用在中和电路中的电容器称为中和电容。在收音机高频和中频放大器,电视机高频放大器中,采用这种中和电容电路,以消除自激。

    定时电容:用在定时电路中的电容器称为定时电容。在需要通过电容充电、放电进行时间控制的电路中使用定时电容电路,电容起控制时间常数大小的作用。

    积分电容:用在积分电路中的电容器称为积分电容。在电势场扫描的同步分离电路中,采用这种积分电容电路,可以从场复合同步信号中取出场同步信号。

    微分电容:用在微分电路中的电容器称为微分电容。在触发器电路中为了得到尖顶触发信号,采用这种微分电容电路,以从各类(主要是矩形脉冲)信号中得到尖顶脉冲触发信号。

    补偿电容:用在补偿电路中的电容器称为补偿电容,在卡座的低音补偿电路中,使用这种低频补偿电容电路,以提升放音信号中的低频信号,此外,还有高频补偿电容电路。

    自举电容:用在自举电路中的电容器称为自举电容,常用的OTL功率放大器输出级电路采用这种自举电容电路,以通过正反馈的方式少量提升信号的正半周幅度。

    分频电容:在分频电路中的电容器称为分频电容,在音箱的扬声器分频电路中,使用分频电容电路,以使高频扬声器工作在高频段,中频扬声器工作在中频段,低频扬声器工作在低频段。

    负载电容:是指与石英晶体谐振器一起决定负载谐振频率的有效外界电容。负载电容常用的标准值有16pF、20pF、30pF、50pF和100pF。负载电容可以根据具体情况作适当的调整,通过调整一般可以将谐振器的工作频率调到标称值。

    调谐电容:连接在谐振电路的振荡线圈两端,起到选择振荡频率的作用。

    衬垫电容:与谐振电路主电容串联的辅助性电容,调整它可使振荡信号频率范围变小,并能显著地提高低频端的振荡频率。

    中和电容:并接在三极管放大器的基极与发射极之间,构成负反馈网络,以抑制三极管极间电容造成的自激振荡。

    稳频电容:在振荡电路中,起稳定振荡频率的作用。

    定时电容:在RC时间常数电路中与电阻R串联,共同决定充放电时间长短的电容。

    加速电容:接在振荡器反馈电路中,使正反馈过程加速,提高振荡信号的幅度。

    缩短电容:在UHF高频头电路中,为了缩短振荡电感器长度而串联的电容。

    克拉波电容:在电容三点式振荡电路中,与电感振荡线圈串联的电容,起到消除晶体管结电容对频率稳定性影响的作用。

    锡拉电容:在电容三点式振荡电路中,与电感振荡线圈两端并联的电容,起到消除晶体管结电容的影响,使振荡器在高频端容易起振。

    稳幅电容:在鉴频器中,用于稳定输出信号的幅度。

    预加重电容:为了避免音频调制信号在处理过程中造成对分频量衰减和丢失,而设置的RC高频分量提升网络电容。

    去加重电容:为了恢复原伴音信号,要求对音频信号中经预加重所提升的高频分量和噪声一起衰减掉,设置RC在网络中的电容。

    移相电容:用于改变交流信号相位的电容。

    反馈电容:跨接于放大器的输入与输出端之间,使输出信号回输到输入端的电容。

    降压限流电容:串联在交流回路中,利用电容对交流电的容抗特性,对交流电进行限流,从而构成分压电路。

    逆程电容:用于行扫描输出电路,并接在行输出管的集电极与发射极之间,以产生高压行扫描锯齿波逆程脉冲,其耐压一般在1500伏以上。

    S校正电容:串接在偏转线圈回路中,用于校正显像管边缘的延伸线性失真。

    自举升压电容:利用电容器的充、放电储能特性提升电路某点的电位,使该点电位达到供电端电压值的2倍。

    消亮点电容:设置在视放电路中,用于关机时消除显像管上残余亮点的电容。

    软启动电容:一般接在开关电源的开关管基极上,防止在开启电源时,过大的浪涌电流或过高的峰值电压加到开关管基极上,导致开关管损坏。

    启动电容:串接在单相电动机的副绕组上,为电动机提供启动移相交流电压,在电动机正常运转后与副绕组断开。

    运转电容:与单相电动机的副绕组串联,为电动机副绕组提供移相交流电流。在电动机正常运行时,与副绕组保持串接。

    3去耦电容

    电容的应用很广泛,其中最为常见的就是去耦电容。该一般应用在电源的旁边,作为是为了降低电源对地的交流阻抗(也称为旁路电容)。在没有这个电容时,电路的交流特性变得很奇特,严重时电路产生振荡。为此,单片机及其他外围器件的每一个电源输入脚都应该加上一个旁路电容。

    电容的阻抗为1/(2π*f*C),频率越高,阻抗应该越小。在结构上,小容量的电容器在高的频率处,而大容量的电容器则在较低的频率处,电容的阻抗变得最低。因此,在电源上并联一个小容量电容和一个大容量电容是很有必要的,这样在很宽的频率范围降低电源对地的阻抗。

    小容量的电容器是在高频情况下降低阻抗的,所以如果不配置在电路附近,则电容器的引线增长,由于引线本身的阻抗,电源的阻抗不能降低。使用在使用小电容时,一定将尽量靠近器件的电源输入脚,否则就算添加了这个电容也没有任何意义。大容量电容器由于其低频特性,在布局时可以适当离器件远些也没有问题。在低频电路上即使没有小电容C1,电路也能正常工作。但是在高频电路中,比起大电容C2来说,C1起着更为重要的作用。

    通常小容量的电容器是0.01~0.1uF的陶瓷电容器(薄膜电容器为NG),大容量的电容器是1~100uF的铝电解电容。在实际应用中,小容量电容器常取104电容,大容量电容器常取10uF电容。

    从习惯上来说,旁路电容也有大小两个电容,形成两条通路,也保证电路的可靠性。

    电源是使电路进行工作的基础,因此,旁路电容可以认为是电路工作的“保险金”。在电路图中,一定要添加旁路电容,所以,从一个人的对旁路电容的应用,特别是布局就可以看出,其是否是高手了。

    4耦合电容

    耦合电容,又称电场耦合或静电耦合,是由于分布电容的存在而产生的一种耦合方式。耦合电容器是使得强电和弱电两个系统通过电容器耦合并隔离,提供高频信号通路,阻止工频电流进入弱电系统,保证人身安全。带有电压抽取装置的耦合电容器除以上作用外,还可抽取工频电压供保护及重合闸使用,起到电压互感器的作用。

    电容耦合的作用是将交流信号从前一级传到下一级。耦合的方法还有直接耦合和变压器耦合的方法。直接耦合效率最高,信号又不失真,但是,前后两级工作点的调整比较复杂,相互牵连。为了使后一级的工作点不受前一级的影响,就需要在直流方面把前一级和后一级分开,同时,又能使交流信号从前一级顺利的传递到后一级,同时能完成这一任务的方法就是采用电容传输或者变压器传输来实现。他们都能传递交流信号和隔断直流,使前后级的工作点互不牵连。但不同的是,用电容传输时,信号的相位要延迟一些,用变压器传输时,信号的高频成分要损失一些。一般情况下,小信号传输时,常用电容作为耦合元件,大信号或者强信号传输时,常用变压器作为耦合元件。

    耦合电容利用了电容最为主要的一个特性:隔直传交。通过这一特性,可以很好的把直流电路与交流电路进行耦合,以保障其相互协调工作。对于单片机外围电路来说,使用比较多的耦合电容是,单片机需要与交流信号进行通信的地方,例如:ADC和DAC。

    在AD于DA电路上,我们需要把数字信号和模拟信号进行相互转换,为保障数字喜欢与模拟喜欢的互不干涉,我们往往需要在单片机的输入端或输出端串联一个电容,对电路进行耦合。

    由于耦合电容和负载R1直接形成了高通滤波器,会因为输出端接不同输出电路的输入阻抗,电容应该进行相应的变化。为此,预先考虑接什么样的负载是至关重要的。

    5起振电容

    用于振荡回路中,与电感或电阻配合,决定振荡频率(时间)的电容称之为振荡电容。

    查了数据手册得知实际频率和标称频率之间的关系:

    Fx = F0(1+C1/(C0+CL))^(1/2);

    而 CL = Cg*Cd/(Cg+Cd)+Cs;其中Cs为杂散电容,Cg和Cd为我们外部加的两个电容,通常大家取值相等,它们对串联起来加上杂散电容即为晶振的负载电容CL.

    具体公式不用细想,我们可以从中得知负载电容的减小可以使实际频率Fx变大,

    我们可以改变的只有Cg和Cd,通过初步的计算发现CL改变1pF,Fx可以改变几百Hz。

    原有电路使用的是33pF的两个电容,则并联起来是16.5pF,我们的贴片电容只有27pF,33pF,39pF,所以我们选用了27pF和39pF并联,则电容为15.95pF。电容焊好后,测量比原来大了200多赫兹,落在了设计范围内。

    结论:晶振电路上的两个电容可以不相等,通过微调电容的值可以微调晶振的振荡频率,不过如果你测了几片晶振,频率有大有小,而且偏移较大,那么这个晶振就是不合格的。

    对于这电容来说,大家应该再熟悉不过了,基本上,没有一个带有微处理器的电路都至少有一个带有起振电容的电路。虽然,大多是情况下,我们都是按照经验选择这两个电容。实际上,这样不科学,有的时候晶振并不会工作。所以,选择合适是起振电容还是很有必要的。实际上,不同的晶振,起需要的起振电容是不同的,在购买晶振时应该选择合适的晶振,一般来说在晶振的数据手册上也提供了选择起振电容的依据。

    不管怎么说,一般来说,我们还是可以根据经验是有电容:

    在单片机的主时钟输入电路中,一般可以选择22pF左右的起振电容,而在RTC时钟中选择6pF的起振电容,是没有问题的。当然,如果对时钟的要求比较严格时,还是建议参考晶振数据手册,选择电容。

    6复位电容

    如图所示是电容复位电路。Al是CPU集成电路,①脚是集成电路Al的复位引脚,复位引脚一般用RESET表示,①脚内电路和外电路中的元件构成复位电路,Cl是复位电容,Sl是手动复位开关。这一复位电路的工作原理:I集成电路Al的①脚内电路有一个斯密特触发器和一个提拉电阻R1,它一端接在直流电压+5V上,另一端通过Al的①脚与外电路中的电容C1相连。

    电路的电源开关接通后,+5V直流电压通过电阻R1对电容C1充电,这样在电源接通瞬间电容Cl两端没有电压(因为电容两端的电压不能突变),随着对电容Cl的充电,集成电路Al的①脚上的电压开始升高,这样可在Al的①脚上产生一个时间足够长的复位脉冲,时间常数一般为0.2s.

    随着+5V直流电压的充电,Al的①脚上的电压达到了一定值,集成电路Al内部所有电路均可建立起初始状态,复位工作完成,CPU进入初始的正常工作状态。这一复位电路的目的:使集成电路Al的复位引脚①脚上直流电压的建立滞后于集成电路Al的+5V直流工作电压规定的时间,如图5-69所示的电压波形可以说明这一问题。

     

     

     

     

     

     

     

     

    本文纯属学习记录,摘自张飞实战电子,大家可以去张飞实战电子学习提高,一起加油!!!!

    展开全文
  • 单片机晶振的两个电容的作用

    千次阅读 2007-02-01 09:11:00
    这两个电容叫晶振的负载电容,分别接在晶振的两个脚上和对地的电容,一般在几十皮发。它会影响到晶振的谐振频率和输出幅度,一般订购晶振时候供货方会问你负载电容是多少。 晶振的负载电容=[(Cd*Cg)/(Cd+Cg)]+Cic+...
     这两个电容叫晶振的负载电容,分别接在晶振的两个脚上和对地的电容,一般在几十皮发。它会影响到晶振的谐振频率和输出幅度,一般订购晶振时候供货方会问你负载电容是多少。
       晶振的负载电容=[(Cd*Cg)/(Cd+Cg)]+Cic+△C式中Cd,Cg为分别接在晶振的两个脚上和对地的电容,Cic(集成电路内部电容)+△C(PCB上电容)经验值为3至5pf.
        各种逻辑芯片的晶振引脚可以等效为电容三点式振荡器. 晶振引脚的内部通常是一个反相器, 或者是奇数个反相器串联. 在晶振输出引脚 XO 和晶振输入引脚 XI 之间用一个电阻连接, 对于 CMOS 芯片通常是数 M 到数十 M 欧之间. 很多芯片的引脚内部已经包含了这个电阻, 引脚外部就不用接了. 这个电阻是为了使反相器在振荡初始时处与线性状态, 反相器就如同一个有很大增益的放大器, 以便于起振. 石英晶体也连接在晶振引脚的输入和输出之间, 等效为一个并联谐振回路, 振荡频率应该是石英晶体的并联谐振频率. 晶体旁边的两个电容接地, 实际上就是电容三点式电路的分压电容, 接地点就是分压点. 以接地点即分压点为参考点, 振荡引脚的输入和输出是反相的, 但从并联谐振回路即石英晶体两端来看, 形成一个正反馈以保证电路持续振荡. 在芯片设计时, 这两个电容就已经形成了, 一般是两个的容量相等, 容量大小依工艺和版图而不同, 但终归是比较小, 不一定适合很宽的频率范围. 外接时大约是数 PF 到数十 PF, 依频率和石英晶体的特性而定. 需要注意的是: 这两个电容串联的值是并联在谐振回路上的, 会影响振荡频率. 当两个电容量相等时, 反馈系数是 0.5, 一般是可以满足振荡条件的, 但如果不易起振或振荡不稳定可以减小输入端对地电容量, 而增加输出端的值以提高反馈量. 在这里不能画图, 不知道叙述是否清楚. 一般芯片的 Data sheet 上会有说明 
     
    展开全文
  • 单片机晶振上两个电容的作用

    千次阅读 2015-02-09 14:42:45
    这两个电容叫晶振的负载电容,分别接在晶振的两个脚上和对地的电容,一般在几十皮发。它会影响到晶振的谐振频率和输出幅度,一般订购晶振时候供货方会问你负载电容是多少。   晶振的负载电容=[(Cd*Cg)/(Cd+Cg)]...

    这两个电容叫晶振的负载电容,分别接在晶振的两个脚上和对地的电容,一般在几十皮发。它会影响到晶振的谐振频率和输出幅度,一般订购晶振时候供货方会问你负载电容是多少。
     

    晶振的负载电容=[(Cd*Cg)/(Cd+Cg)]+Cic+△C式中Cd,Cg为分别接在晶振的两个脚上和对地的电容,Cic(集成电路内部电容)+△C(PCB上电容)经验值为3至5pf。
     

    各种逻辑芯片的晶振引脚可以等效为电容三点式振荡器。晶振引脚的内部通常是一个反相器, 或者是奇数个反相器串联。在晶振输出引脚 XO 和晶振输入引脚 XI 之间用一个电阻连接, 对于 CMOS 芯片通常是数 M 到数十M 欧之间. 很多芯片的引脚内部已经包含了这个电阻, 引脚外部就不用接了。这个电阻是为了使反相器在振荡初始时处与线性状态, 反相器就如同一个有很大增益的放大器, 以便于起振. 石英晶体也连接在晶振引脚的输入和输出之间, 等效为一个并联谐振回路, 振荡频率应该是石英晶体的并联谐振频率. 晶体旁边的两个电容接地, 实际上就是电容三点式电路的分压电容, 接地点就是分压点. 以接地点即分压点为参考点, 振荡引脚的输入和输出是反相的, 但从并联谐振回路即石英晶体两端来看, 形成一个正反馈以保证电路持续振荡. 在芯片设计时, 这两个电容就已经形成了, 一般是两个的容量相等, 容量大小依工艺和版图而不同, 但终归是比较小, 不一定适合很宽的频率范围. 外接时大约是数 PF 到数十 PF, 依频率和石英晶体的特性而定. 需要注意的是: 这两个电容串联的值是并联在谐振回路上的, 会影响振荡频率. 当两个电容量相等时, 反馈系数是 0.5, 一般是可以满足振荡条件的, 但如果不易起振或振荡不稳定可以减小输入端对地电容量, 而增加输出端的值以提高反馈量.

    展开全文
  • 单片机晶振旁边电容的作用及振荡电路的分析 很多都不知道为什么选30pf的起振电容
  • 刚学单片机的学长告诉我单片机的晶振电路中就是用22pf或30pf的电容就行,听人劝吃饱饭吧,照着焊电路一切ok,从没想过为什么,知其所以然而不知其为什么所以然,真是悲哀,最近状态好像一直不太好,也难以说清楚为...
  • 单片机起振原因分析(转)

    千次阅读 2013-12-15 15:42:30
    1、单片机晶振不起振原因分析 遇到单片机晶振不起振是常见现象,那么引起晶振不起振的原因有哪些呢? (1) PCB板布线错误; (2) 单片机质量有问题; (3) 晶振质量有问题; (4) 负载电容或匹配...
  • 单片机晶振不起振原因及排除

    千次阅读 2015-07-17 12:52:42
    遇到单片机晶振不起振是常见现象,那么引起晶振不起振的原因有哪些呢? (1) PCB板布线错误; (2) 单片机质量有问题; (3) 晶振质量有问题; (4) 负载电容或匹配电容与晶振不匹配或者电容质量有问题; (5) ...
  • 作为一种精密的频率元件,单片机中的晶振却很容易出现问题,轻微的碰撞都可能导致晶振损坏,因此,遇到单片机晶振不起振是很常见的一种现象。小编的几个做单片机的客户也就这方面问题咨询过,今天小编就单片机晶振...
  • 单片机晶振不起振故障分析

    千次阅读 2013-12-03 17:26:13
    而我们也知道,单片机晶振不起振是常见现象,那么引起晶振不起振的原因究竟有哪些?如何排除晶振不起振故障?如何检测晶振是否正常?本文将一一解答。  遇到单片机晶振不起振是常见现象,那么引起晶振不起振的原因...
  • 晶/陶起振及使用注意事项

    千次阅读 2016-07-16 18:07:53
    本文为在网上看到描述晶振不起振后,想去之前遇到的陶起振的风险,因此粘贴部分,并在自己认识范围加入注意事项。分享给大家。若有误,欢迎大家指正 引起晶振不起振的原因有: (1) PCB板布线错误; (2) 单片机...
  • 5150晶振不起振

    千次阅读 2013-04-10 12:28:11
    1、这是一个比较让我费解的问题、今天从相机输入了...2、换一个起振电容 问题解决了、原因是TVP5150的PDN脚应该输入高电平的、硬件连接的时候没有接上高电平、或者这个脚用单片机来控制,这样也要配置来控制PDN脚
  • 时钟芯片DS1302可靠起振的方法

    千次阅读 2012-03-21 18:07:55
    简介 在DS1302的实际使用中,采用辅助电容法,可以解决DS1302在应用中由于晶振的负载电容不匹配而引起的停问题。 关键词 时钟 负载电容 匹配 概述  DS1302是Dallas公司生产的一种实时时钟芯片。它通过串行方式与...
  • 晶振不起振的原因

    2020-01-08 14:08:18
    PCB 中常用的晶体封装有: 2 管脚的插件封装,SMD 封装、 4 管脚的 SMD 封装 尽管晶体有不同的规格,但它们的基本电路...遇到单片机晶振不起振是常见现象,那么引起晶振不起振的原因有哪些呢? (1) PCB板布线错误...
  • 晶振不起振原因

    2019-09-29 10:59:07
    今天维修时遇到了晶振不起振的原因,无源晶振,换晶振、换匹配电容都没用,最后的解决办法是拖焊MCU就好了,mcu我目测是没有虚焊的,
  • 这是我在做单片机最小系统板时候碰到的问题,之前虽然也做过相似的板子,可是未曾出现过无源晶振不起振的问题。下面是我在遇到问题后的一些检查,排除问题的过程。本人小菜鸟一个,文章中如有错误和不足,还望各位...
  • 一、 晶体起振详解: 对于振荡电路,必须有正反馈,且闭环增益大于1,晶体与负载电容构成Π型滤波电路(带通),共振频率可以通过。 芯片的时钟电路详见:芯片晶振内部电路(皮尔斯振荡电路)。 图1 芯片内部电路 ...
  • STM32的RTC晶振经常出现不起振的问题,这已经是“业界共识”了。。。很多人在各种电子论坛上求助类似于“求高手指点!RTC晶振不起振怎么办”的问题,而其答案基本可以概括为“这次高手帮不了你了” 更有阴谋论者...
  • 晶振不起振原因分析

    2020-07-30 23:30:44
    遇到单片机晶振不起振是常见现象,那么引起晶振不起振的原因有哪些呢? (1) PCB板布线错误; (2) 单片机质量有问题; (3) 晶振质量有问题; (4) 负载电容或匹配电容与晶振不匹配或者电容质量有问题; (5) PCB板受潮...
  • 单片机是可编程器件,在执行程序指令时与单片机的机器周期有着...对于普通的外部晶振而言,在设计电路时需要设计两个负载电容,帮助晶振起振。负载电容的取值范围为(15-30)pF,晶振电路如下图所示。  这种晶振...
1 2 3 4 5 ... 20
收藏数 648
精华内容 259
关键字:

单片机起振电容